CS3245

CS3245 — Information Retrieval

National University

Last Time: Index Construction

= Sort-based indexing
= Blocked Sort-Based Indexing

= Merge sort is effective for disk-based sorting (avoid seeks!)

= Single-Pass In-Memory Indexing
= No global dictionary - Generate separate dictionary for each block
= Don’t sort postings - Accumulate postings as they occur

= Distributed indexing using MapReduce
= Dynamic indexing: Multiple indices, logarithmic merge

Information Retrieval 2

CS3245 — Information Retrieval

National University
of Singapore

Today: Ranked Retrieval

Skipping over Section 6.1; will return to it later

= Scoring documents
"= Term frequency

= Collection statistics
= Weighting schemes

= Vector space scoring

Information Retrieval 3

CS3245 — Information Retrieval

Ranked retrieval

= Thus far, our queries have all been Boolean.
* Documents either match or don’t.

" Good for expert users with precise understanding of
their needs and the collection.

= Also good for applications: Applications can easily
consume 1000s of results.

= Not good for the majority of users.

" Most users incapable of writing Boolean queries (or they
are capable, but they think it’s too much work).

* Most users don’t want to wade through 1000s of results.
= This is particularly true of web search.

Information Retrieval 4

CS3245 — Information Retrieval

Problem with Boolean search:
Feast or Famine

= Boolean queries often result in either too few (=0) or
too many (1000s) results.
= Query 1: “standard user dlink 650" = 200,000 hits
= Also called “information overload”

= Query 2: “standard user dlink 650 no card found” >
0 hits

= |t takes a lot of skill to come up with a query that
produces a manageable number of hits.

= AND gives too few; OR gives too many

Information Retrieva 5

NUS

National University
of Singapore

Ranked retrieval models

= Rather than a set of documents satisfying a query
expression, in ranked retrieval models, the system

returns an ordering over the (top) documents in the
collection with respect to a query

" Free text queries: Rather than a query language of
operators and expressions, the user’s query is just
one or more words in a human language

= Two separate choices, but in practice, ranked
retrieval models are associated with free text queries

Information Retrieval 6

CS3245 — Information Retrieval Ch. 6

Ranked retrieval

National University

= When a system produces a ranked result set, large
result sets are not an issue

= We just show the top k (= 10) results
= We don’t overwhelm the user

= Premise: the ranking algorithm works

Information Retrieval

CS3245 — Information Retrieval Ch. 6

Scoring as the basis of ranked retrieva

N US
95

National Univ rersity
f Singgpore

We wish to return in order the documents most
likely to be useful to the searcher

How can we rank the documents in the collection
with respect to a query?

Assign a score —say in [0, 1] —to each document

This score measures how well document and query
“match”.

Information Retrieval 8

CS3245 — Information Retrieval Ch. 6

National University
of Singapore

Take 1: Jaccard coefficient

= Recall the Jaccard coefficient from Chapter 3
(spelling correction): A measure of overlap of two
sets A and B

Jaccard (A,B)=|AnB|/|A U B]
Jaccard (AA) =1
Jaccard (A,B)=0ifAnB=0

Pros:

= A and B don’t have to be the same size.
= Always assigns a number between 0 and 1.

Information Retrieval 9

CS3245 — Information Retrieval Ch. 6

Blanks on slides, you may want to fill in B8 o N U S

ational University

= What is the query-document match score that the
Jaccard coefficient computes for each of the two
documents below?

= Query: ides of march
= Document 1: cgesar died in march

= Document 2: the long march

Information Retrieval 10

CS3245 — Information Retrieval

Issues with Jaccard for scoring

It doesn’t consider term frequency (how many times a
term occurs in a document)

= Rare terms in a collection are more informative than
frequent terms. Jaccard doesn’t consider this
information

Let’s start with a one-term query...

