From last time

Examined DL policy and some specific examples

- Undoing the Digital Divide –
 - Unequal access rights for privileged / unprivileged
 - Preservation via indexing and archiving of most valuable knowledge
What is Bibliometrics?

- Statistical and other forms of quantitative analysis

- Used to discover and chart the growth patterns of information
 - Production
 - Use
Outline

- What is bibliometrics? ✓
- Bibliometric laws
- Properties of information and its production
Properties of Academic Literature

- Growth
- Fragmentation
- Obsolescence
- Linkage
Growth

- Exponential rate for several centuries: “information overload”
- 1st known scientific journal: ~1600
- Today:
 - LINC has about 15,000 in all libraries

Factors:
 - Ease of publication
 - Ease of use and increased availability
 - Known reputation
Zipf-Yule-Pareto Law

\[P_n \approx \frac{1}{n^a} \]

where \(P_n \) is the frequency of occurrence of the \(n^{th} \) ranked item and \(a \approx 1 \).

“The probability of occurrence of a value of some variable starts high and tapers off. Thus, a few values occur very often while many others occur rarely.”

- Pareto – for land ownership in the 1800’s
- Zipf – for word frequency
- Also known as the 80/20 rule and as Zipf-Mandelbrot
- Used to measure of citings per paper:
 \# of papers cited \(n \) times is about \(1/n^a \) of those being cited once, where \(a \approx 1 \)
Random processes and Zipfian behavior

- Some random processes can also result in Zipfian behavior:
 - At the beginning there is one "seminal" paper.
 - Every sequential paper makes at most ten citations (or cites all preceding papers if their number does not exceed ten).
 - All preceding papers have an equal probability to be cited.

- Result: A Zipfian curve, with $a \approx 1$. What’s your conclusion?
Lotka’s Law

The number of authors making \(n \) contributions is about \(1/n^a \) of those making one contribution, where \(a \approx 2 \).

- **Implications:**
 - A small number of authors produce large number of papers, e.g., 10% of authors produce half of literature in a field
 - Those who achieve success in writing papers are likely continue having it
Lotka’s Law in Action

White and McCain’s dataset (98): 14 K papers, 190 K citations

Y = 6518X^{2.3}
1981-2002 papers

Y = 625X^{3.0}
year 2000 papers
Bradford’s Law of Scattering

Journals in a field can be divided into three parts, each with about one-third of all articles:

1) a core of a few journals,
2) a second zone, with more journals, and
3) a third zone, with the bulk of journals.

The number of journals is $1:n:n^2$

To think about: Why is this true?
Fragmentation

- Influenced by scientific method
 - Information is continuous, but discretized into standard chunks
 (e.g., conference papers, journal article, surveys, texts, Ph.D. thesis)

- One paper reports one experiment
- Scientists aim to publish in diverse places
Fragmentation

- Motivation from academia
 - The “popularity contest”
 - Getting others to use your intellectual property and credit you with it
 - Spread your knowledge wide across disciplines

- Academic yardstick for tenure (and for hiring)
 - The more the better – fragment your results
 - The higher quality the better – chase best journals

To think about: what is fragmentation’s relation to the aforementioned bibliometric laws?
Obsolescence

Literature gets outdated fast!

- ½ references < 8 yrs. Chemistry
- ½ references < 5 yrs. Physics

○ Textbooks out dated when published
○ Practical implications in the digital library
○ What about computer science?

To think about: Is it really outdated-ness that is measured or something else?
ISI Impact Factor

\[A = \text{total cites in 1992} \]
\[B = \text{1992 cites to articles published in 1990-91 (this is a subset of A)} \]
\[C = \text{number of articles published in 1990-91} \]
\[D = \frac{B}{C} = \text{1992 impact factor} \]
Half Life Decay in Action

The half-life curve is getting **shorter**: What factors are at work here? Is this a good or bad thing?
Expected Citation Rates

- From a large sample can calculate expected rates of citations
 - For journals vs. conferences
 - For specific journals vs. other ones

- Can find a researcher’s productivities against this specific rate
 - Basis for promotion

To think about: what types of papers are cited most often? (Hint: what types of papers dominate the top ten in Citeseer?)
All-time most accessed documents in the CiteSeer database as of May 2003

This list excludes repeat accesses from the same sites and robots.

