Hadi Amiri
hadi@comp.nus.edu.sg



Google
Search

Everything
Images
Maps
Videos
News
Shopping

More

Any time

Past hour

Past 24 hours
Past 2 days
Past week
Past month
Past year
Custom range...

More search tools

Ads - Why these ads?

Your Vision Into Action At NTU.

admissions.ntu.edu.sg/
Realise Your Aspirations with N

18-Month Part-Time MBA | smu.edu:

www.smu.edu.sg/MBA

For an Accelerated, Innovative Learning in the hea

NUS - Home

www.nus.edu.sg/

1 day ago — A research-intensive university with an entrepreneurial
ranked consistently as one of the world's top universities. We offer ...

NUS Business School

National University of Singapore is
a leading university in the ...

SoC

Graduate - Computer Science -
Undergraduate - About Us - ...

Undergraduate Programmes
Bachelor/Master of Engineering or
Bachelor/Master of Science or ...

Library
Top page of the library, with |i
the catalogue, electronic ...

Faculties & Schools
Home > Education > Academic >
Faculties & Schools ...

Office of Deputy President ...
Office of the Deputy President
(Research & Technology) ...

Search nus.edu.sg

1C

National University of Singapore

adan ~ &
envoir o m
Singapore _{3 A
%) Polytechnic o
“an gus®® &
Clementi 7Y <
Woods ‘ % Queenstown
P
%4 Cé
% ‘“e,,a_

Search engines usually
contain millions of

relevant documents for
each query, but we only

examine a few docs,
Q.g. top-K. /




C

GO uSlC national university of singapore

Search About 9,820,000 result(0.16 seconds

Ads - Why these ads?

Everything National University of Singapore

Images admissions.ntu.edu.sg/ ;‘,’,,"‘[,',-, ; - %

Realise Your Aspirations with NTU. Singapore & 4
Maps S Polytechnic ®

“an gurd®

Videos 18-Month Part-Time MBA | smu.edu.sg G ‘ 7 NPSINN

www.smu.edu.sg/MBA N
News For an Accelerated, Innovative Learning in the heart of Singa ‘9%4 A

<
Shoppin % *,
PPe NUS - Home '

More www.nus.edu.sg/

1 day ago — A research-intensive university with an entrepreneurial dimen

ranked consistently as one of the world's top universities. We offer ...
Ay the NUS Business School Library
Past hour National University of Singapore is Top page of the library, with links
Past 24 hours a leading university in the ... the catalogue, electronic ...
Past 2 days
Past week SoC Faculties & Schools o
Past month Graduate - Computer Science - Home > Education > Academic > H Ow ca n we retrleve
Past year Undergraduate - About Us - ... Faculties & Schools ...

o o
Custom range... Undergraduate Programmes Office of Deputy President ... docu ments efﬁC|ent|y?
More search tools Bachelor/Master of Engineering or Office of the Deputy President
Bachelor/Master of Science or ... (Research & Technology) ...
Search nus.edu.sg

- )




* Indexing and Compression

* Index Organization

* Index Traversal

* Query Processing and Retrieval
* Top-k processing Algorithms

* Summary



Indexi

* |Inverted Index

Inverted Lists
or Postings

‘ BR[’T['S —_— 1 2 4 11 | 31 45 173 174

~
~
~,
S
~,
~.
~.
~.
~.
~q,
~

CAESAR v 11 2 4 5 6|16 57 | 132

 CALPURNIA | — [ 23154 [ 101 |

Each posting describes all places where term occurs in the collection

A simple and efficient data structure that allows us to find documents
that contain a particular term.



Indexi

* Terms:
— Phrases, e.g. apple tree
— N-Grams, efficient apple light
— Patterns, save apple power

e Selecting good terms can highly improve the
efficiency of the system:s.



Indexi

e Supplementary Information

— Posting level:

e doclD

* term frequency,

e positions, plus other context such as font size etc.
— Term level:

* tID,

* (Inverted) document frequency

— Or any pre-computed impact score

* Some statistics are also stored outside the index:
— document lengths or global scores such as Pagerank



Indexi

* Index Compression

— The inverted lists of common query terms may
consist of millions or even billions of postings.

— To allow faster access to lists on disk, and limit the
memory needed, sophisticated compression
techniques are designed to reduce the size of each
inverted list.



* Indexing and Compression

* Index Organization

* Index Traversal

* Query Processing and Retrieval
* Top-k processing Algorithms

* Summary



Inde§

* How to order postings of the indexes:
— Doc Sorted Indexes
— Impact Sorted Indexes

— Impact Layered Indexes



Index

* Doc Sorted Indexes

— It is the basic approach: the postings in each inverted

list are sorted by document ID.