= |f the query term does not occur in the document:
score should be 0

* The more frequent the query term in the document,
the higher the score (should be)

Information Retrieval 11

CS3245 — Information Retrieval

1. Term-document count matrices

Sec. 6.2

NUS

National University
of Singapore

= Store the number of occurrences of atermin a

document:

= Each document is a

count vector

in NY: a column below

Antony and Cleopatra | Julius Caesar | The Tempest

Antony 157 73 0 0
Brutus 4 157 0 1
Caesar 232 227 0 2
Calpurnia 0 10 0 0
Cleopatra 57 0 0 0
mercy 2 0 3 5
worser 2 0 1 1

Information Retrieval

Hamlet

Othello

0

0
1
0
0
5
1

Macbeth

o = O O = O

12

CS3245 — Information Retrieval

Term frequency tf

= The term frequency tf, ; of term t in document d is
defined as the number of times that t occurs in d.

* We want to use tf when computing query-document
match scores. But how?

= Raw term frequency is not what we want:

= Relevance does not increase proportionally with term
frequency.

= A document with 10 occurrences of the term is more

relevant than a document with 1 occurrence. But not 10

times more relevant. Note: frequency = count in IR

Information Retrieval 13

National University

of Singapore

Log-frequency weighting

* The log frequency weight of term tin d is:

1+log,, tt,,, if tf, , >0
Wia =

O, otherwise

eg.0->0,1->1,2->1.3,10- 2,1000 - 4, etc.
= Score for a document-query pair: sum over terms t in both g

and d:
score = Et@;ﬂd (1 + log tft,d)

* The score is O if none of the query terms is present in the
document.

Information Retrieval 14

CS3245 — Information Retrieval Sec. 6.2.1

National University

2. Document frequency

= Rare terms are more informative than frequent terms
= Recall stop words

= Consider a term in the query that is rare in the collection
(e.g., arachnocentric)

= A document containing this term is very likely to be
relevant to the query arachnocentric

= We want a high weight for rare terms like arachnocentric.

Information Retrieval 15

CS3245 — Information Retrieval Sec. 6.2.1

Blanks on slides, you may want to fill in) N U S

Document frequency, continued

National University
of Singapore

" Frequent terms are less informative than rare terms

= Consider a query term that is frequent in the
collection (e.g., high, increase, line)

= A document containing such a term is more likely to
be relevant than a document that doesn’t ...

= For frequent terms, we want high positive weights
for words like high, increase, and line ...

= We will use document frequency (df) to capture this.

Information Retrieval 16

CS3245 — Information Retrieval Sec. 6.2.1

National University
of Singapore

idf weight

= df, is the document frequency of t: the number of
documents that contain t

= df, is an inverse measure of the informativeness of t
= df, =N

* We define the idf (inverse document frequency) of t

Y {df = log,, (N/f)

= We use log (N/df,) instead of N/df, to “dampen” the effect
of idf.

Information Retrieval 17

CS3245 — Information Retrieval Sec. 6.2.1

Example: suppose N =1 million

calpurnia 1 6
animal 100 4
sunday 1,000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0

1dt, =log,, (NV/dt))

There is one idf value for each term tin a collection.

Information Retrieval 18

CS3245 — Information Retrieval

Blanks on slides, you may want to fill in) N U S

Effect of idf on ranking

= Does idf have an effect on ranking for one-term
qgueries, like iPhone?

= idf has on ranking one term queries
= df affects the ranking of documents for queries with at
least

= For the query samsung galaxy, idf weighting makes
occurrences of samsung count for much more in the final
document ranking than occurrences of galaxy.

Information Retrieval 19

CS3245 — Information Retrieval

Sec. 6.2.1

Collection vs. Document frequency

* The collection frequency of t is the number of
occurrences of t in the collection, counting
multiple occurrences.

= Example:
“ Collection frequency Document frequency
insurance 10440 3997
try 10422 8760

= Which word is a better search term (and should
get a higher weight)?