Most recently accessed documents
CiteSeer homepage

1. IP Address Lookup Made Fast and Simple - Crescenzi, Dardini, Grossi (1999) (Correct)
The IP address lookup problem is one of the major bottlenecks in high performance routers. Previous solutions... (Update)

2. The PageRank Citation Ranking: Bringing Order to the Web - Page, Brin, Motwani, Winograd (1998) (Correct)
The importance of a Web page is an inherently subjective matter, which depends on the readers interests,... (Update)

Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters... (Update)

4. Digital Libraries and Autonomous Citation Indexing - Lawrence, Giles, Bollacker (1999) (Correct)
Autonomous creation of citation indices and advantages for scientific communication and progress... (Update)

5. A Tutorial on Learning With Bayesian Networks - David Heckerman Heckerman (Correct)
A Bayesian network is a graphical model that encodes probabilistic relationships among variables of... (Update)

We describe the minimum-likelihood parameter estimation problem and how the ExpectationMaximization (EM)... (Update)

7. From Resource Discovery to Knowledge Discovery on the Internet - Zaiane (1998) (Correct)
More than 50 years ago, at a time when modern computers didn't exist yet, Vannevar Bush wrote about a... (Update)

We consider the problem of discovering association rules between items in a large database of sales... (Update)

The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We... (Update)

Compares performance of DSR, TORA, DSDV, and AODV. (Update)

Linkage

- Citations in scientific papers are important:
 - Demonstrate awareness of background
 - Prior work being built upon
 - Substantiate claims
 - Contrast to competing work

Any other reasons?

One of the main reasons # of citations by themselves not a good rationale for evaluation.
Non-trivial to unify citations

- Citations have different styles:
 - Citeseer tried edit distance, structured field recognition
 - Settled on word (unigram) + section n-gram matching after normalization
 - More work to be done here: OpCit GPL code

Non-trivial even for the web: Think URL redirects, domain names

Computational Analysis of Links

- If we know what type of citations/links exist, that can help:
 - In scientific articles:
 - In calculating impact
 - In relevance judgment (browsing → survey paper)
 - Checking whether paper author’s are informed
 - In DL item retrieval:
 - In classifying items pointed by a link
 - In calculating an item’s importance (removal of self-citations)
Calculating citation types

- Teufel (00): creates Rhetorical Document Profiles
 - Capitalizes on fixed structure and argumentative goals in scientific articles (e.g., Related Work)
 - Uses discourse cue phrases and position of citation to classify (e.g., In contrast to [1], we ... a zone

A System For Automatic Personalized Tracking of Scientific Literature on the Web

Hunt B. Bathiche, Steve Lawrence, and C. Lee Giles
NRC Research Institute
Princeonton, NJ 08540
{nrcat,lawrence,giles}@research.nrc.com

ABSTRACT
We introduce a system as part of the Carnegie digital library project for automatic tracking of scientific literature that is relevant to a user's research interests. Unlike previous systems that use simple keyword matching, Citation is able to track and recommend typically relevant papers even when keywords from every paper fail. This is made possible through the use of a rhetorical profile to represent user interests. These profiles include several representations, including context-based relevance measures. The Citation tracking system is well integrated into the search and browsing facilities of Citeseer, and provides the user with great flexibility in tuning a profile to better match his or her interests. The software for this system is available, and a sample database is online as a public service.

KEYWORDS: user profile, citation index, knowledge representation, automated tracking.

INTRODUCTION

The development and use of digital libraries is an important research area, but the time and effort required to do so can be enormous. Very early on, this problem was identified by the creators of ArXiv.org 1 and, throughout history, the quantity and diversity of such publications has increased. In medical school, information retrieval by the novice information seeker can be an overwhelming task; by the time the student is a mature medical researcher, the problem is even worse. The advent of digital libraries was a technological response to this problem. However, even with current methods of searching through scientific documents, researchers must still spend a great deal of time and effort looking for new publications relevant to their fields.

We introduce a tracking system into Citeseer that uses profile to track and recommend literature to the user. Citeseer's tracking system is designed to determine which papers are relevant to the user's interests. If so, then the user can be tuned to recommend papers that appear relevant to Citeseer's Web-based tracking. Citeseer includes the same features, context-based relevance measures, and a textual representation of user interests as Citeseer's tracking system. Citeseer's tracking system provides the user with a profile that can be used to manage his or her interests.

