CS3245

Information Retrieval

Search Advertising,
Duplicate Detection and Revision

Last Time

Chapter 20

- Crawling Obtaining documents for indexing
 - Need to be polite robots.txt
 - But not everyone will return the favor Spider Traps
 - Distributed Work (cf Distributed Indexing)

Chapter 21

- PageRank A G(d) for asymmetrically linked documents
 - Your importance hinges on who knows you

Today

Chapter 19

- Search Advertising
- Duplicate Detection

- Exam Format
- Revision
- Where to go from here

IR on the web vs. IR in general

- On the web, search is not just a nice feature.
 - Search is a key enabler of the web: financing, content creation, interest aggregation, etc.
 - → look at search ads (Search Advertising)
- The web is a chaotic and uncoordinated document collection.
 - → lots of duplicates need to detect duplicates (Duplicate Detection)

Web search overview

Without search engines, the web wouldn't work

- Without search, content is hard to find.
- → Without search, there is no incentive to create content.
 - Why publish something if nobody will read it?
 - Why publish something if I don't get ad revenue from it?
- Somebody needs to pay for the web.
 - Servers, web infrastructure, content creation
 - A large part today is paid by search ads: Search pays for the web.

Interest aggregation

- Unique feature of the web: A small number of geographically dispersed people with similar interests can find each other.
 - Elementary school kids with hemophilia
 - People interested in translating R5R5 Scheme into relatively portable C (open source project)
 - Search engines are a key enabler for interest aggregation.

1st Generation of Search Ads: Goto (1996)

1st Generation of Search Ads: Goto (1996)

- Buddy Blake bid the maximum (\$0.38) for this search.
- He paid \$0.38 to Goto every time somebody clicked on the link.
- Pages were simply ranked according to bid revenue maximization for Goto.
- No separation of ads/docs. Only one result list!
- Upfront and honest. No relevance ranking, . . .
 - ... but Goto did not pretend there was any.

2nd generation of search ads: Google (2000)

SogoTrade appears in search results.

SogoTrade appears in ads.

Do search engines rank advertisers higher than non-advertisers?

All major search engines claim "no".

Do ads influence editorial content?

- Similar problem at newspapers / TV channels
- A newspaper is reluctant to publish harsh criticism of its major advertisers.
- The line often gets blurred at newspapers / on TV.
- No known case of this happening with search engines yet?
- Leads to the job of white and black hat search engine optimization (organic) and search engine marketing (paid).

How are ads ranked?

- Advertisers bid for keywords sale by auction.
- Open system: Anybody can participate and bid on keywords.
- Advertisers are only charged when somebody clicks on your ad (i.e., CPC)

How does the auction determine an ad's rank and the price paid for the ad?

- Basis is a second price auction, but with twists
- For the bottom line, this is perhaps the most important research area for search engines – computational advertising.
 - Squeezing an additional fraction of a cent from each ad means billions of additional revenue for the search engine.

How are ads ranked?

- First cut: according to bid price a la Goto
 - Bad idea: open to abuse!
 - Example: query [does my husband cheat?] → ad for divorce lawyer
 - We don't want to show nonrelevant ads.

Instead: rank based on bid price and relevance

- Key measure of ad relevance: clickthrough rate
 - clickthrough rate = CTR = clicks per impressions
- Result: A nonrelevant ad will be ranked low.
 - Even if this decreases search engine revenue short-term
 - Hope: Overall acceptance of the system and overall revenue is maximized if users get useful information.
- Other ranking factors: location, time of day, quality and loading speed of landing page
- The main ranking factor: the query

Google's second price auction

advertiser	bid	CTR	ad rank	rank	paid
A	\$4.00	0.01	0.04	4	(minimum)
В	\$3.00	0.03	0.09	2	\$2.68
C	\$2.00	0.06	0.12	1	\$1.51
D	\$1.00	0.08	0.08	3	\$0.51

- bid: maximum bid for a click by advertiser
- CTR: click-through rate: when an ad is displayed, what percentage of time do users click on it? CTR is a measure of relevance.
- ad rank: bid × CTR: this trades off (i) how much money the advertiser is willing to pay against (ii) how relevant the ad is
- rank: rank in auction
- paid: second price auction price paid by advertiser

Google's second price auction

	advertiser	bid	CTR	ad rank	rank	paid
•	Α	\$4.00	0.01	0.04	4	(minimum)
	В	\$3.00	0.03	0.09	2	\$2.68
	C	\$2.00	0.06	0.12	1	\$1.51
	D	\$1.00	0.08	0.08	3	\$0.51