~
~
~,
S
~,
~.
~.
~.
~.
~q,
~

BruTUus —s | 1 2 4 11

[ 31

45

173

174

CAESAR v |1 2 4 5

16

57

132

 CALPURNIA | — [ 23154 [ 101 |

Inverted Lists
P or Postings




Indeg

* Impact Sorted Indexes
— Postings in each list are sorted by the term
contribution to the score of a document (impact).

* For example: term frequency?
 What is a good impact factor?



* Impact Layered Indexes

— Postings in each list are partitioned into a number of
layers, such that all postings in layer i have a higher
impact than those in layer i+1, and then sort the
postings in each layer by doclD.



Index

* Both Impact-sorted and impact-layered indexes
place the most promising postings close to the
start of the lists.

* Problem with impact-sorted indexes is:
— compression could suffer as docID gaps in the
inverted lists may be very large.

* In this case, an impact-layered index that uses a small
number of appropriately chosen layers may provide a
better alternative.

— What if the number of distinct impact scores is small?



* Indexing and Compression

* Index Organization

* Index Traversal

* Query Processing and Retrieval
* Top-k processing Algorithms

* Summary



Index

e Term-At-A-Time (TAAT):

— We first access one term and then move to the next
term.

— We have to use a temporary data structure to keep
track of currently active candidates.

— The complete score of a document is unknown until
all query terms are processed.



Indeg

 Document-at-a-time (DAAT)

— In the DAAT, all relevant inverted lists are
simultaneously processed, and the score of a
document is fully computed before moving to the

next document.



Indeg

 Two advantages of DAAT over TAAT:

1. DAAT only requires a small amount of memory to
store (e.g., current Top 10) results

* while TAAT needs much more memory which is usually
expensive to maintain.



Index

 Two advantages of DAAT over TAAT:

2. DAAT methods can easily identify whether query
terms satisfy some given conditions in a document
(e.g., phrase).

* while TAAT can’t.

— It needs to keep the occurrences of the first term within the
document in the intermediate results, in order to verify whether
the second term satisfies the constraint.



* Indexing and Compression

* Index Organization

* Index Traversal

* Query Processing and Retrieval
* Top-k processing Algorithms

* Summary



Query P

* Query types
— Disjunctive and Conjunctive

* the most basic form of queries are Boolean queries: (apple
AND orange) OR pear

* How to interpret the Free text queries like: apple orange
pear?
— disjunctive queries tend to be significantly more expensive than

conjunctive queries as they have to evaluate many more
documents.

— Search Engines are optimized for conjunctive queries.



Querx P

* More complex queries
— Indri query language

Name Example Behavior

term dog occurrences of dog (Indri will stem and stop)
"term" "dog" occurrences of dog (Indri will not stem or stop)
ordered window #odn(blue car) -or- #n(blue car) blue n words or less before car

unordered window #uwn(blue car) blue within n words of car

synonym list #syn(car automobile) occurrences of car or automobile

weighted synonym #wsyn(1.0 car 0.5 automobile) like synonym, but only counts occurrences of automobile as 0.5 of an occurrence
any operator #any:person all occurrences of the person field



Query P
e Retrieval Using the Postings

S(d,q) = o -G(d)+ 3-1R(d.q)

— 5(d, q): overall score for the doc d with respect to the
query q,
— G(d): global or static score of d,

— IR(d, g): the query-dependent score for d with
respect to g,

— B and a are parameters satisfying B + a =1.



Q'_

* Fig X from the book




* Indexing and Compression

* Index Organization

* Index Traversal

* Query Processing and Retrieval
* Top-k processing Algorithms

* Summary



Top-k

As the inverted lists for common terms could be very

long, we want to process a few (e.g. k*c ) postings
during query processing.

Preliminaries

— Mechanism

* Exhaustive

* Non- Exhaustive
— Safety

» Safe

* Not safe

— When does it happen?



Top-k

e Mechanism

— Exhaustive

* The algorithm is exhaustive if it fully evaluates all
documents that satisfy required conditions.

— Non- Exhaustive

* The algorithms that use early termination so that ignore
evaluating many of the documents that satisfy required
conditions.



Top-k

e Safety
— Safe: the same results as in the exhaustive approach:

* the same set of top-k documents in the same order with
the same scores

— Not safe

* try to return search results that are somehow similar (or of
similar quality) to the exhaustive approach.



