CS3245

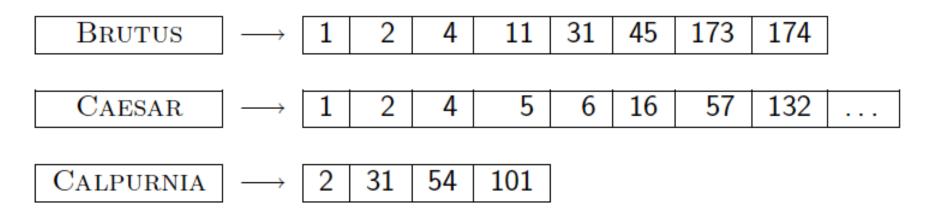
Information Retrieval

Lecture 6: Index Compression

Last Time: index construction

- Sort-based indexing
 - Blocked Sort-Based Indexing
 - Merge sort is effective for disk-based sorting (avoid seeks!)
 - Single-Pass In-Memory Indexing
 - No global dictionary Generate separate dictionary for each block
 - Don't sort postings Accumulate postings as they occur
- Distributed indexing using MapReduce
- Dynamic indexing: Multiple indices, logarithmic merge

Today: Cmprssn



- Collection statistics in more detail (with RCV1)
 - How big will the dictionary and postings be?
- Dictionary compression
- Postings compression

Why compression (in general)?

- Use less disk space
 - Saves a little money
- Keep more data in memory
 - Increases speed
- Increase speed of data transfer from disk to memory
 - [read compressed data | decompress] is faster than [read uncompressed data]
 - Premise: Decompression algorithms are fast
 - True of the decompression algorithms we use

Lossless vs. lossy compression

- Lossless compression: All information is preserved.
 - What we mostly do in IR.
- Lossy compression: Discard some information
- Several of the preprocessing steps can be viewed as lossy compression: case folding, stop words, stemming, number elimination.
- Later: Prune postings entries that are unlikely to turn up in the top k list for any query.
 - Almost no loss quality for top k list.

National University of Singapore

Vocabulary vs. collection size

- Heaps' law: M = kT^b
- M is the size of the vocabulary, T is the number of tokens in the collection
- Typical values: $30 \le k \le 100$ and $b \approx 0.5$
- In a log-log plot of vocabulary size M vs. T, Heaps' law predicts a line with slope about ½
 - It is the simplest possible relationship between the two in log-log space
 - An empirical finding ("empirical law")

Heaps' Law

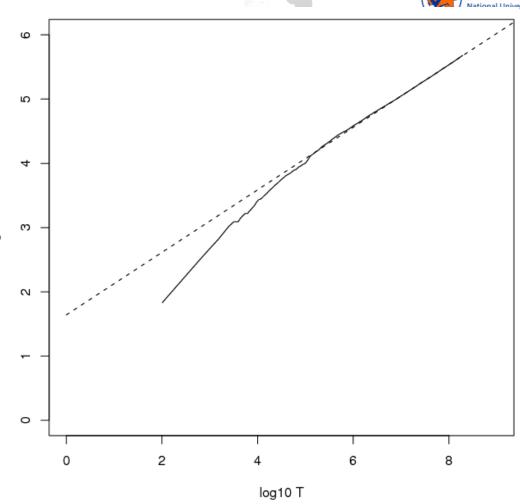
For RCV1, the dashed line

 $\log_{10}M = 0.49 \log_{10}T + 1.64$ is the best least squares fit.

Thus, $M = 10^{1.64} T^{0.49}$ so $k = 10^{1.64} \approx 44$ and b = 0.49.

Good empirical fit for Reuters RCV1!

For first 1,000,020 tokens, law predicts 38,323 terms; actually, 38,365 terms



Zipf's law

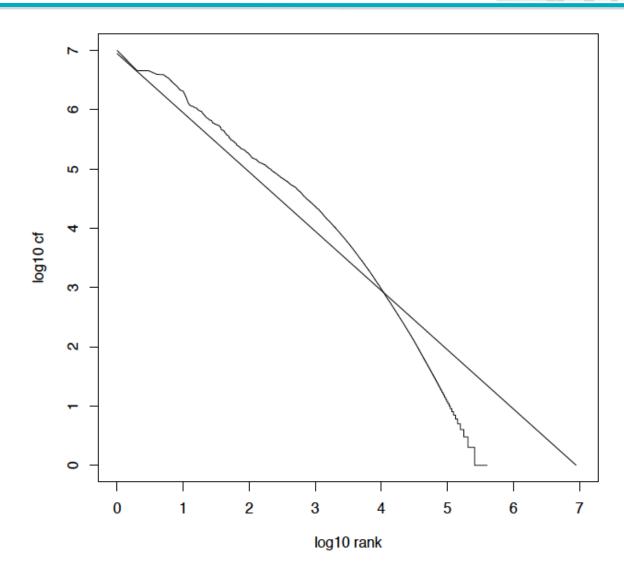
- How about the relative frequencies of terms?
- In natural language, there are a few very frequent terms and very many very rare terms.
- Zipf's law: The ith most frequent term has frequency proportional to 1/i.
- $cf_i \propto 1/i = K/i$ where K is a normalizing constant
- cf_i is <u>collection frequency</u> (not document frequency): the number of occurrences of the term t_i in the collection.