- Second price auction: The advertiser pays the minimum amount necessary to maintain their position in the auction (plus 1 cent) – related to the Vickrey Auction
- price₁ × CTR₁ = bid₂ × CTR₂ (this will result in rank₁=rank₂)
- price₁ = bid₂ × CTR₂ / CTR₁
- $p_1 = bid_2 \times CTR_2/CTR_1 = 3.00 \times 0.03/0.06 = 1.50$
- $p_2 = bid_3 \times CTR_3/CTR_2 = 1.00 \times 0.08/0.03 = 2.67$
- $p_3 = bid_4 \times CTR_4/CTR_3 = 4.00 \times 0.01/0.08 = 0.50$

Keywords with high bids

According to http://www.cwire.org/highest-paying-search-terms/

\$69.1	mesothelioma treatment options
\$65.9	personal injury lawyer michigan
\$62.6	student loans consolidation
\$61.4	car accident attorney los angeles
\$59.4	online car insurance quotes
\$59.4	arizona dui lawyer
\$46.4	asbestos cancer
\$40.1	home equity line of credit
\$39.8	life insurance quotes
\$39.2	refinancing
\$38.7	equity line of credit
\$38.0	lasik eye surgery new york city
\$37.0	2nd mortgage
\$35.9	free car insurance quote

Also more recently:

http://www.wordstream.com/
articles/most-expensive-keywords

Search ads: A win-win-win?

- The search engine company gets revenue every time somebody clicks on an ad.
- The user only clicks on an ad if they are interested in the ad.
 - Search engines punish misleading and nonrelevant ads.
 - As a result, users are often satisfied with what they find after clicking on an ad.
- The advertiser finds new customers in a costeffective way.

Not a win-win-win: Keyword arbitrage

- Buy a keyword on Google
- Then redirect traffic to a third party that is paying much more than you are paying Google.
 - E.g., redirect to a page full of ads
- This rarely makes sense for the user.
- (Ad) spammers keep inventing new tricks.
- The search engines need time to catch up with them.
- Adversarial Information Retrieval

Not a win-win-win: Violation of trademarks

"geico"

- During part of 2005: The search term "geico" on Google was bought by competitors.
- Geico lost this case in the United States.
- Louis Vuitton lost a similar case in Europe.

http://support.google.com/adwordspolicy/answer/6118?rd=1

 It's potentially misleading to users to trigger an ad off of a trademark if the user can't buy the product on the site.

Duplicate detection

The web is full of duplicated content.

- More so than many other collections
- Exact duplicates
 - Easy to detect; use hash/fingerprint (e.g., MD5)
- Near-duplicates
 - More common on the web, difficult to eliminate
- For the user, it's annoying to get a search result with near-identical documents.
- Marginal relevance is zero: even a highly relevant document becomes nonrelevant if it appears below a (near-)duplicate.

Near-duplicates: Example

135

Detecting near-duplicates

- Compute similarity with an edit-distance measure
- We want "syntactic" (as opposed to semantic) similarity.
 - True semantic similarity (similarity in content) is too difficult to compute.
- We do not consider documents near-duplicates if they have the same content, but express it with different words.
- Use similarity threshold θ to make the call "is/isn't a near-duplicate".
- E.g., two documents are near-duplicates if similarity
- $\theta = 80\%$.

Recall: Jaccard coefficient

- A commonly used measure of overlap of two sets
- Let A and B be two sets
- Jaccard coefficient:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

$$(A \neq \emptyset \text{ or } B \neq \emptyset)$$

- JACCARD(A,A) = 1
- JACCARD(A,B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

e A

Jaccard coefficient: Example

- Three documents:
- d_1 : "Jack London traveled to Oakland"
- d_2 : "Jack London traveled to the city of Oakland"
- d_3 : "Jack traveled from Oakland to London"
- Based on shingles of size 2 (2-grams or bigrams), what are the Jaccard coefficients $J(d_1, d_2)$ and $J(d_1, d_3)$?
- $J(d_1, d_2) = 3/8 = 0.375$
- $J(d_1, d_3) = 0$
- Note: very sensitive to dissimilarity

A document as set of shingles

- A shingle is simply a word n-gram.
- Shingles are used as features to measure syntactic similarity of documents.
- For example, for n = 3, "a rose is a rose is a rose" would be represented as this set of shingles:
 - { a-rose-is, rose-is-a, is-a-rose }
- We define the similarity of two documents as the Jaccard coefficient of their shingle sets.

1235

Fingerprinting

- We can map shingles to a large integer space $[1..2^m]$ (e.g., m = 64) by fingerprinting.
- We use s_k to refer to the shingle's fingerprint in $1..2^m$.

