Huffman Encoding

Week 2 Min-Yen KAN
(Self-Study Module)
Fixed and variable bit widths

- To encode English text, we need 26 lower case letters, 26 upper case letters, and a handful of punctuation
- We can get by with 64 characters (6 bits) in all
- Each character is therefore 6 bits wide
- We can do better, provided:
 - Some characters are more frequent than others
 - Characters may be different bit widths, so that for example, e use only one or two bits, while x uses several
 - We have a way of decoding the bit stream
 - Must tell where each character begins and ends
Example Huffman encoding

A = 0
B = 100
C = 1010
D = 1011
R = 11

ABRACADABRA = 01001101010010110100110

- This is eleven letters in 23 bits
- A fixed-width encoding would require 3 bits for five different letters, or 33 bits for 11 letters
- Notice that the encoded bit string *can* be decoded!
Why it works

- In this example, A was the most common letter
- In ABRACADABRA:
 - 5 As code for A is 1 bit long
 - 2 Rs code for R is 2 bits long
 - 2 Bs code for B is 3 bits long
 - 1 C code for C is 4 bits long
 - 1 D code for D is 4 bits long
Creating a Huffman encoding

- For each encoding unit (letter, in this example), associate a frequency (number of times it occurs)
 - You can also use a percentage or a probability
- Create a binary tree whose children are the encoding units with the smallest frequencies
 - The frequency of the root is the sum of the frequencies of the leaves
- Repeat this procedure until all the encoding units are in the binary tree
Example, step I

- Assume that relative frequencies are:
 - A: 40
 - B: 20
 - C: 10
 - D: 10
 - R: 20

- Smallest number are 10 and 10 (C and D),
 - connect those
Example, step II

- C and D have already been used, and the new node above them (call it C+D) has value 20.
- The smallest values are B, C+D, and R, all of which have value 20.
 - Connect any two of these.
Example, step III

- The smallest values is R, while A and $B+C+D$ all have value 40
- Connect R to either of the others
Example, step IV

- Connect the final two nodes
Example, step V

- Assign 0 to left branches, 1 to right branches
- Each encoding is a path from the root
 - Each path terminates at a leaf
 - Do you see why encoded strings are decodable?

- $A = 0$
- $B = 100$
- $C = 1010$
- $D = 1011$
- $R = 11$
Unique prefix property

- A = 0
 - C = 1010
 - R = 11
- B = 100
 - D = 1011

- No bit string is a prefix of any other bit string
- For example, if we added E=01, then A (0) would be a prefix of E
- Similarly, if we added F=10, then it would be a prefix of three other encodings (B=100, C=1010, and D=1011)
- The unique prefix property holds because, in a binary tree, a leaf is not on a path to any other node
Practical considerations

- Is encoding practical for long texts or short ones?
 - **Short: impractical**
 - To decode it, you would need the code table
 - The code table is bigger than the message
 - **Long: practical**
 - The encoded string is large relative to the code table

Question: What about if we agree on code table beforehand?