CS3245

Information Retrieval

Lecture 4: Dictionaries and Tolerant Retrieval

Last Time: Terms and Postings Details

- The type/token distinction
 - Terms are normalized types put in the dictionary
- Tokenization problems
 - Hyphens, apostrophes, spaces, compounds
 - Language specific problems
- Term equivalence classing (or not)
 - Numbers, case folding, stemming, lemmatization
- Skip pointers
 - Encoding a tree-like structure in a postings list
- Biword indexes for phrases
- Positional indexes for phrases/proximity queries

Today: The dictionary and tolerant retrieval

- Dictionary data structures
- "Tolerant" retrieval
 - Wild-card queries
 - Spelling correction
 - Soundex

Dictionary data structures for inverted indexes

The dictionary data structure stores the term vocabulary, document frequency, pointers to each postings list ... in what data structure?

dictionary

postings

A naïve dictionary

• An array of struct:

term	document	pointer to		
	frequency	postings list		
а	656,265	\longrightarrow		
aachen	65	\longrightarrow		
zulu	221	\longrightarrow		

char[20] int Postings Pointer 20 bytes 4/8 bytes 4/8 bytes

Quick Q: What's wrong with using this data structure?

A naïve dictionary

term	document	pointer to
	frequency	postings list
а	656,265	\longrightarrow
aachen	65	\longrightarrow
zulu	221	\longrightarrow

char[20] int Postings Pointer 20 bytes 4/8 bytes 4/8 bytes

Words can only be 20 chars long. Waste of space for some words, not enough for others.

How do we store a dictionary in memory efficiently?

Most important: Slow to access, linear scan needed!

How do we quickly look up elements at query time?

Dictionary data structures

- Two main choices:
 - Hash table
 - Tree
- Some IR systems use hashes, some trees

To think about: what issues influence the choice between these two data structures? (Hint: see IIR)

Hash Table

Each vocabulary term is hashed to an integer

- Pros:
 - Lookup is faster than for a tree: O(1)
- Cons:
 - No easy way to find minor variants:
 - judgment/judgement
 - No prefix search

Not very tolerant!

 If vocabulary keeps growing, need to occasionally do the expensive operation of rehashing everything

Tree: binary tree

Tree: B-tree

 Definition: Every internal nodel has a number of children in the interval [a,b] where a, b are appropriate natural numbers, e.g., [2,4].

235

Trees

- Simplest: binary tree
- More usual: B-trees
- Trees require a standard ordering of characters and hence strings ... but we have one: lexicographical ordering
- Pros:
 - Solves the prefix problem (terms starting with "hyp")
- Cons:
 - Slower: O(log M) [and this requires balanced tree]
 - Rebalancing binary trees is expensive
 - B-trees mitigate the rebalancing problem

Wildcard queries: *

mon*: find all docs containing any word beginning "mon".

Quick Q1: why would someone use this feature?

- Easy with binary tree (or B-tree) lexicon: retrieve all words in range: *mon ≤ w < moo*
- *mon: find words ending in "mon": need help!
 - Maintain an additional B-tree for terms reversed Can retrieve all words in range: *nom ≤ w < non*.

Quick Q2: from this, how can we enumerate all terms meeting the wildcard query **pro*cent**?

Intersection, redux

Answer: Use the forward part for "pro*", and the backward part for "*cent", then intersect them.

Query processing

- At this point, we have an enumeration of all terms in the dictionary that match the wildcard query.
- We still have to look up the postings for each enumerated term → still expensive
- E.g., consider the query:

se*ate AND fil*er

This may result in the execution of many Boolean *AND* queries.

B-trees handle *'s at the end of a query term

- How can we handle *'s in the middle of query term?
 - co*tion
- We could look up co* AND *tion in a B-tree and intersect the two term sets
 - Expensive
- The solution: transform wild-card queries so that the
 *'s always occur at the end
- This gives rise to the Permuterm Index.