- This doesn't directly help us we are just converting strings to large integers
- But it will help us compute an approximation to the actual Jaccard coefficient quickly

Documents as sketches

- The number of shingles per document is large, difficult to exhaustively compare
- To make it fast, we use a sketch, a subset of the shingles of a document.
- The size of a sketch is, say, n = 200 and is defined by a set of permutations $\pi_1 \dots \pi_{200}$.
- Each π_i is a random permutation on $1..2^m$
- The sketch of d is defined as:
 - $< \min_{s \in d} \pi_1(s), \min_{s \in d} \pi_2(s), \dots, \min_{s \in d} \pi_{200}(s) >$ (a vector of 200 numbers).

Deriving a sketch element: a permutation of the original hashes

We use $\min_{s \in d_1} \pi(s) = \min_{s \in d_2} \pi(s)$ as a test for: are d_1 and d_2 near-duplicates? In this case: permutation π says: $d_1 \approx d_2$

National University of Singapore

Proof that $J(S(d_i), s(d_i)) \cong P(x_i^{\pi} = x_i^{\pi})$

We view a matrix A:

- 1 column per set of hashes
- Element $A_{i,j} = 1$ if element i in set S_i is present
- Permutation π(n) is a random reordering of the rows in A
- x_k^{π} is the first non-zero entry in $\pi(d_k)$, i.e., first shingle present in document k
- Let $C_{00} = \#$ of rows in A where both entries are 0, define C_{11} , C_{10} , C_{01} likewise.
- $J(s_i, s_j)$ is then equivalent to $C_{11} / C_{10} + C_{01} + C_{11}$
- $P(x_i=x_j)$ then is equivalent to $C_{11} / C_{10} + C_{01} + C_{11}$

Estimating Jaccard

- Thus, the proportion of successful permutations is the Jaccard coefficient.
 - Permutation π is successful iff $\min_{s \in d_1} \pi(s) = \min_{s \in d_2} \pi(s)$
- Picking a permutation at random and outputting 1 (successful) or 0 (unsuccessful) is a Bernoulli trial.
- Estimator of probability of success: proportion of successes in n Bernoulli trials. (n = 200)
- Our sketch is based on a random selection of permutations.
- Thus, to compute Jaccard, count the number k of successful permutations for $< d_1, d_2 >$ and divide by n = 200.
- k/n = k/200 estimates $J(d_1, d_2)$

Shingling: Summary

- Input: N documents
- Choose n-gram size for shingling, e.g., n = 5
- Pick 200 random permutations, represented as hash functions
- Compute N sketches: 200 × N matrix shown on previous slide, one row per permutation, one column per document
- Compute $\frac{N \cdot (N-1)}{2}$ pairwise similarities
- Transitive closure of documents with similarity $> \theta$
- Index only one document from each equivalence class

Summary

- Search Advertising
 - A type of crowdsourcing: Ask advertisers how much they want to spend, ask searchers how relevant an ad is
 - Auction Mechanics
- Duplicate Detection
 - Represent documents as shingles
 - Calculate an approximation to the Jaccard by using random trials.

Exam Format

Open Book

Topics not in order

INSTRUCTIONS TO CANDIDATES

- This examination paper contains SIX (6) questions and comprises NINE (9) printed pages, including this page. Some questions have multiple parts.
- 2. It is suggested that you limit your response length to the space in the boxes provided.
- You may use the backs of the pages as scratch paper, as they will be disregarded, unless specifically noted by you.
- This is an OPEN BOOK examination. You may consult books and any other printed or handwritten materials for this test.
- 5. You may use pencil or other erasable medium in answering this paper.
- The questions are presented no particular order, and specifically not by their perceived difficulty or estimated time to answer. You may want to do the questions out of order.
- 7. Please write your Matriculation Number below. Do not write your name.

MATRICULATION NO:

This portion is for examiner's use only

Question	Q1	Q2	Q3	Q4	Q5	Q6	Total
Max	20	16	23	20	10	11	100
Marks							

Exam Topics

- Anything covered in lecture (through slides)
- And corresponding sections in textbook
- Tutorial and homework essays are the exam models
 - In the past, I wrote the exam questions when writing tutorials
 - There is also a graduate level module that I've taught before (CS 5246; I taught it in 2007)
- Not responsible for sections that we didn't cover
 - If in doubt, ask on the forum

- **Exam Topic Distribution**
- Emphasize on second half of semester, but skips some topics
- 1 or 2 questions may have calculation
 - May be time consuming but easy and straightforward
 - Don't forget your calculator!
- Others are thinking essay questions (cf. tutorials)

1st half: about 20%

2nd half: about 80%

No homework / tutorial topics

Understanding the user: The classic search model

235

The IR System

Won't be covering these blue modules in this course

n

Zoom in: Index Construction

Zoom Out: Web search

Week 1: Ngram Models

- Unigram LM: Bag of words
- Ngram LM: use n-1 tokens of context to predict nth token
- Larger n-gram models more accurate but each increase in order requires exponentially more space

Your turn: what do you think? Can we use a LM to do information retrieval?