Information Retrieval 20

CS3245 — Information Retrieval Sec. 6.2.2

National University
of Singapore

tf-idf weighting

" The tf-idf weight of a term is the product of its tf
weight and its idf weight.

w =(l+logtt, ;) xlog,(N/df,)

= Best known weighting scheme IR
= Note: the “-” in tf-idf is a hyphen, not a minus sign!
= Alternative names: tf.idf, tf x idf

* |ncreases with the number of occurrences within a
document

" Increases with the rarity of the term in the collection

Information Retrieval 21

CS3245 — Information Retrieval Sec. 6.2.2

National Univ rersity
of Sing. apore

Final ranking of documents for a quer

Score(q.d) = Y tf.idf,,

teqgnd

Information Retrieva 22

CS3245 — Information Retrieval Sec. 6.3

TN US
%

National University
of Singapore

Binary & count - weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights € RV

Information Retrieval 23

National University

Documents as vectors

= So we have a |V|-dimensional vector space
" Terms are axes of the space
* Documents are points or vectors in this space

= High-dimensional: tens of thousands of dimensions;
each dictionary term is a dimension

"= These are very sparse vectors - most entries are zero.

Information Retrieval 24

CS3245 — Information Retrieval

National University
of Singapore

Bag of words model

= Con: Vector representation doesn’t consider the
ordering of words in a document

" John is quicker than Mary and Mary is quicker than John
have the same vectors

= |n asense, this is a step back: The positional index
was able to distinguish these two documents.

= We will look at “recovering” positional information
later in this course.

Information Retrieval 25

CS3245 — Information Retrieval Sec. 6.3

National University

Queries as vectors

= Keyidea 1: Do the same for queries: represent them
as vectors in the space; they are “mini-documents”

= Keyidea 2: Rank documents according to their
proximity to the query in this space

= proximity = similarity of vectors
= proximity = inverse of distance

Motivation: Want to get away from the you’re-either-in-or-
out Boolean model.

Instead: rank more relevant documents higher than less
relevant documents

Information Retrieval 26

Blanks on slides, you may want to fill in) N U S

Formalizing vector space proximity

= First cut: distance between two points
= (=distance between the end points of the two vectors)

= Euclidean distance?
= Euclidean distance is a bad idea ...

Information Retrieval 27

CS3245 — Information Retrieval

Why distance is a bad idea

The Euclidean
distance between ¢

and d_Z)is large even
though the

distribution of terms
in the query c7>and the
distribution of

terms in the
document 72 are

very similar.

GOSSIP

14

()

Information Retrieval

s
d
d3
= JEALOUS

28

CS3245 — Information Retrieval Sec. 6.3
NUS

National University
of Singapore

Use angle instead of distance

= Distance counterexample: take a document d and
append it to itself. Call this document d'.

= “Semantically” d and d” have the same content

= The Euclidean distance between the two documents
can be quite large

= The angle between the two documents is O,
corresponding to maximal similarity.

Key idea: Rank documents according to angle with
query.

Information Retrieval 29

From angles to cosines

= The following two notions are equivalent.
= Rank documents in decreasing order of the angle between
qguery and document
= Rank documents in increasing order of
cosine(query,document)
= Cosine is a monotonically decreasing function for the

interval [0°, 180°]

N e

oo aAS o =00 =S50 SOoo SSo

S o

Information Retrieval 30

CS3245 — Information Retrieval Sec. 6.3

Length normalization

= A vector can be (length-) normalized by dividing each
of its components by its length — for this we use the

L, norm: _ >
[, = 2%
2 il

= Dividing a vector by its L, norm makes it a unit
(length) vector (on surface of unit hypersphere)

= Effect on the two documents d and d’ (d appended
to itself) from earlier slide: they have identical
vectors after length normalization.

= Long and short documents nhow have comparable weights

Information Retrieval 31

aNUS
. W byl
cosine (query, document)
Dot product Unit vectors
- \o d J 'd VI qd
cos(é,d)— _4, =l

4)d|

103 304

q; is the tf-idf weight of term i in the query
d. is the tf-idf weight of term j in the document

cos(d,d) is the cosine similarity of dand d ..
equivalently, the cosine of the angle between 7and a.

Information Retrieva 32

CS3245 — Information Retrieval

of Singapore

= For length-normalized vectors, cosine similarity is
simply the dot product (or scalar product):

= 14

cos(G.d)=G*d =), qd,

for g, d that are length-normalized.