Permuterm index

- For term *hello*, index under:
 - hello\$, ello\$h, llo\$he, lo\$hel, o\$hell where \$ is a special symbol.
- Queries:
 - X lookup on X\$
 - *X lookup on X\$* *X* lookup on X*
 - X*Y lookup on Y\$X*

X* lookup on \$X*

Query = hel*o X=hel, Y=o Lookup o\$hel*

Not so quick Q: What about X*Y*Z?

5

Permuterm query processing

- Rotate query wild-card to the right
- Now use B-tree lookup as before
- Permuterm problem: lexicon size blows up, proportional to average word length

Is there any other solution?

Bigram (k-gram) indexes

- Enumerate all k-grams (sequence of k chars) occurring in any term
- e.g., from text "April is the cruelest month" we get the 2-grams (bigrams)

```
$a,ap,pr,ri,il,l$,$i,is,s$,$t,th,he,e$,$c,cr,ru,
ue,el,le,es,st,t$,$m,mo,on,nt,h$
```

- As before "\$" is a special word boundary symbol
- Maintain a <u>second</u> inverted index <u>from bigrams to</u> <u>dictionary terms</u> that match each bigram.

Bigram index example

 The k-gram index finds terms based on a query consisting of k-grams (here k=2).

Processing wildcards

- Query mon* can now be run as
 - \$m AND mo AND on
- Gets terms that match AND version of our wildcard query.
- Oops! We also included moon, a false positive!
- Must post-filter these terms against query.
- Surviving enumerated terms are then looked up in the term-document inverted index.
- Fast, space efficient (compared to permuterm).

Processing wildcard queries

- As before, we must execute a Boolean query for each enumerated, filtered term.
- Wildcards can result in expensive query execution (very large disjunctions...)
 - pyth* AND prog*
- If you encourage "laziness" people will respond!

Which web search engines allow wildcard queries?

Free Photoshop PSD file download Resolution 1280x1024 pt

Spellling corektion

- Two principal uses:
 - 1. Correcting document(s) being indexed
 - 2. Correcting user queries to retrieve "right" answers
- Two main flavors:
 - Isolated word
 - Check each word on its own for misspelling
 - Will not catch typos resulting in correctly spelled words
 e.g., from → form
 - Context-sensitive
 - Look at surrounding words
 e.g., I flew form Heathrow to Narita.

Document correction

- Especially needed for OCR'ed documents
 - Correction algorithms are tuned for common errors: rn/m
 - Can use domain-specific knowledge
 - E.g., OCR can confuse O and D more often than it would confuse O and I (adjacent on the QWERTY keyboard, so more likely interchanged in typing).
- But also: web pages and even printed material has typos
- Goal: the dictionary contains fewer misspellings
- But often we don't change the documents but aim to fix the query-document mapping

Query misspellings

- Our principal focus here
 - E.g., the query Britiny Speares
- We can either
 - Retrieve documents indexed by the correct spelling, OR
 - Return several suggested alternative queries with the correct spelling
 - "Did you mean ... ?"

Isolated word correction

- Fundamental premise there is a lexicon from which the correct spellings come
- Two basic choices for this
 - A standard lexicon such as
 - Webster's English Dictionary
 - A domain-specific lexicon often hand-maintained
 - The lexicon of the indexed corpus
 - E.g., all words on the web
 - All names, acronyms, etc. (including misspellings)

Isolated word correction

- Given a lexicon and a character sequence Q, return the words in the lexicon closest to Q
- How do we define "closest"?
- We'll study several alternatives
 - 1. Edit distance (Levenshtein distance)
 - 2. Weighted edit distance
 - 3. ngram overlap

1. Edit distance

- Given two strings S_1 and S_2 , the minimum number of operations to convert one to the other
- Operations are typically character-level
 - Insert, Delete, Replace, (Transposition)
- E.g., the edit distance from dof to dog is 1
 - From cat to act is 2 (Just 1 with transpose.)
 - from *cat* to *dog* is 3.
- Generally found by dynamic programming

Dynamic Programming

Not dynamic and not programming

- Build up solutions of "simpler" instances from small to large
 - Save results of solutions of "simpler" instances
 - Use those solutions to solve larger problems
- Useful when problem can be solved using solution of two or more instances that are only slightly simpler than original instances

Longest common subsequence

• S_1 : apple S_2 : aloe

 \bullet S₁: chicken

S₂: checkers

What's the longest common subsequence?

