
CS3245 Information Retrieval
Lin Ziheng

1

Features of Python
 Simple
 Easy to learn
 Very high-level language (VHLL)
 Portable
 Interpreted
 Strongly object oriented
 Extensible
 Embeddable
 Extensive libraries

2

Python Interpreter
 Interactive interface to Python

 On windows: StartAll ProgramsPython
2.6Python (command line)

 On linux: type python
 Python prompt: >>>
 To exit:
○ On windows: Ctrl-Z + <Enter>
○ On linux: Ctrl-D

 Run python program on linux:
 %python filename.py

3

4

 IDLE: the Python IDE
 On windows: StartAll ProgramsPython

2.6IDLE (Python GUI)
 On linux: type idle

5

The Basics
 Numbers: integers, long integers, floating

points, and complex numbers
 Strings:

 Single quotes: 'hello!'
 Double quotes: "what's your name?"
 Triple quotes: multi-line string

'''This is multi-line
string.
'''

 Immutable: once created, cannot change
 Concatenation: 'hi ' 'there' same as 'hi
' + 'there'

6

 Variables: x = 1, y = 'NUS', x = y
= z = 'SoC'

 Identifier naming:
 1st char: a letter of the alphabet (upper or

lowercase) or an underscore (‘_’)
 The rest: letters (upper or lowercase),

underscores (‘_’), or digits (0-9)
 Case-sensitive: myname != myName

 Reserved words:
○ and, assert, break, class, continue, def,
del, elif, else, except, exec, finally, for,
from, global, if, import, in, is, lambda,
not, or, pass, print, raise, return, try,
while

7

 Strongly object oriented: everything is an
object, including numbers, string, functions

 Statements and semicolons:
 Don’t need to put (;) if you write one statement

in one single line
i = 5
print i

 Statements in one line are separated by (;)
i = 5; print I

 Continuing a line with (\)
s = 'This is a string. \
This continues the string.'

8

 Indentation:
 No braces { } to mark blocks of code
 Leading whitespaces (spaces and tabs) are

important
 Statements in the same block have same

indentation
i = 5

print i

i = 5
print i

 Recommendation: consistently use a single tab
or 2/4 spaces

wrong

correct

9

 Comments:
 Single line uses #
 Multi-line uses “““…”””

this is single line comment

""" this is multiple

line comment """

10

Operators and Expressions
 Operators:

+, -, *, **, /, //, %,
<<, >>, &, |, ^, ~,
<, >, <=, >=, ==, !=,
not, and, or

 Expression:
length = 5
breadth = 2
area = length * breadth
print 'Area is', area
print 'Perimeter is', 2 * (length + breadth)

 Assignment uses =, comparison uses ==
 Multiple assignments: x, y = 2, 'abc'

Pretty print:
Try: print "He's", 5, 'years', 'old.'

11

Control Flow
 if…elif…else statement:

number = 23
guess = int(raw_input('Enter an integer : '))
if guess == number:

print 'Congratulations, you guessed it.' # New block starts here
print "(but you do not win any prizes!)" # New block ends here

elif guess < number:
print 'No, it is a little higher than that' # Another block
You can do whatever you want in a block ...

else:
print 'No, it is a little lower than that'
you must have guess > number to reach here

print 'Done'

12

 while statement:
number = 23
running = True
while running:

guess = int(raw_input('Enter an integer : '))
if guess == number:

print 'Congratulations, you guessed it.'
running = False # this causes the while loop to stop

elif guess < number:
print 'No, it is a little higher than that.'

else:
print 'No, it is a little lower than that.'

else:
print 'The while loop is over.'
Do anything else you want to do here

print 'Done'

13

 for statement:
for i in range(1,5):

print i

else:

print 'the for loop is over'

 range(1,5) generates the list [1,2,3,4]
 range(a,b,s) generates a list from a to b-

1 with a step s
○ range(1,10,2)  [1,3,5,7,9]

14

 break statement:
 break from current loop

 continue statement:
 skip the rest of the current iteration and

continue to the next iteration

15

Functions
 Defining a function with def:

Function name and parameters

Function body

Outside
the
function

def printMax(a, b):
if a > b:

print a, 'is maximum‘
else:

print b, 'is maximum‘
printMax(3, 4) # directly give literal values
x = 5
y = 7
printMax(x, y) # give variables as arguments

16

 Local variables: variables declared
inside a function

>>> def func(x):
... print 'x is', x
... x = 2
... print 'Changed local x to', x
...
>>> x = 50
>>> func(x)
x is 50
Changed local x to 2
>>> print 'x is still', x
x is still 50