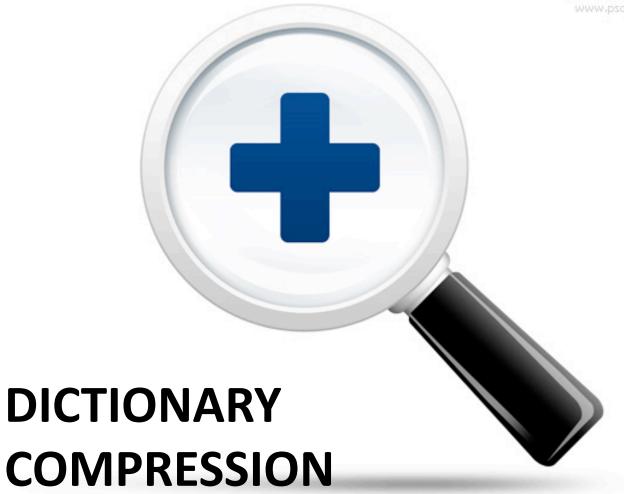
1235

Zipf consequences

- If the most frequent term (the) occurs cf₁ times
 - then the second most frequent term (of) occurs $cf_1/2$ times
 - the third most frequent term (and) occurs cf₁/3 times ...
- Equivalent: cf_i = K/i where K is a normalizing factor, so log cf_i = log K - log i
 - Linear relationship between log cf_i and log i
- Another power law relationship

Zipf's law for Reuters RCV1





National University of Singapore

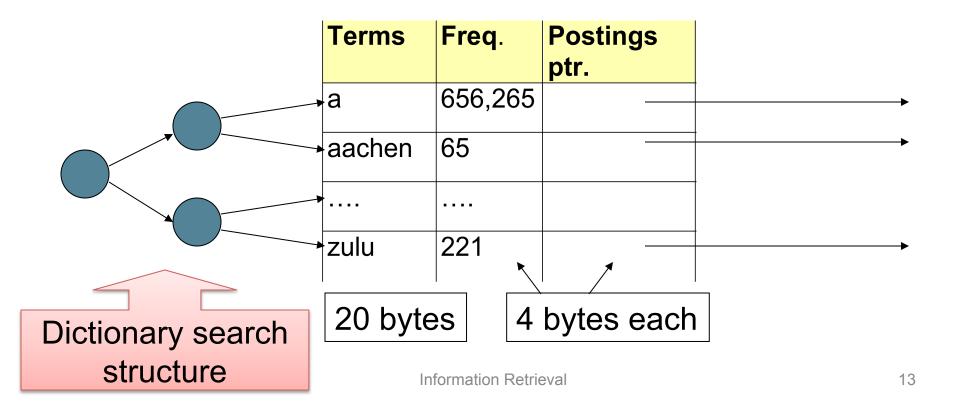
Why compress the dictionary?

- Search begins with the dictionary
- We want to keep it in memory
- Memory footprint competition with other applications
- Embedded/mobile devices may have very little memory
- Even if the dictionary isn't in memory, we want it to be small for a fast search startup time

Compressing the dictionary is important

Dictionary storage - first cut

- Array of fixed-width entries
 - ~400,000 terms; 28 bytes/term = 11.2 MB.

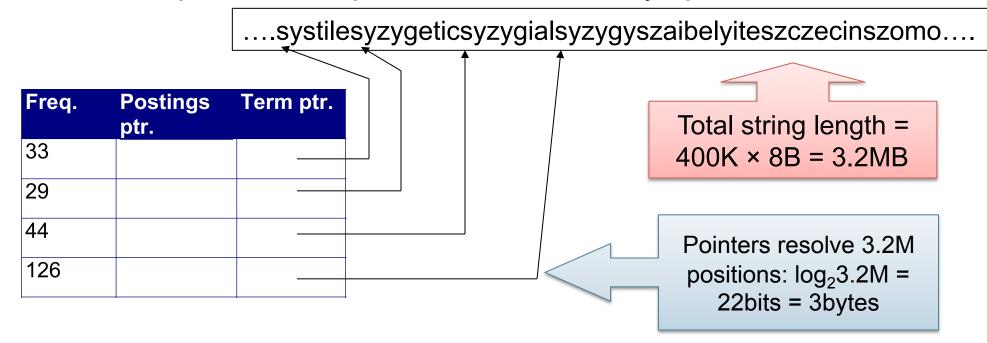


Fixed-width terms are wasteful

- Most of the bytes in the **Term** column are wasted we allot 20 bytes for 1 letter terms.
 - And we still can't handle supercalifragilisticexpialidocious or hydrochlorofluorocarbons.
- Written English averages ~4.5 characters/word.
- Average dictionary word in English: ~8 characters
 - How do we use ~8 characters per dictionary term?
- Short words dominate token counts but not type average.