You bet. We returned to this in Week 12.

The Unigram Model

- View language as a unordered collection of tokens
 - Each of the n tokens contributes one count (or 1/n) to the model
 - Also known as a "bag of words"
- Outputs a count (or probability) of an input based on its individual token
 - Count(input) = \sum_{n} Count(n)
 - P(input) = \prod_{n} P(n)

Add 1 smoothing

Not used in practice, but most basic to understand

Idea: add 1 count to all entries in the LM, including

those that are not seen

Q2 (By Probability): "I don't want"

P(Aerosmith): .11 * .11 * .11 = 1.3E-3

P(LadyGaga): .15 * .05 * .15 = 1.1E-3

Winner: Aerosmith

1	2	eyes	2
don't	2	your	1
want	2	love	1
to	2	and	1
close	2	revenge	1
my	2	Total Count	18

1	3	eyes	1
don't	1	your	3
want	3	love	2
to	1	and	2
close	1	revenge	2
my	1	Total Count	20

Week 2: Basic (Boolean) IR

- Basic inverted indexes:
 - In memory dictionary and on disk postings

- Key characteristic: Sorted order for postings
- Boolean query processing
 - Intersection by linear time "merging"
 - Simple optimizations by expected size

Term-document incidence

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Brutus AND **Caesar** BUT NOT Calpurnia

1 if play contains word, 0 otherwise

Indexer steps: Dictionary & Postings

- Multiple term entries in a single document are merged.
- Split into Dictionary and Postings
- Doc. frequency information is also stored.

Term	docID
ambitious	
be	2
brutus	1
brutus	2
capitol	2 2 1 2
caesar	1
caesar	1 2 2 1
caesar	2
did	
enact	1
hath	1
I	1
I	1
i'	1
it	2
julius	1
killed	1
killed	1
let	2
me	1
noble	2
so	2
the	1
the	2
told	1 2 1 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2
you	2
was	1
was	2
with	2
nformation	Retrieva

The merge

 Walk through the two postings simultaneously, in time linear in the total number of postings entries

If the list lengths are x and y, the merge takes O(x+y) operations.

Crucial: postings must be sorted by docID.

Week 3: Terms and Postings Details

- The type/token distinction
 - Terms are normalized types put in the dictionary
- Tokenization problems
 - Hyphens, apostrophes, spaces, compounds
 - Language specific problems
- Term equivalence classing (or not)
 - Numbers, case folding, stemming, lemmatization
- Skip pointers
 - Encoding a tree-like structure in a postings list
- Biword indexes for phrases
- Positional indexes for phrases/proximity queries

Inverted index construction

Tokenization and Normalization

Definitely language specific

- In English, we worry about
 - Tokenization Spaces and Punctuation
 - Case folding
 - Stopwording
 - Normalization Stemming or Lemmatization

Adding skip pointers to postings

- Done at indexing time.
- Why?
- How to do it? And where do we place skip pointers?

A first attempt at phrasal queries: Biword indexes

- Index every consecutive pair of terms in the text as a phrase: bigram model using words
- For example the text "Friends, Romans,
 Countrymen" would generate the biwords
 - friends romans
 - romans countrymen
- Each of these biwords is now a dictionary term
- Two-word phrase query-processing is now immediate.

Positional index example

<**be**: 993427;

1: 7, 18, 33, 72, 86, 231;

2: 3, 149;

4: 17, 191, 291, 430, 434;

5: 363, 367, ...>

Quick check: Which of docs 1,2,4,5 could contain "to be or not to be"?

- For phrase queries, we use a merge algorithm recursively at the document level
- Now need to deal with more than just equality

Week 4: The dictionary and tolerant retrieval

- Data Structures for the Dictionary
 - Hash
 - Trees

- Learning to be tolerant
- 1. Wildcards
 - General Trees
 - Permuterm
 - Ngrams, redux
- 2. Spelling Correction
 - Edit Distance
 - Ngrams, re-redux
- 3. Phonetic Soundex

Hash Table

Each vocabulary term is hashed to an integer

- Pros:
 - Lookup is faster than for a tree: O(1)
- Cons:
 - No easy way to find minor variants:
 - judgment/judgement
 - No prefix search

Not very tolerant!