17

 Use global to explicitly assign a value to
a variable declared outside the function

>>> def func():
... global x
... print 'x is', x
... x = 2
... print 'Changed global x to', x
...
>>> x = 50
>>> func()
x is 50
Changed global x to 2
>>> print 'Value of x is', x
Value of x is 2

18

 Default argument value: make some
parameters optional by providing default
values

 Note: only those at the end of the parameter list
can be given default value
○ def func(a,b=5) is valid,
def func(a=5,b) is not valid

>>> def say(message, times = 1):
... print message * times
...
>>> say('Hello')
Hello
>>> say('World', 5)
WorldWorldWorldWorldWorld

19

 Keyword arguments: use names instead
of positions to specify the arguments to
the function

>>> def func(a, b=5, c=10):
... print 'a is', a, 'and b is', b, 'and c is', c
...
>>> func(3, 7)
a is 3 and b is 7 and c is 10
>>> func(25, c=24)
a is 25 and b is 5 and c is 24
>>> func(c=50, a=100)
a is 100 and b is 5 and c is 50

20

 Use return to break out of a func
and/or return a value

def maximum(x, y):
if x > y:

return x
else:

return y
print maximum(2, 3)

21

Modules
 Module: a file containing all functions and

variables that you have defined
 The module file should end with .py
 Use import to import a module:

 Like Java import and C++ include
 3 formats:

○ import somefile
○ from somefile import *
○ from somefile import className

 Import standard library and math library:
import sys
import math

22

Filename: mymodule.py
def sayhi():

print 'Hi, this is mymodule speaking.’

version = '0.1'
End of mymodule.py

import mymodule
mymodule.sayhi()
print 'Version', mymodule.version

Output:
Hi, this is mymodule speaking.
Version 0.1

Save the module
into mymodule.py

Import
mymodule from

the same dir

 Make your own module:

23

Data Structures

 Built-in data structures: list, tuple,
dictionary

 List:
 Specified by [item0, item1, …]
 Stores a sequence of items
 List is mutable: we can add, remove, change

items
 List can store different types of items:

 [1, 'nus', [3, 'soc'], None, True]

24

This is my shopping list
shoplist = ['apple', 'mango', 'carrot', 'banana']
print 'I have', len(shoplist), 'items to purchase.'
print 'These items are:', # Notice the comma at end of the line
for item in shoplist:

print item,
print '\nI also have to buy rice.'
shoplist.append('rice')
print 'My shopping list is now', shoplist
print 'I will sort my list now'
shoplist.sort()
print 'Sorted shopping list is', shoplist
print 'The first item I will buy is', shoplist[0]
olditem = shoplist[0]
del shoplist[0]
print 'I bought the', olditem
print 'My shopping list is now', shoplist

25

 Tuple
 Specified by (item0, item1, …)
 Like lists except they are immutable: cannot

be modified
 Used when you can assume the collection of

items will not change
 Tuple can store different types of items:

 (1, 'nus', [3, 'soc'], None, True, (1, 'a'))

 Empty tuple: ()
 Tuple with one item: (1,) not (1)

26

zoo = ('wolf', 'elephant', 'penguin')
print 'Number of animals in the zoo is', len(zoo)
new_zoo = ('monkey', 'dolphin', zoo)
print 'Number of animals in the new zoo is', len(new_zoo)
print 'All animals in new zoo are', new_zoo
print 'Animals brought from old zoo are', new_zoo[2]
print 'Last animal brought from old zoo is', new_zoo[2][2]

Output:
Number of animals in the zoo is 3
Number of animals in the new zoo is 3
All animals in new zoo are ('monkey', 'dolphin', ('wolf',
'elephant', 'penguin'))
Animals brought from old zoo are ('wolf', 'elephant', 'penguin')
Last animal brought from old zoo is penguin

27

 Tuples and the print statement: one of
the most common usage of tuple, use %
to format output

age = 22
name = 'Alex'
print '%s is %d years old' % (name, age)
print 'Why is %s playing with that python?' % name

Output:
Alex is 22 years old
Why is Alex playing with that python?