Solution: start by looking at LCS of prefixes of S_1 and S_2 , and recursively work towards a solution to the longer problem

Approximate String Matching

 $S_{1(1,i)} S_{2(1,j)}$ at entry i,j

S₁:	PAT
S_1 :	PAI

S₂: APT

Possible moves:

- Match a character
- Skip a character in s1
- Skip a character in s2

		Р	Α	Т
	0	0	0	0
A	0			
Р	0			
H	0			

$$E(i, j) = E(i-1, j-1)$$
 if $P_i = T_j$
 $E(i, j) = \min\{E(i, j-1), E(i-1, j), E(i-1, j-1)\}+1$ if $P_i \neq T_i$

Blanks on slides, you may want to fill in

Practice run

	_	С	Н	I	С	K	Е	N
_	0	0	0	0	0	0	0	0
С	0						M	*
Н	0						E Z	time
Е	0						di	2
Е	0							22
K	0							
Υ	0							

2. Weighted edit distance

- As above, but the weight of an operation depends on the character(s) involved
 - Meant to capture OCR or keyboard errors, e.g. m more likely to be mis-typed as n than as q
 - Therefore, replacing m by n is a smaller edit distance than by q
 - This may be formulated as a probability model
- Requires weight matrix as input
- Modify dynamic programming to handle weights

Using edit distances

- Given query, first enumerate all character sequences within a preset (weighted) edit distance (e.g., 2)
- Intersect this set with list of "correct" words
- Show terms you found to user as suggestions
- Alternatively,
 - We can look up all possible corrections in our inverted index and return all docs ... slow
 - We can run with a single most likely correction
- The alternatives disempower the user, but may save a round of interaction with the user

Edit distance to all dictionary terms?

- Given a (misspelled) query do we compute its edit distance to every dictionary term?
 - Expensive and slow
 - Alternative?
- How do we cut the set of candidate dictionary terms?
 - One possibility is to use ngram overlap for this
 - This can also be used by itself for spelling correction

3. ngram overlap

- Enumerate all the ngrams in the query string as well as in the lexicon
- Use the ngram index (recall wildcard search) to retrieve all lexicon terms matching any of the query ngrams
- Threshold by number of matching ngrams
 - Variants weight by keyboard layout, assume initial letter correct, etc.

Arocdnicg to rsceearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoatnt tihng is taht the frist and lsat ltteer are in the rghit pcale. The rset can be a toatl mses and you can sitll raed it wouthit pobelrm. Tihs is buseace the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

This story is actually an urban legend? No such study was done at Cambridge

Example with trigrams

- Suppose the text is november
 - Trigrams are nov, ove, vem, emb, mbe, ber.
- The query is december
 - Trigrams are dec, ece, cem, emb, mbe, ber.
- So 3 trigrams overlap (out of 6 in each term)

How can we turn this into a normalized measure of overlap?

One option – Jaccard coefficient

- A commonly-used measure of overlap
- Let X and Y be two sets; then the J.C. is

$$|X \cap Y|/|X \cup Y|$$

A generally useful overlap measure, even outside of IR

- Equals 1 when X and Y have the same elements and zero when they are disjoint
- X and Y don't have to be of the same size
- Always assigns a number between 0 and 1
 - Now threshold to decide if you have a match
 - E.g., if Jaccard > 0.8, declare a match

Matching trigrams

 Consider the query *lord* – we wish to identify words matching 2 of its 3 bigrams (*lo, or, rd*)

Standard postings "merge" enumerates hits

Adapt this to using Jaccard (or another) measure.

40

Context-sensitive spelling correction

- Text: I flew from Heathrow to Narita.
- Consider the phrase query "flew form Heathrow"
- We'd like to respond

Did you mean "flew from Heathrow"?

because no docs matched the query phrase.