 If vocabulary keeps growing, need to occasionally do the expensive operation of rehashing everything

B-trees handle *'s at the end of a query term

- How can we handle *'s in the middle of query term?
 - co*tion
- We could look up co* AND *tion in a B-tree and intersect the two term sets
 - Expensive
- The solution: transform wild-card queries so that the
 *'s always occur at the end
- This gives rise to the Permuterm Index.

Permuterm index

- For term *hello*, index under:
 - hello\$, ello\$h, llo\$he, lo\$hel, o\$hell where \$ is a special symbol.
- Queries:
 - X lookup on X\$ X* lookup on \$X*

 - X*Y lookup on Y\$X*

X lookup on X\$ *X* lookup on X*

Query = hel*o X=hel, Y=o Lookup o\$hel*

Not so quick Q: What about X*Y*Z?

Isolated word spelling correction

- Given a lexicon and a character sequence Q, return the words in the lexicon closest to Q
- How do we define "closest"?
- We studied several alternatives
 - 1. Edit distance (Levenshtein distance)
 - 2. Weighted edit distance
 - 3. *n*gram overlap

Week 5: Index construction

- Sort-based indexing
 - Blocked Sort-Based Indexing
 - Merge sort is effective for disk-based sorting (avoid seeks!)
 - Single-Pass In-Memory Indexing
 - No global dictionary Generate separate dictionary for each block
 - Don't sort postings Accumulate postings as they occur
- Distributed indexing using MapReduce
- Dynamic indexing: Multiple indices, logarithmic merge

Hardware basics

Many design decisions in information retrieval are based on the characteristics of hardware

Especially with respect to the bottleneck: Hard Drive Storage

- Seek Time time to move to a random location
- Transfer Time time to transfer a data block

BSBI: Blocked sort-based Indexing (Sorting with fewer disk seeks)

- 12-byte (4+4+4) records (termID, docID, freq).
- These are generated as we parse docs.
- Must now sort 100M 12-byte records by termID.
- Define a <u>Block</u> as ~ 10M such records
 - Can easily fit a couple into memory.
 - Will have 10 such blocks for our collection.
- Basic idea of algorithm:
 - Accumulate postings for each block, sort, write to disk.
 - Then merge the blocks into one long sorted order.

How to merge the sorted runs?

Second method (better):

- It is more efficient to do a n-way merge, where you are reading from all blocks simultaneously
- Providing you read decent-sized chunks of each block into memory and then write out a decent-sized output chunk, then your efficiency isn't lost by disk seeks

SPIMI:

National University of Singapore

Single-pass in-memory indexing

- Key idea 1: Generate separate dictionaries for each block – no need to maintain term-termID mapping across blocks.
- Key idea 2: Don't sort. Accumulate postings in postings lists as they occur.
- With these two ideas we can generate a complete inverted index for each block.
- These separate indices can then be merged into one big index.

Distributed Indexing: MapReduce Data flow

Dynamic Indexing: 2nd simplest approach

- Maintain "big" main index
- New docs go into "small" (in memory) auxiliary index
- Search across both, merge results
- Deletions
 - Invalidation bit-vector for deleted docs
 - Filter docs output on a search result by this invalidation bit-vector
- Periodically, re-index into one main index
 - Assuming T total # of postings and n as size of auxiliary index, we touch each posting up to floor(T/n) times.

Loop for log levels

Logarithmic merge

- Idea: maintain a series of indexes, each twice as large as the previous one.
- Keep smallest (Z_0) in memory
- Larger ones $(I_0, I_1, ...)$ on disk
 - If Z_0 gets too big (> n), write to disk as I_0 or merge with I_0 (if I_0 already exists) as Z_1
- Either write merge Z_1 to disk as I_1 (if no I_1) Or merge with I₁ to form Z₂

... etc.

Week 6: Index Compression

 Collection and vocabulary statistics: Heaps' and Zipf's laws

Compression to make index smaller, faster

- Dictionary compression for Boolean indexes
 - Dictionary string, blocks, front coding
- Postings compression: Gap encoding

Empirical Laws

Heaps' law: $M = kT^b$

- M is the size of the vocabulary, T is the number of tokens in the collection
- In a log-log plot of vocabulary size M vs. T, Heaps' law predicts a line with slope about ½
 - It is the simplest possible relationship between the two in log-log space

Zipf's law: $cf_i \propto 1/i = K/i$

- Zipf's law: The ith most frequent term has frequency proportional to 1/i.
- where K is a normalizing constant
- cf_i is <u>collection frequency</u>
 (not document frequency):
 the number of occurrences
 of the term t_i in the
 collection.