28

 Dictionary:
 hash with key/value pairs
 Keys must be unique
 Specified by:
○ {key0:value0, key1:value1, …}

29

ab = { 'Alex' : 'alex@gmail.com',
'Bob' : ‘bob@yahoo.com’}

print "Alex's email is %s" % ab['Alex']
Adding a key/value pair
ab['Cindy'] = 'cindy@gmail.com'
Deleting a key/value pair
del ab['Alex']
print '\nThere are %d contacts in the address-book\n' % len(ab)
for name, address in ab.items():

print 'Contact %s at %s' % (name, address)
if 'Cindy' in ab: # OR ab.has_key('Cindy')

print "\nCindy's email is %s" % ab['Cindy']

Output:
Alex's email is alex@gmail.com
There are 2 contacts in the address-book
Contact Bob at bob@yahoo.com
Contact Cindy at cindy@gmail.com
Cindy's email is cindy@gmail.com

30

 Sequences:
 Examples: list, tuple, string

 2 main features of sequences:
 Indexing: fetch a particular item
○ [1,'a'][1], (1,'a')[1], 'hello'[1]

 Slicing: retrieve a slice of the sequence
○ 'hello'[1:4] => 'ell'

 Key difference:
 Tuples and strings are immutable
 Lists are mutable

31

list = ['apple', 'mango', 'carrot', 'banana‘]

list[0] list[1] …

list[-2] list[-1] …

list[1:3]

 Indexing and slicing a sequence:

>>> a = "Singapore"
>>> a[2]
'n'
>>> a[:]
'Singapore'
>>> a[2:5]
'nga'

32

 Sequence operators:
 in: boolean test whether an item is inside a

sequence
1 in [2, 'a', 1]  True
'a' in 'abcd'  True

 +: produces a new sequence by joining two
(1, 2) + (3, 4)  (1, 2, 3, 4)
'ab' + 'cd'  'abcd'

 *: produces a new sequence by repeating
itself

[1, 2] * 2  [1, 2, 1, 2]
'Hello' * 3  'HelloHelloHello'

33

 Sequence methods:
 len(s): return length of the sequence s
 min(s) and max(s): return the min and

max value in s
 list(s): convert a sequence to a list

34

 List: + vs extend() vs append()
 + creates a fresh list (new memory

reference)
 extend a list with another list
 append a list with another item

>>> a = [1,2]
>>> b = [3,4]
>>> a + b
[1, 2, 3, 4]
>>> a + b
[1, 2, 3, 4]
>>> a.append([5,6])
>>> a
[1, 2, [5, 6]]
>>> a.append(7)
>>> a
[1, 2, [5, 6], 7]
>>> b.extend([5,6])
>>> b
[3, 4, 5, 6]

A new
list

35

 More list methods:
 s.count(x): counts the occurences of an

element in a list
 s.index(x): finds the first location of an

element in a list
 s.remove(x): searches for and removes

an element in a list
 s.sort(): sorts a list
 s.reverse(): reverses the order of a list

36

 References: when you bind a variable
and an object, the variable only refers to
the object and does not represent the
object itself

 A subtle effect to take note:

list1 = ['a', 'b', 'c']
list2 = list1 # list2 points to the same list object
list3 = list1[:] # list3 points to a new copy

37

 More string methods
 str1.startswith(str2): check whether

str1 starts with str2
'Hello'.startswith('He')  True

 str2 in str1: check whether str1 contains
str2

'ell' in 'Hello'  True

 str1.find(str2): get the position of str2 in
str1; -1 if not found

'Hello'.find('ell')  1

38

 String  list
 delimiter.join(list): join the items in

list with delimiter
'_'.join(['a', 'b', 'c'])  'a_b_c'

 str.split(delimiter): split the str with
delimiter into a list

'a_b_c'.split('_')  ['a', 'b', 'c']

39

 More dictionary methods:
 a[k] = x: sets a value in the dictionary
 a.has_key(k): tests for the presence of a

keyword
 a.get(k, d): returns a default if a key is

not found
 a.keys(): returns a list of keys from a

dictionary
 a.values(): returns a list of values

40

Typing in Python
 Built-in types: str, bytes, list, tuple, set, dict, int,

float, complex, bool
 Dynamic typing: determines the data types of

variable bindings automatically
var = 2
var = 'hello'

 Strong typing: enforces the types of objects
>>> print 'The answer is ' + 23
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int'
objects

>>> print 'The answer is ' + str(23)
The answer is 23

41

Object-oriented
Programming
 Class: a data type
 Object: an instance of the class
 Fields: variables that belong to an object or

class
 Two types: instance variables and class

variables
 Methods: functions that belong to a class
 Fields and methods are referred to as the

attributes of that class

42

 The self:
 The first parameter of a class method is the
self (similar to self in C++ and this in Java)

 But you don’t need to specify self when
calling the method

43

 Creating a simple class:

class Person:
def sayHi(self):

print 'Hi there!'

p = Person()
print p
p.sayHi()

Output:
<__main__.Person instance at
0xf6fcb18c>
Hi there!

