National University of Singapore School of Computing CS3243: Introduction to Artificial Intelligence Tutorial 10

Readings: AIMA Chapter 23 (Sections 1-3)

1. Given the following grammar:

 $S \Rightarrow NP VP$ $NP \Rightarrow Noun | Article Noun | NP PP | Noun Noun$ $VP \Rightarrow Verb | VP NP | VP PP$ $PP \Rightarrow Preposition NP$ $Article \Rightarrow the$ $Noun \Rightarrow agent | wumpus | [1,2]$ $Verb \Rightarrow detects$ $Preposition \Rightarrow at$

Consider the sentence "the agent detects the wumpus at [1,2]".

- (a) Show two different parse trees of this sentence based on the above grammar, and give the interpretation (in English) of each parse tree.
- (b) Now consider the same probabilistic grammar below (identical to the grammar in (a)) but with probability values as above. Calculate the probability of each of the two parses. S ⇒ NP VP [1.0]
 NP ⇒ Noun [.1]| Article Noun [.4]| NP PP [.3]| Noun Noun [.2]
 VP ⇒ Verb [.5]| VP NP [.3]| VP PP [.2]
 PP ⇒ Preposition NP [1.0]
 Article ⇒ the [1.0]
 Noun ⇒ agent [.4] | wumpus [.2] | [1,2] [.4]
 Verb ⇒ detects [1.0]
 Preposition ⇒ at [1.0]
- (c) If the probability of the rule

 $NP \Rightarrow Noun [.1]$ Article Noun [.4] NP PP [.3] Noun Noun [.2]

was changed to:

 $NP \Rightarrow Noun [.1]$ Article Noun [.5] NP PP [.3] Noun Noun [.1]

would the parsing results change? Why or why not?

2. (Modified from Question 22.9 of the textbook) Consider the sentence "someone walked slowly to the supermarket" and the following lexicon:

 $\begin{array}{l} \text{Pronoun} \Rightarrow \text{someone} \\ \text{Verb} \Rightarrow \text{walked} \\ \text{Adv} \Rightarrow \text{slowly} \\ \text{Prep} \Rightarrow \text{to} \end{array}$

Article \Rightarrow the Noun \Rightarrow supermarket

Which of the following three grammars, combined with the lexicon, generates the given sentence? Show the corresponding parse tree(s).

Grammar A: $S \Rightarrow NP VP$ $\mathrm{NP} \Rightarrow \mathrm{Pronoun}$ $NP \Rightarrow Article Noun$ $VP \Rightarrow VP PP$ $VP \Rightarrow VP Adv Adv$ $VP \Rightarrow Verb$ $PP \Rightarrow Prep NP$ $\text{NP} \Rightarrow \text{Noun}$ Grammar B: $S \Rightarrow NP VP$ $NP \Rightarrow Pronoun$ $NP \Rightarrow Noun$ $NP \Rightarrow Article NP$ $VP \Rightarrow Verb Vmod$ $Vmod \Rightarrow Adv Vmod$ $Vmod \Rightarrow Adv$ $Adv \Rightarrow PP$ $PP \Rightarrow Prep NP$

Grammar C: $S \Rightarrow NP VP$ $NP \Rightarrow Pronoun$ $NP \Rightarrow Article NP$ $VP \Rightarrow Verb Adv$ $Adv \Rightarrow Adv Adv$ $Adv \Rightarrow PP$ $PP \Rightarrow Prep NP$ $NP \Rightarrow Noun$

3. Consider the following context-free grammar that generates sequences of letters:

$$\begin{split} & S \Rightarrow a \ X \ c \\ & S \Rightarrow b \ X \ c \\ & S \Rightarrow b \ X \ e \\ & S \Rightarrow c \ X \ e \\ & X \Rightarrow f \ X \\ & X \Rightarrow g \end{split}$$

(a) Give a trace of the top-down parse on the input bfge

- (b) Give a trace of the bottom-up parse on the same input bfge
- (c) Which approach is better in this case?
- 4. Give context-free grammars for
 - (a) The set of all strings of the form: n occurrences of as, followed by any number of bs, followed by any number of cs, followed by n occurrences of d
 - (b) The set of palindromes (strings that read the same forward as backward) over alphabet $\{a, b\}$
- 5. Show the CYK chart and most likely parse of the sentence "the girl saw the man with the telescope", given the following grammar and lexicon.

 $S \Rightarrow NP VP [1.0]$ $NP \Rightarrow NP PP [.3] | Article Noun [.7]$

```
VP \Rightarrow VP PP [.4] | Verb NP [.6]
PP \Rightarrow Prep NP [1.0]
```

```
Article \Rightarrow the [1.0]
Noun \Rightarrow girl [.4] | man [.2] | telescope [.4]
Verb \Rightarrow saw [1.0]
Preposition \Rightarrow with [1.0]
```