Index Compression: Dictionary-as-a-String and Blocking

- Store pointers to every kth term string.
 - Example below: k=4.
- Need to store term lengths (1 extra byte)

Postings Compression: Postings file entry

- We store the list of docs containing a term in increasing order of docID.
 - *computer*: 33,47,154,159,202 ...
- Consequence: it suffices to store gaps.
 - **33,14,107,5,43** ...
- Hope: most gaps can be encoded/stored with far fewer than 20 bits.

Variable Byte Encoding: Example

	docIDs	824	829	215406
	gaps		5	214577
	VB code	00000 <mark>11</mark> 0 10111000	10000101	00001101 00001100 10110001
512	+ 256 +32+16+8 = 8	24		10110001

Postings stored as the byte concatenation 00000110 10111000 10000101 00001101 00001100 10110001

Key property: VB-encoded postings are uniquely prefix-decodable.

For a small gap (5), VB uses a whole byte.

Week 7: Vector space ranking

- 1. Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- 3. Compute the cosine similarity score for the query vector and each document vector
- 4. Rank documents with respect to the query by score
- 5. Return the top K (e.g., K = 10) to the user

Term-document count matrices

- Store the number of occurrences of a term in a document:
 - Each document is a **count vector** in \mathbb{N}^{v} : a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

1235

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = (1 + \log t \mathbf{f}_{t,d}) \times \log_{10}(N/d\mathbf{f}_t)$$

- Best known weighting scheme IR
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space; they are "mini-documents"
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance
- Motivation: Want to get away from the you'reeither-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

Length normalization

- A vector can be (length-) normalized by dividing each of its components by its length for this we use the L_2 norm: $\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$
- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length normalization.
 - Long and short documents now have comparable weights

Cosine for length-normalized vectors

 For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized.

Week 8: Complete Search Systems

Making the Vector Space Model more efficient to compute

- Approximating the actual correct results
- Skipping unnecessary documents

In actual data: dealing with zones and fields, query term proximity

Resources for today

IIR 7, 6.1

Recap: Computing cosine scores

```
CosineScore(q)
     float Scores[N] = 0
     float Length[N]
 3 for each query term t
    do calculate w_{t,q} and fetch postings list for t
         for each pair(d, tf<sub>t,d</sub>) in postings list
        do Scores d + = w_{t,d} \times w_{t,a}
     Read the array Length
     for each d
     do Scores[d] = Scores[d]/Length[d]
     return Top K components of Scores[]
10
```


Generic approach

- Find a set A of contenders, with K < |A| << N</p>
 - A does not necessarily contain the top K, but has many docs from among the top K
 - Return the top K docs in A
- Think of A as <u>pruning</u> non-contenders
- The same approach can also used for other (non-cosine) scoring functions

1235

Net score

 Consider a simple total score combining cosine relevance and authority

$$net-score(q,d) = g(d) + cosine(q,d)$$

- Can use some other linear combination than an equal weighting
- Indeed, any function of the two "signals" of user happiness
- Now we seek the top K docs by net score

Parametric Indices

Fields

- Year = 1601 is an example of a <u>field</u>
- Field or parametric index: postings for each field value
 - Sometimes build range (Btree) trees (e.g., for dates)
- Field query typically treated as conjunction
 - (doc must be authored by shakespeare)

Zone

- A <u>zone</u> is a region of the doc that can contain an arbitrary amount of text e.g.,
 - Title
 - Abstract
 - References ...
- Build inverted indexes on zones as well to permit querying

Putting it all together

Won't be covering these blue modules in this course

Week 9: IR Evaluation

- How do we know if our results are any good?
 - Evaluating a search engine
 - Benchmarks
 - Precision and Recall; Composite measures

1235

A precision-recall curve

Kappa Example

$$P(A) = 370/400 = 0.925$$

 $P(nonrelevant) = (10+20+70+70)/800 = 0.2125$
 $P(relevant) = (10+20+300+300)/800 = 0.7878$
 $P(E) = 0.2125^2 + 0.7878^2 = 0.665$
 $Kappa = (0.925 - 0.665)/(1-0.665) = 0.776$

- Kappa > 0.8 → good agreement
- 0.67 < Kappa < 0.8 → "tentative conclusions"
- Depends on purpose of study
- For >2 judges: average pairwise kappas

A/B testing

Purpose: Test a single innovation

Prerequisite: You have a large system with many users.

- Have most users use old system
- Divert a small proportion of traffic (e.g., 1%) to the new system that includes the innovation
- Evaluate with an "automatic" overall evaluation criterion (OEC) like clickthrough on first result
- Now we can directly see if the innovation does improve user happiness.
- Probably the evaluation methodology that large search engines trust most

Dynamic summaries

- Present one or more "windows" within the document that contain several of the query terms
 - One of the killer features of Google (ca. 1996)
 - "KWIC" snippets: Keyword in Context presentation

nlp.stanford.edu/~manning - Cached

Slide courtesy Google Inc.