This tells us we
have an instance of
the Person class in

the __main__
module and its
address in the

memory

p.sayHi() is
internally

transformed into
Person.sayHi(p)

44

 The __init__ method:
 Is run as soon as an object is instantiated
 Analogous to a constructor in C++ and Java

class Person:
def __init__(self, name):

self.name = name
def sayHi(self):

print 'Hello, my name is', self.name

p = Person('Jack')
p.sayHi()

Output:
Hello, my name is Jack

45

 Class and object variables:
 Class variable: accessed by all objects of

the class
○ Changes will be seen by all objects

 Object variables: owned by each individual
object of the class
○ Not shared by other objects of the same class

46

class Person:
'''Represents a person.'''
population = 0
def __init__(self, name):

'''Initializes the person's data.'''
self.name = name
print '(Initializing %s)' % self.name
When this person is created, he/she
adds to the population
Person.population += 1

def __del__(self):
'''I am dying.'''
print '%s says bye.' % self.name
Person.population -= 1
if Person.population == 0:

print 'I am the last one.'
else:

print 'There are still %d people left.' % Person.population
def sayHi(self):

'''Greeting by the person.'''
print 'Hi, my name is %s.' % self.name

def howMany(self):
'''Prints the current population.'''
if Person.population == 1:

print 'I am the only person here.'
else:

print 'We have %d persons here.' % Person.population

population is a class
variable, so is referred
as Person.population

name is an object
variable, so is referred

as self.name

__del__ is called
when the object is

going to die

47

alex = Person('Alex')
alex.sayHi()
alex.howMany()
bob = Person('Bob')
bob.sayHi()
bob.howMany()
alex.sayHi()
alex.howMany()

Output:
(Initializing Alex)
Hi, my name is Alex.
I am the only person here.
(Initializing Bob)
Hi, my name is Bob.
We have 2 persons here.
Hi, my name is Alex.
We have 2 persons here.
Bob says bye.
There are still 1 people left.
Alex says bye.
I am the last one.

48

 Inheritance:
 Implement a type and subtype relationship

between classes
 Reuse of code
 Multiple inheritance
 Declared by:
class DerivedClass(Base1, Base2, …)

49

class SchoolMember:
'''Represents any school member.'''
def __init__(self, name, age):

self.name = name
self.age = age
print '(Initialized SchoolMember: %s)' % self.name

def tell(self):
'''Tell my details.'''
print 'Name:"%s" Age:"%s"' % (self.name, self.age),

class Teacher(SchoolMember):
'''Represents a teacher.'''
def __init__(self, name, age, salary):

SchoolMember.__init__(self, name, age)
self.salary = salary
print '(Initialized Teacher: %s)' % self.name

def tell(self):
SchoolMember.tell(self)
print 'Salary: "%d"' % self.salary

class Student(SchoolMember):
'''Represents a student.'''
def __init__(self, name, age, marks):

SchoolMember.__init__(self, name, age)
self.marks = marks
print '(Initialized Student: %s)' % self.name

def tell(self):
SchoolMember.tell(self)
print 'Marks: "%d"' % self.marks

Call base class
__init__

Call base class
method

50

I/O

 Files:
 Create an object of the file class to use

the read, readline, or write method

 Write to a file:

 Read from a file:

f = file('file.txt', 'w')
f.write(str)
f.close()

f = file('file.txt')
for line in f:

print line
f.close()

‘w’ for write
‘r’ for read

‘a’ for append

51

 Pickle:
 Use the pickle module to store any object

to a file so that you can get it back later
intact  storing object persistently

 Another module cPickle is written in C,
and is upto 1000 times faster

52

import cPickle as p
#import pickle as p

shoplistfile = 'shoplist.data'
shoplist = ['apple', 'mango', 'carrot']

Write to the file
f = file(shoplistfile, 'w')
p.dump(shoplist, f) # dump the object to a file
f.close()
del shoplist # remove the shoplist

Read back from the storage
f = file(shoplistfile)
storedlist = p.load(f)
print storedlist

53

Exceptions

 Errors are objects
 More specific kinds of errors are subclasses

of the general Error class
 Catch errors:

try … except …

try … except … else …

try … except … else … finally …

 Raise errors:
raise …

54

while True:
try:

x = int(raw_input("Please enter a number: "))
break

except ValueError:
print "That was no valid number. Try again..."