75

Context-sensitive correction

National University of Singapore

- Need surrounding context to catch this.
- First idea: retrieve dictionary terms close (in weighted edit distance) to each query term
- Now try all possible resulting phrases with one word "fixed" at a time
 - flew from heathrow
 - fled form heathrow
 - flea form heathrow
- Hit-based spelling correction: Suggest the alternative that has lots of hits (in queries or documents)

The **hit-based paradigm** is applied in many other places too!

Another approach

- Break phrase query into a conjunction of biwords
- Look for biwords that need only one term corrected.
- Enumerate phrase matches and ... rank them!

General issues in spelling correction

- We enumerate multiple alternatives for "Did you mean?"
- Need to figure out which to present to the user
- Use heuristics
 - The alternative hitting most docs
 - Query log analysis + tweaking
 - For especially popular, topical queries
- Spelling correction is computationally expensive
 - Avoid running routinely on every query?
 - Run only on queries that matched few docs

Blanks on slides, you may want to fill in

Soundex

- Class of heuristics to expand a query into phonetic equivalents
 - Language specific mainly for names
 - E.g., chebyshev → tchebycheff
- Invented for the U.S. census
- We'll explore this just in the context of English

To think about: what other languages does it make sense for?

Soundex – typical algorithm

- Turn every token to be indexed into a 4-character reduced form
- Do the same with query terms
- Build and search an index on the reduced forms
 - (when the query calls for a Soundex match)
- See
 http://www.creativyst.com/Doc/Articles/SoundEx1/
 http://www.creativyst.com/Doc/Articles/SoundEx1/
 http://www.creativyst.com/Doc/Articles/SoundEx1/
 https://www.creativyst.com/Doc/Articles/SoundEx1/
 https://www.c

Soundex – typical algorithm

- Retain the first letter of the word.
- Change all occurrences of the following letters to '0' (zero):

- 3. Change letters to digits as follows:
 - $\blacksquare \quad \mathsf{B},\,\mathsf{F},\,\mathsf{P},\,\mathsf{V}\to \mathsf{1}$
 - C, G, J, K, Q, S, X, $Z \rightarrow 2$
 - $D,T \rightarrow 3$
 - L → 4
 - $M, N \rightarrow 5$
 - $R \rightarrow 6$

Soundex continued

- 4. Remove all pairs of consecutive digits.
- 5. Remove all zeros from the resulting string.
- 6. Pad the resulting string with trailing zeros and return the first four positions, which will be of the form <uppercase letter> <digit> <digit> <digit>.

E.g., *Herman* becomes H655.

Soundex

 Soundex is the classic algorithm, provided by most databases (Oracle, Microsoft, ...)

How useful is Soundex?

- Not very for general IR, spelling correction
- Okay for "high recall" tasks (e.g., Interpol), though biased to names of certain nationalities
 - Sucks for Chinese names: Xin (Pinyin) and Hsin (Wade-Giles) mapped completely different

Now what queries can we process?

- We have
 - Positional inverted index with skip pointers
 - Wildcard index
 - Spelling correction
 - Soundex
- Queries such as

(SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski)

Summary

- Data Structures for the Dictionary
 - Hash
 - Trees

- Learning to be tolerant
- 1. Wildcards
 - General Trees
 - Permuterm
 - Ngrams, redux
- 2. Spelling Correction
 - Edit Distance
 - Ngrams, re-redux
- 3. Phonetic Soundex

Resources

- IIR 3, MG 4.2
- Efficient spelling retrieval:
 - K. Kukich. Techniques for automatically correcting words in text. ACM Computing Surveys 24(4), Dec 1992.
 - J. Zobel and P. Dart. Finding approximate matches in large lexicons.
 Software practice and experience 25(3), March 1995.
 http://citeseer.ist.psu.edu/zobel95finding.html
 - Mikael Tillenius: Efficient Generation and Ranking of Spelling Error Corrections.
 Master's thesis at Sweden's Royal Institute of Technology.
 http://citeseer.ist.psu.edu/179155.html
- Nice, easy reading on spelling correction:
 - Peter Norvig: How to write a spelling corrector