Kinds of behaviors we see in the data

Information Retrieval 93

Week 10: XML, Relevance Feedback and Query Expansion

Chapter 10

- 1. XML
- Basic XML concepts
- Challenges in XML IR
- Vector space model for XMLIR

Chapter 9

1. Relevance Feedback

Document Level

- Explicit RF Rocchio (1971)
- When does it work?
- Variants Implicit and Blind

2. Query Expansion

Term Level

- Controlled Vocabularies
- WordNet
- Automatic Thesaurus Generation

1235

XML Basics and Definitions

- XML Document Object Model (XML DOM): standard for accessing and processing XML documents
 - The DOM represents elements, attributes and text within elements as nodes in a tree.
 - With a DOM API, we can process an XML documents by starting at the root element and then descending down the tree from parents to children.
- **XPath**: standard for enumerating path in an XML document collection.
 - We will also refer to paths as XML contexts or simply contexts
- Schema: puts constraints on the structure of allowable XML documents.
 E.g. a schema for Shakespeare's plays: scenes can occur as children of acts.
 - Two standards for schemas for XML documents are: XML DTD (document type definition) and XML Schema.

Main idea: lexicalized subtrees

- Aim: to have each dimension of the vector space encode a word together with its position within the XML tree.
- How: Map XML documents to lexicalized subtrees.

Context resemblance

• A simple measure of the similarity of a path c_q in a query and a path c_q in a document is the following **context resemblance** function CR:

$$\operatorname{CR}(c_q, c_d) = \left\{ egin{array}{ll} rac{1 + |c_q|}{1 + |c_d|} & ext{if } c_q ext{ matches } c_d \\ 0 & ext{if } c_q ext{ does not match } c_d \end{array}
ight.$$

 $|c_q|$ and $|c_d|$ are the number of nodes in the query path and document path, respectively

• c_q matches c_d iff we can transform c_q into c_d by inserting additional nodes.

INEX relevance assessments

The relevance-coverage combinations are quantized as follows:

$$\mathbf{Q}(\textit{rel}, \textit{cov}) = \begin{cases} 1.00 & \text{if} \quad (\textit{rel}, \textit{cov}) = 3E \\ 0.75 & \text{if} \quad (\textit{rel}, \textit{cov}) \in \{2E, 3L\} \\ 0.50 & \text{if} \quad (\textit{rel}, \textit{cov}) \in \{1E, 2L, 2S\} \\ 0.25 & \text{if} \quad (\textit{rel}, \textit{cov}) \in \{1S, 1L\} \\ 0.00 & \text{if} \quad (\textit{rel}, \textit{cov}) = 0N \end{cases}$$

This evaluation scheme takes account of the fact that binary relevance judgments are not appropriate for XML retrieval. The quantization function **Q** instead allows us to grade each component as partially relevant. The number of relevant components in a retrieved set A of components can then be computed as:

$$\#(\mathsf{relevant}\;\mathsf{items}\;\mathsf{retrieved}) = \sum_{c \in A} \mathbf{Q}(\mathit{rel}(c),\mathit{cov}(c))$$

Rocchio (1971)

Popularized in the SMART system (Salton)

In practice:

$$\vec{q}_m = \alpha \vec{q}_0 + \beta \frac{1}{|D_r|} \sum_{\vec{d}_j \in D_r} \vec{d}_j - \gamma \frac{1}{|D_{nr}|} \sum_{\vec{d}_j \in D_{nr}} \vec{d}_j$$

- D_r = set of known relevant doc vectors
- D_{nr} = set of known irrelevant doc vectors
 - Different from C_r and C_{nr} as we only get judgments from a few documents
- $\{\alpha, \beta, \gamma\}$ = weights (hand-chosen or set empirically)

335

Query Expansion

- In relevance feedback, users give additional input (relevant/non-relevant) on documents, which is used to reweight terms in the documents
- In query expansion, users give additional input (good/bad search term) on words or phrases

Co-occurrence Thesaurus

Simplest way to compute one is based on term-term similarities in $C = AA^T$ where A is term-document matrix.

• $w_{i,j} = (\text{normalized}) \text{ weight for } (t_i, \mathbf{d}_j)$

In NLTK. Did you forget?