Compressing the term list: Dictionary-as-a-String

- Store dictionary as a (long) string of characters:
 - Pointer to next word shows end of current word
 - Hope to save up to 60% of dictionary space.



Now avg. 11

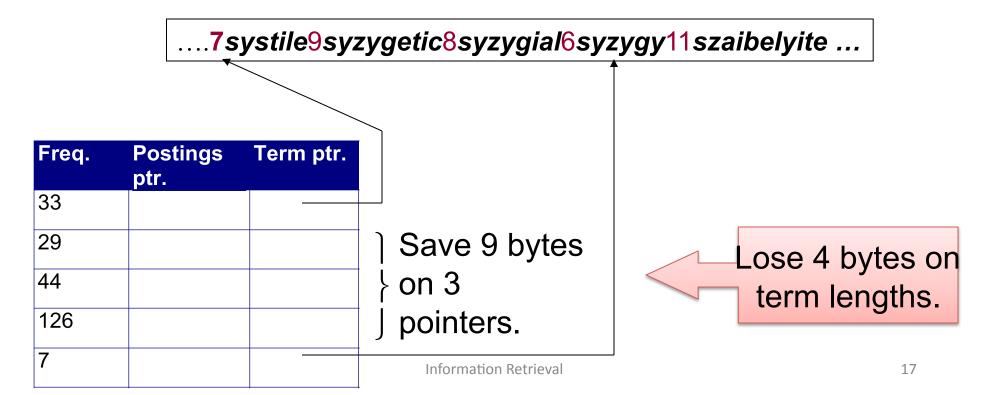
Space for dictionary as a string

- 4 bytes per term for Freq.
- 4 bytes per term for pointer to Postings.
- bytes/term,
 not 20.

- 3 bytes per term pointer
- Avg. 8 bytes per term in term string
- 400K terms × 19 ⇒ 7.6 MB (against 11.2MB for fixed width)

Blocking

- Store pointers to every kth term string.
 - Example below: k=4.
- Need to store term lengths (1 extra byte)



235

Net Result

- Example for block size k = 4
- Where we used 3 bytes/pointer without blocking
 - 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Shaved another \sim 0.5MB. This reduces the size of the dictionary from 7.6 MB to 7.1 MB. We can save more with larger k.

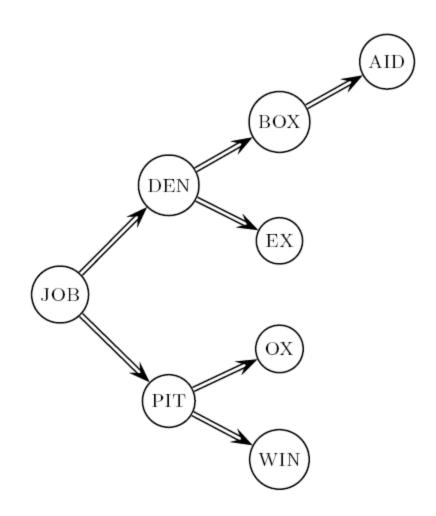
Why not go with larger *k*?

125

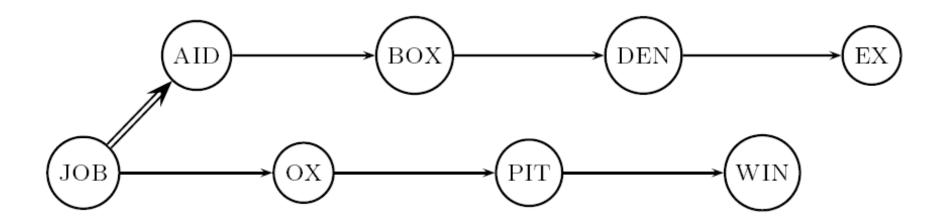
Dictionary search without blocking

Assuming each
 dictionary term equally
 likely in query (not true
 in practice!), average
 number of comparisons

$$= (1+(2\cdot2)+(4\cdot3)+4)/8$$
$$= ^22.6$$



Dictionary search with blocking

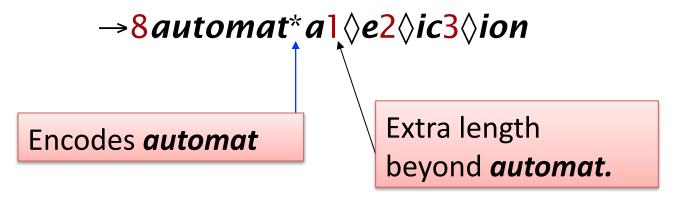


- Binary search down to 4-term block;
 - Then linear search through terms in block.
- Blocks of 4 (binary tree), average = $(1+(2\cdot2)+(2\cdot3)+(2\cdot4)+5)/8 = 3$ compares