55

Standard Library
 The sys module:

 Contains system specific functionality
 Use: import sys
 sys.argv: list of arguments
 sys.exit()

 sys.version, sys.version_info:
Python version information

 sys.stdin, sys.stdout, sys.stderr

 …

56

 The os module:
 Generic operating system functionality
 Important if you want to make your program platform-

independent
 Use: import os
 os.sep: windows  ‘\\’, linux ‘/’
 os.name: windows  ‘nt’, linux ‘posix’
 os.getcwd(): get current working directory
 os.getenv(), os.putenv(): get and set environment

variables
 os.listdir(): get names of all files in the specified

directory
 os.remove(): delete a file
 os.system(): run a shell command
 os.linesep: windows  ‘\r\n’, linux ‘\n’, mac ‘\r’
 os.path.split(), os.path.isfile(),
os.path.isdir(), …

57

More Python
 Special methods:

 Used to mimic certain behavior
○ E.g.: to use indexing x[key] for your class, you

implement the __getitem__() method
 __init__(self, …): called to instantiate an object
 __del__(self): called just before the object is

destroyed
 __str__(self): called when we print the object or

use str()
 __lt__(self, other): called when less than (<) is

used
 __getitem__(self, key): called when x[key] is

used
 __len__(self): called when len() is used

58

 Random numbers:
 Print a random number in [0,1):

import random

print random.random()

 randrange(a, b): chooses an integer in
the range [a, b)

 uniform(a, b): chooses a floating point
number in the range [a, b)

 normalvariate(mean, sdev): samples
the normal (Gaussian) distribution

59

 List comprehension:
 Derive a new list from existing lists
 Similar to the list comprehension in Haskell
 Python programmers use list comprehension

extensively
 Syntax: [expression for name in list]

>>> [2*i for i in [2,3,4]]
[4, 6, 8]
>>>
>>> [n * 3 for (x, n) in [('a', 1), ('b', 2), ('c', 3)]]
[3, 6, 9]
>>>

60

 Filtered list comprehension:
 Use filter condition
 [expression for name in list if filter]

>>> [2*i for i in [2,3,4] if i > 2]

[6, 8]

 More examples:
>>> [x*y for x in [1,2,3,4] for y in [3,5,7,9]]
[3, 5, 7, 9, 6, 10, 14, 18, 9, 15, 21, 27, 12, 20, 28, 36]
>>>
>>> [(x,y) for x in [1,3,5] for y in [2,4,6] if x < y]
[(1, 2), (1, 4), (1, 6), (3, 4), (3, 6), (5, 6)]
>>> [n * 2 for n in [m + 1 for m in [3,2,4]]]
[8, 6, 10]
>>>

61

 Aggregating function arguments:
 You can use * or ** to aggregate

arguments in to a tuple or dictionary

def fun(a, *args):
print a
print args

fun(1, 3, 'a', True)

Output:
1
(3, 'a', True)

def fun(a, **args):
print a
print args

fun(1, b=3, c='a', d=True)

Output:
1
{'c': 'a', 'b': 3, 'd': True}

62

 Lambda forms:
 Create anonymous functions at runtime
 Powerful when used with filter(),
map(), reduce()

>>> foo = [2, 18, 9, 22, 17, 24, 8, 12, 27]
>>>
>>> print filter(lambda x: x % 3 == 0, foo)
[18, 9, 24, 12, 27]
>>>
>>> print map(lambda x: x * 2 + 10, foo)
[14, 46, 28, 54, 44, 58, 26, 34, 64]
>>>
>>> print reduce(lambda x, y: x + y, foo)
139

63

 The exec and eval statements:
 exec: execute Python statements stored in

a string or file
 eval: evaluate valid Python expressions

stored in a string

>>> exec('a = "Hi " + "there!"; print a')
Hi there!
>>> eval('2**3')
8

64

 The repr() and backticks (`)
statement:
 Return a printable representation of the

object

>>> list = [1,'a',True,[33]]
>>> repr(list)
"[1, 'a', True, [33]]"
>>> `list`
"[1, 'a', True, [33]]"

65

A Quick Look at NLTK

 Getting started with NLTK:
 Download NLTK from www.nltk.org and

follow the instruction to install
○ Need to install PyYAML before installing NLTK