Top-k

* When can the early termination happen?

— When the minimum score in the current Top-k results is
larger than the maximal possible score of the
unprocessed documents

* and sometimes also the rank order of the current Top-k results
will not be changed.

— The way we organize the inverted lists plays a vital role as
it determines the number of documents to be processed.

* Stop early

 Skip within Lists

* Omit Lists

e Score Only Partially



Top-k

e Stop Early

— We

stop the traversal of the index as soon as we

have the top-k results.

—Int
Suc

nis case, we assume that postings are arranged
n that the most promising documents appear

ear

Y.

* Impact-sorted and impact-layered indexes



Top-k

e Skip within Lists
— Smart pointer movement techniques are used to skip

many documents that would be evaluated by an
exhaustive algorithm.

— Proper when postings in each list are sorted by

doclDs, i.e. the promising documents are spread out
through-out the inverted lists.



e Omit Lists

— One or more lists for the query terms are completely
ignored, if they do not affect the final results by
much.



Top-k

* Score Only Partially

— We partially evaluate a document by computing only
some term scores, or by computing approximate
scores.



Top-k

* Today’s Focus is on Top-k retrieval algorithms
that are optimized for

— Disjunctive queries (Type of Query)

— Document Sorted Indexes (Index Organization)
— DAAT (Index Traversal)

— Safe algorithms

* How about other requirements like

— Positional indexing, proximity, etc??



Top-k

 We introduce two major algorithms
— Weak and or weighted and (WAND)
— Block Max

* There are also other methods
— Optimized Block Max
— etc



Top-k

* WAND

— Query terms: [dog, cat, kangaroo, monkey]

— Current doclDs pointers: 609, 273, 9007, and 4866.

— maximum impact score for each query term

— Threshold: 6.8

Top-k

g
Scores>=6.8

cat
dog
monkey

kangaroo

current threshold=6.8

m£ |
Y
4966 g |

pivot

max=23

max=1.8

max=3.3

max=4.3



Top-k

e Each list

— has a pointer that points to a "current” posting in the
Ist

— has a maximum impact score.
* could be kept in the term dictionary of the index.

* Current threshold: the lowest score in the heap
that contains the top-k results found thus far.

* Pointers move forward as the query is being
processed.



 WAND
— Standard Document-sorted index

— DAAT for index traversal

* Thus, any posting to the left of the pointers have already
been processed.



Top-k

 WAND algorithm

Sort the lists from top to bottom according to the doclDs of the
current pointers,

sum up the maximum scores of the lists from top to bottom until we
reach a score no smaller than the threshold.

e The current doclID of this list is the pivot ID.

Claim: the smallest docID that can make it into the top-k is the pivot
ID.

* Thus, the current pointers of the previous query terms are forwarded to

the first postings in their lists with docIDs greater than or equal the pivot
ID.

If pivot ID appears in *ALL* the lists of the previous query terms
* then we evaluate pivot ID.

Otherwise,
* we sort the lists according to the current doclDs and pivot again.



.......

current threshold =6.8

cat 273‘
A 4
dog @
monkey
kangaroo

max=2.3

max=1.8

max=3.3

max=4.3

Sort the lists and sum up the maximum scores

— Third list (2.3 + 1.8 + 3.3 > 6.8). The current doclID of this list is the pivot,
4866.

Smallest docID that can make it into the top-k is 4866.
— Thus, move the top two pointers forward to the first postings in their lists

with doclIDs at least 4866.




* Maximum impact score for a query term t

UB: >z aymax(w(t,dy ), w(t, dz2),...).

* Score of a document d for query g is



 Block Max

— max impact scores in WAND can be much larger than
the individual doc scores or the average.



Top-k

 Block Max

— Splits the inverted lists into blocks of, say, 64 or 128
doclIDs such that each block can be decompressed
separately.

— Create an extra table, which stores for each block

* The maximum (or minimum) doclID,
* Maximum impact value for each block, and
* The block size.



Top-k

* we get a piece-wise upper-bound approximation
of the impact scores in the lists

~ld i —
hwcf.-- lJ-[]J-I”-l-LlJ--LJ-l_—li--_ __________________

0

@uummm docID space mmm—)

Three inverted lists where lists are piecewise upper-bounded by the maximum
scores in each block. Inside each block we have various values, including many
(implied) zero values, that may be retrieved by decompressing the block.