A concordance permits us to see words in context. For example, we saw that then inserting the relevant word in parentheses:

```
>>> text1.similar("monstrous")
Building word-context index...
subtly impalpable pitiable curious imperial perilous trusty
abundant untoward singular lamentable few maddens horrible
mystifying christian exasperate puzzled
>>> text2.similar("monstrous")
Building word-context index...
very exceedingly so heartily a great good amazingly as sweet
remarkably extremely vast
>>>
```

Observe that we get different results for different texts. Austen uses this word

The term common_contexts allows us to examine just the contexts that are sh

```
>>> text2.common_contexts(["monstrous", "very"])
be_glad am_glad a_pretty is_pretty a_lucky
>>>
```

For each t_i, pick terms with high values in C

Week 11: Probabilistic IR

Chapter 11

- Probabilistic Approach to Retrieval / Basic Probability Theory
- 2. Probability Ranking Principle
- 3. OKAPI BM25

Chapter 12

1. Language Models for IR

Binary Independence Model (BIM)

Traditionally used with the PRP

Assumptions:

- Binary (equivalent to Boolean): documents and queries represented as binary term incidence vectors
 - E.g., document d represented by vector $\vec{x} = (x_1, ..., x_M)$, where
 - $x_t = 1$ if term t occurs in d and $x_t = 0$ otherwise
 - Different documents may have the same vector representation
- Independence: no association between terms (not true, but works in practice – naïve assumption)

Okapi BM25: A Nonbinary Model

 If the query is long, we might also use similar weighting for query terms

$$RSV_d = \sum_{t \in g} \left[\log \frac{N}{\mathrm{df}_t} \right] \cdot \frac{(k_1 + 1)\mathrm{tf}_{td}}{k_1((1 - b) + b \times (L_d/L_{\mathsf{ave}})) + \mathrm{tf}_{td}} \cdot \frac{(k_3 + 1)\mathrm{tf}_{tq}}{k_3 + \mathrm{tf}_{tq}}$$

- tf_{tq} : term frequency in the query q
- k_3 : tuning parameter controlling term frequency scaling of the query
- No length normalization of queries (because retrieval is being done with respect to a single fixed query)
- The above tuning parameters should be set by optimization on a development test collection. Experiments have shown reasonable values for k_1 and k_3 as values between 1.2 and 2 and b = 0.75

An Appraisal of Probabilistic Models

- The difference between 'vector space' and 'probabilistic' IR is not that great:
 - In either case you build an information retrieval scheme in the exact same way.
 - Difference: for probabilistic IR, at the end, you score queries not by cosine similarity and tf-idf in a vector space, but by a slightly different formula motivated by probability theory

Using language models in IR

- Each document is treated as (the basis for) a language model.
- Given a query q, rank documents based on P(d|q)

- P(q) is the same for all documents, so ignore
- P(d) is the prior often treated as the same for all d
 - But we can give a prior to "high-quality" documents, e.g., those with high static quality score g(d) (cf. Section 7.14).
- P(q|d) is the probability of q given d.
- So to rank documents according to relevance to q, ranking according to P(q|d) and P(d|q) is equivalent.

Mixture model: Summary

$$P(q|d) \propto \prod_{1 \leq k \leq |q|} (\lambda P(t_k|M_d) + (1-\lambda)P(t_k|M_c))$$

- What we model: The user has a document in mind and generates the query from this document.
- The equation represents the probability that the document that the user had in mind was in fact this one.

Week 12: Web Search

Chapter 20

Crawling

Chapter 21

- Anchor Text
- PageRank

IR on the web vs. IR in general

- On the web, search is not just a nice feature.
 - Search is a key enabler of the web: financing, content creation, interest aggregation, etc.
 - → look at search ads
- The web is a chaotic und uncoordinated collection.
 - → lots of duplicates need to detect duplicates
- No control / restrictions on who can author content.
 - → lots of spam need to detect spam
- The web is very large. \rightarrow need to know how big it is.

Pagerank summary

- Pre-processing:
 - Given graph of links, build matrix A
 - From it compute a
 - The pagerank a_i is a scaled number between 0 and 1
- Query processing:
 - Retrieve pages meeting query
 - Rank them by their pagerank
 - Order is query-independent

PageRank issues

- Real surfers are not random surfers.
 - Examples of nonrandom surfing: back button, short vs. long paths, bookmarks, directories – and search!
 - → Markov model is not a good model of surfing.
 - But it's good enough as a model for our purposes.
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query [video service].
 - The Yahoo home page (i) has a very high PageRank and (ii) contains both video and service.
 - If we rank all Boolean hits according to PageRank, then the Yahoo home page would be top-ranked.
 - Clearly not desireble.

Learning Objectives

In addition to learning about IR, you have picked up skills that you will help in your future computing

- Python one of the easiest and more straightforward programming languages to use.
- NLTK A good set of routines and data that are useful in dealing with NLP and IR.

Opportunities NUS

in IR

CS3245 – Information Retrieval