 Install the data required for the NLTK
textbook

import nltk

nltk.download()

66

http://www.nltk.org/�

67

Select this
row

Your
download
directory

 To use python and nltk on sunfire:
○ source ~rpnlpir/nltk.rc

 Once the data is downloaded, you can load
some texts of several books by using:

from nltk.book import *

 Try typing text1 and text2

68

 Searching the text
 Show a concordance view of a word with its

contexts:
text1.concordance("monstrous")

which shows contexts such as the ___ pictures
and the ___ size

 Show words that appear in the similar context:
text1.similar("monstrous")

 Examine the contexts that shared by two or more
words:

text2.common_contexts(["monstrous", "very"])

69

 Counting vocabulary
 Count length of a text in terms of words and

punctuations:
len(text3)  44764

 Count the vocabulary size of a text:
len(set(text3))  2789

 Let’s measure the lexical richness of a text:
float(len(text3)) / len(set(text3)) 
16.050197203298673

 Count word occurrence:
text3.count("smote")

70

 Create lists from text items:
[w for w in set(text1) if len(w) > 15]

[len(w) for w in text1]

[w.upper() for w in text1]

71

Practice 1 - Python

 Write a program to count word
occurrences in a file.
 Convert all words to lowercase
 Not include numbers and punctuations
 Print the words and word counts in the

descending order of the counts
 Reads the file name as the only argument
○ %python count_words.py filename.txt

72

Practice 2 - Python

 The “paper, scissors, stone” game: write
a program to play “paper, scissors,
stone” with the computer
 User chooses how many points are required

for a win
 User keys in one of the three selections:

(p)aper, (s)cissors, or s(t)one
 Computer randomly generates one selection

73

74

Welcome to Paper, Scissors, Stone!

How many points are required for a win? 3

Choose (p)aper, (s)cissors, or s(t)one? t
Human: stone Computer: paper Computer wins!
Score: Human 0 Computer 1

Choose (p)aper, (s)cissors, or s(t)one? t
Human: stone Computer: scissors Human wins!
Score: Human 1 Computer 1

Choose (p)aper, (s)cissors, or s(t)one? p
Human: paper Computer: paper A draw
Score: Human 1 Computer 1

Choose (p)aper, (s)cissors, or s(t)one? s
Human: scissors Computer: paper Human wins!
Score: Human 2 Computer 1

Choose (p)aper, (s)cissors, or s(t)one? t
Human: stone Computer: scissors Human wins!
Final Score: Human 3 Computer 1

Practice 3 - NLTK

 Write expressions for finding all words in
text6 that meet the following conditions.
The result should be in the form of a list
of words: ['word1', 'word2', ...].
 Ending in ize
 Containing the letter z
 Containing the sequence of letters pt
 All lowercase letters except for an initial

capital (i.e., titlecase)

75

References
 A Byte of Python by Swaroop C H
 www.cis.upenn.edu/~cis530/slides-

2008/Python-complete-tutorial-2008-
spring.ppt

 http://www.stsci.edu/~bsimon/pythontalk
3.html

 http://www.openbookproject.net/pybiblio/
practice/wilson/

 http://www.nltk.org/book

76

http://www.cis.upenn.edu/~cis530/slides-2008/Python-complete-tutorial-2008-spring.ppt�
http://www.cis.upenn.edu/~cis530/slides-2008/Python-complete-tutorial-2008-spring.ppt�
http://www.cis.upenn.edu/~cis530/slides-2008/Python-complete-tutorial-2008-spring.ppt�
http://www.stsci.edu/~bsimon/pythontalk3.html�
http://www.stsci.edu/~bsimon/pythontalk3.html�
http://www.openbookproject.net/pybiblio/practice/wilson/�
http://www.openbookproject.net/pybiblio/practice/wilson/�
http://www.openbookproject.net/pybiblio/practice/wilson/�
http://www.nltk.org/book�

	A Python tutorial
	Features of Python
	Python Interpreter
	Slide Number 4
	Slide Number 5
	The Basics
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Operators and Expressions
	Control Flow
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Functions
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Modules
	Slide Number 23
	Data Structures
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Typing in Python
	Object-oriented Programming
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	I/O
	Slide Number 52
	Slide Number 53
	Exceptions
	Slide Number 55
	Standard Library
	Slide Number 57
	More Python
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	A Quick Look at NLTK
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Practice 1 - Python
	Practice 2 - Python
	Slide Number 74
	Practice 3 - NLTK
	References