Front coding

- Sorted words commonly have long common prefix store differences only
 - Used in the (for last k-1 in a block of k)

8automata8automate9automatic10automation



Begins to resemble general string compression

RCV1 dictionary compression summary

Technique	Size in MB
Fixed width	11.2
Dictionary-as-String with pointers to every term	7.6
Also, blocking $k = 4$	7.1
Also, Blocking + front coding	5.9

Postings compression

- The postings file is much larger than the dictionary, factor of at least 10.
- Key desideratum: store each posting compactly.
- A posting for our purposes is a doclD.
- For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
- Alternatively, we can use log₂ 800,000 ≈ 20 bits per docID.
- Our goal: use a lot less than 20 bits per docID.

Postings: two conflicting forces

- A term like arachnocentric occurs in maybe one doc out of a million – we would like to store this posting using log₂ 1M ~ 20 bits.
- A term like *the* occurs in virtually every doc, so 20 bits/posting is too expensive.
 - Prefer 0/1 bitmap vector in this case

Postings file entry

- We store the list of docs containing a term in increasing order of docID.
 - *computer*: 33,47,154,159,202 ...
- Consequence: it suffices to store gaps.
 - **33,14,107,5,43** ...
- Hope: most gaps can be encoded/stored with far fewer than 20 bits.

Three postings entries

	encoding	postings	list								
THE	docIDs			283042		283043		283044		283045	
	gaps				1		1		1		
COMPUTER	docIDs			283047		283154		283159		283202	
	gaps				107		5		43		
ARACHNOCENTRIC	docIDs	252000		500100							
	gaps	252000	248100								

Variable length encoding

- Aim:
 - For *arachnocentric*, we will use ~20 bits/gap entry.
 - For the, we will use ~1 bit/gap entry.
- If the average gap for a term is G, we want to use ~log₂G bits/gap entry.
- <u>Key challenge</u>: encode every integer (gap) with about as few bits as needed for that integer.
- This requires variable length encoding
- Variable length codes achieve this by using short codes for small numbers

Variable Byte (VB) codes

- For a gap value G, we want to use close to the fewest bytes needed to hold log₂ G bits
- Begin with one byte to store G and dedicate 1 bit in it to be a continuation bit c
- If $G \le 127$, binary-encode it in the 7 available bits and set c = 1
- Else encode *G*'s lower-order 7 bits and then use additional bytes to encode the higher order bits using the same algorithm
- At the end set the continuation bit of the last byte to 1(c=1) and for the other bytes c=0.

Example

	docIDs	824	829	215406
	gaps		5	214577
	VB code	00000 <mark>11</mark> 0 10111000	10000101	00001101 00001100 10110001
512	+ <mark>256</mark> +32+16+8 = 8	24		10110001

Postings stored as the byte concatenation

00000110 10111000 10000101 00001101 00001100 10110001

Key property: VB-encoded postings are uniquely prefix-decodable.

For a small gap (5), VB uses a whole byte.

Other variable unit codes

- Instead of bytes, we can also use a different "unit of alignment": 32 bits (words), 16 bits, 4 bits (nibbles).
- Variable byte alignment wastes space if you have many small gaps – nibbles do better in such cases.
- Variable byte codes:
 - Used by many commercial/research systems
 - Good low-tech blend of variable-length coding and sensitivity to computer memory alignment matches (vs. bit-level codes, which we look at next).

RCV1 compression

Data structure	Size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
with blocking, k = 4	7.1
with blocking & front coding	5.9
collection (text, xml markup etc)	3,600.0
collection (text)	960.0
Term-doc incidence matrix	40.000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0

Summary: Index compression

- We can now create an index for highly efficient
 Boolean retrieval that is very space efficient
- Use the sorted nature of the data to compress
 - Variable sized storage
 - Encode common prefixes only once
 - Encode gaps to reduce size of numbers
- However, here we didn't encode positional information
 - But techniques for dealing with postings are similar

Resources for today's lecture

- IIR 5
- *MG* 3.3, 3.4.
- F. Scholer, H.E. Williams and J. Zobel. 2002.
 Compression of Inverted Indexes For Fast Query Evaluation. *Proc. ACM-SIGIR 2002*.
 - Variable byte codes
- V. N. Anh and A. Moffat. 2005. Inverted Index Compression Using Word-Aligned Binary Codes. Information Retrieval 8: 151–166.
 - Word aligned codes