Top-k

* Block Max algorithm

— Sort the lists from top to bottom according to the doclDs of
the current postings,

— Find the pivot (as we did in WAND)

— Use the global maximum scores to determine a candidate
pivot, as in WAND,

— Use the block maximum scores to check if the candidate pivot
is a real pivot

— If it is, similar to WAND,

* move the current pointers of the previous query terms to the first
postings in their lists with docIDs greater than or equal the pivot ID.

— Else

* Move to d=min (d,) where dis are the maximum doclIDs in the current
blocks.



Block

* Block Max
— Query terms: [dog, cat, kangaroo, monkey]
— Current doclIDs: 73, 109, 266, and 1807.

— doclD 266 is pivot and it fails to make it into top k

results.
caa [ @@ a2 |
dog | R ) i di I
monkey | nz'—. a4 |
kangaroo| W*——\

we enable better skipping by choosing min(d,; d,; d;; d,) as the next possible
candidate, instead of 266 + 1



e WAND and Block Max Performance

TREC 2005
avg 2 3 B 5 >5
exhaustive OR 369.3 | 62.1 | 2389 | 515.2 | 778.3 | 1501.4
WAND 644 | 235 | 43.7 73.4 08.9 | 265.9
SC 63.5 142 | 37.5 119.7 | 1729 | 316.9
BMW 21.2 3.5 12.7 25.2 39 104
exhaustive AND | 6.86 6.4 73 0.2 4.7 5.9

Average query processing time in ms for different numbers

of query terms on the TREC 2005 query logs.

Exhaustive OR, WAND, SC, and BMW (Block Max) are for
disjunctive queries, while Exhaustive AND is for conjunctive

queries




Top-k

e WAND and Block Max Performance

TREC 2006
avg 2 3 4 5 > 5
exhaustive OR | 225.7 | 60 | 159.2 | 2614 | 376 | 646.4
WAND 77.6 | 23.0 | 425 89.9 | 141.2 | 251.6
SC 643 | 122 | 36.7 75.6 | 117.2 | 226.3
BMW 279 | 407 | 1152 | 336 | 545 | 1142
exhaustive AND | 11.4 | 103 | 108 14.0 154 | 152

Average query processing time in ms for different numbers
of query terms on the TREC 2006 query logs.




Top-k

e WAND and Block Max Performance

evaluated docs | decoded ints
exhaustive OR 3815676 0356032
WAND 178391 6274432
SC - 065248
BMW 21921 2642752
exhaustive AND 20026 1939584

The average number of evaluated doclDs and decoded

instances for different methods on the TREC 2006 query log.




* Indexing and Compression

* Query Processing and Retrieval
* |Index Organization

* |Index Traversal

* Top-k processing Algorithms

* Summary



Sum[n

Index Organization:

— Doc Sorted Indexes

— Impact Sorted Indexes
— Impact Layered Indexes

Index Traversal: TAAT, DAAT
Query Processing and Retrieval

— different types of queries. term-dependent and term-independent score
Top-k processing Algorithms

— Exhaustive and Non- Exhaustive

— Safe and Not safe

— WAND
 skip the postings based on a pivot document and the global maximum scores of lists

— Block Max

* Improve upon WAND by splitting the docIDs into blocks. Then, skip based on the
piecewise upper-bounded by the maximum scores in each block



Sampl

1.

Dongdong Shan, Shuai Ding, Jing He, Hongfei Yan, and Xiaoming Li. 2012. Optimized top-k processing with global page
scores on block-max indexes. In Proceedings of the fifth ACM international conference on Web search and data
mining (WSDM '12).

Shuai Ding and Torsten Suel. 2011. Faster top-k document retrieval using block-max indexes. InProceedings of the 34th
international ACM SIGIR conference on Research and development in Information Retrieval (SIGIR '11).

Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien. 2003. Efficient query evaluation using a
two-level retrieval process. In Proceedings of the twelfth international conference on Information and knowledge
management (CIKM '03).

Jonassen, S. and Bratsberg, S. 2011. Efficient Compressed Inverted Index Skipping for Disjunctive Text-Queries. Ad-
vances in Information Retrieval . (2011), 530-542

Tonellotto, N., Macdonald, C. and Ounis, |. 2010. Efficient dynamic pruning with proximity support. Large-Scale Dis-
tributed Systems for Information Retrieval (2010), 33-37.

Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien. Efficient query evaluation using a two-
level retrieval process. In Proceedings of the 12th ACM Conference on Information and Knowledge Management,
2003.

T. Strohman and W. Bruce Croft. Efficient document retrieval in main memory. In Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval, 2007.