Information Retrieva 33

CS3245 — Information Retrieval

Cosine similarity illustrated
POOR =
11 v(d)

> RICH

Information Retrieva 34

CS3245 — Information Retrieval Sec. 6.3

National University
ooooooooooo

Cosine similarity among 3 documents

How similar are
the novels

SaS: Sense and
Sensibility

PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

affection

jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting.

Information Retrieval 35

3 document example (cont’d)
Log frequency weighting After length normalization

affection 3.06 2.76 2.30 affection 0.789 0.832 0.524

jealous 2.00 1.85 2.04 jealous 0.515 0.555 0.465
gossip 1.30 0 1.78 gossip 0.335 0 0.405
wuthering 0 0 2.58 wuthering 0 0 0.588

cos(SaS,PaP) =~

0.789 x 0.832 + 0.515 x 0.555 + 0.335 x 0.0 + 0.0 x 0.0
~ 0.94

cos(SaS,WH) = 0.79

cos(PaP,WH) =~ 0.69

Information Retrieval 36

Computing cosine scores o
COSINESCORE(q)
1 float Scores|N| =0
2 float Length|N]
3 for each query term t
4 do calculate w¢ 4 and fetch postings list for t
5 for each pair(d.tf;) in postings list
6 do Scores|d|+ = w¢ g X Wt g
7 Read the array Length
8 for each d
9 do Scores|d] = Scores|d]|/Length|d]
10 return Top K components of Scores|]

Inform 37

CS3245 — Information Retrieval Sec. 6.4

TN US
%

National University
of Singapore

tf-idf weighting has many variants

Term frequency Document frequency Normalization
n (natural) tfrd n (no) 1 n (none)]
| (logarithm) 1 + log(tf: 4) t (idf) log % c (cosine) .
V v.f13+v,'2‘~"+ ..+v,/‘,i.
0.5xtfe g - N—df - /
a (augmented) 0.5+ —~ | p (prob idf) max{0, log t1 | u (pivoted 1/u
maxe(the.q) e unique)
1 iftf;g >0 : o
b (boolean) {0 othenwice b (byte size) 1./CharLength :
a <1
1+log(tfe,q)
L (log ave) 1+log(avercd(tfe.d))

Columns headed ‘n’ are acronyms for weight schemes.

Quick Question: Why is the base of the log in idf immaterial?

Information Retrieval 38

Weighting may differ in

gueries vs documents

= Many search engines allow for different weightings
for queries vs. documents

= SMART Notation: denote combination used with the
notation ddd.qqqg, using acronyms from previous
table

= A very standard weighting scheme is Inc.ltc

* Document: logarithmic tf (I as first character), no idf

and cosine normalization _
A bad idea?

* Query: logarithmic tf (I in leftmost column),
idf (t in second column), and cosine normalization

Information Retrieval 39

CS3245 — Information Retrieval Sec. 6.4

aaaaaa | Unwersn
'5 ngapo

tf-idf example: Inc.ltc

Document: car insurance auto insurance
Query: best car insurance

I e T R

tf-raw tf-wt wit n’lize tf-raw f- n’lize

1 1 0.52 5000 2.3 0 0 0

auto 1 0 O
best 0 0 0 0 1 1 50000 1.3 1.3 0.34 0

1 1 1

1 1

car 1 1 0.52 10000 2.0 2.0 052 0.27
insurance 2 13 13 0.68 1000 3.0 3.0 0.78 0.53

Quick Question: what is N, the number of docs?

Doc length =v12 +02+12+1.3* ~1.92
Score = 0+0+0.27+0.53 = 0.8

Information Retrieval 40

Summary and algorithm: ENUS

Vector space ranking

of Singapore

Represent the query as a weighted tf-idf vector

2. Represent each document as a weighted tf-idf
vector

3. Compute the cosine similarity score for the query
vector and each document vector

Rank documents with respect to the query by score
5. Return the top K (e.g., K= 10) to the user

Information Retrieva 41

CS3245 — Information Retrieval

Resources for today’s lecture

National University
ooooooooooo

= [IR6.2-6.4.3

Information Retrieva

42