1 The first paper in a profile is considered by the Rhetoric "Actor Theory," which A. C. Coates and I. (1984) [1]

Recommending New Literature: Citeseer's tracking system is able to provide new literature. It attempts to determine whether a newly available paper would be interesting enough to the user to be worth spending the time to read. In order for such a system to be effective it must be able to accurately represent the user's interests. Citeseer's tracking system relies on a textual representation of the user's interests to determine which papers will be relevant to the user's interests. A new paper is deemed relevant if it satisfies the requirements of one of the representations. Having a diversity of representations is important for several reasons. First, not every person shares the same interests.
Using link text for classification

- The link text that describes a page in another page can be used for classification.

- Amitay (98) extended this concept by ranking nearby text fragments using (among other things) positional information.
 - \textbf{XXXX}: \ldots \ldots \ldots \\
 - \ldots \ldots \ldots \textbf{XXX}, \ldots \ldots \ldots \\
 - \ldots \textbf{XXXX}[\ldots] [\ldots] [\ldots]
Ranking related papers in retrieval

- Citeseer uses two forms of relatedness to recommend “related articles”:
 - $\text{TF} \times \text{IDF}$
 - If above a threshold, report it
 - $\text{CC (Common Citation)} \times \text{IDF}$
 - $\text{CC} = \text{Bibliographic Coupling}$
 - If two papers share a rare citation, this is more important than if they share a common one.
Citation Analysis

Deciding which (web sites, authors) are most prominent
Citation Analysis

- Despite shortcomings, still useful
- Citation links viewed as a DAG
- Incoming and outgoing links have different treatments

Analysis types

- **Co-citation** analysis – A and B both cited by C
- **Bibliographic coupling** – A and B both have similar citations (e.g., D)
Sociometric experiment types

- Ego-centered: focal person and its alters
 (Wasserman and Faust, pg. 53)

- Small World: how many actors a respondent is away from a target
Prominence

Consider a node prominent if its ties make it particularly visible to other nodes in the network (adapted from WF, pg 172)

- Centrality – no distinction on incoming or outgoing edges (thus directionality doesn’t matter. How involved is the node in the graph.

- Prestige – “Status”. Ranking the prestige of nodes among other nodes. In degree counts towards prestige.
Centrality

- How central is a particular
 - Graph?
 - Node?
- Graph-wide measures assist in comparing graphs, subgraphs
Node Degree Centrality

- Degree (In + Out)
- Normalized Degree (In+Out/Possible)
 - What’s max possible?
- Variance of Degrees
Distance Centrality

- Closeness = minimal distance
- Sum of shortest paths should be minimal in a central graph
- (Jordan) Center = subset of nodes that have minimal sum distance to all nodes.

What about disconnected components?
Betweenness Centrality

- A node is central iff it lies between other nodes on their shortest path.
- If there is more than one shortest path,
 - Treat each with equal weight
 - Use some weighting scheme
 - Inverse of path length
References (besides readings)

- Bollen and Luce (02) *Evaluation of Digital Library Impact and User Communities by Analysis of Usage Patterns*

 http://www.dlib.org/dlib/june02/bollen/06bollen.html

- Kaplan and Nelson (00) *Determining the publication impact of a digital library*

 http://download.interscience.wiley.com/cgi-bin/fulltext?ID=69503874&PLACEBO=IE.pdf&mode=pdf

- Wasserman and Faust (94) *Social Network Analysis* (on reserve)
Things to think about

○ What’s the relationship between these three laws (Bradford, Zipf-Yule-Pareto and Lotka)?

○ How would you define the three zones in Bradford’s law?
PageRank and HITS*

Module 7 Applied Bibliometrics
KAN Min-Yen

*Part of these lecture notes come from Manning, Raghavan and Schütze @ Stanford CS
Connectivity analysis

- Idea: mine hyperlink information in the Web

- Assumptions:
 - Links often connect related pages
 - A link between pages is a recommendation
 - “people vote with their links”
Query-independent ordering

- Using link counts as simple measures of popularity

Two basic suggestions:

- Undirected popularity:
 - in-links plus out-links (3+2=5)

- Directed popularity:
 - number of its in-links (3)
Algorithm

1. Retrieve all pages meeting the text query (say *venture capital*), perhaps by using Boolean model

2. Order these by link popularity (either variant on the previous page)

Exercise: How do you spam each of the following heuristics so your page gets a high score?

- score = # in-links plus # out-links
- score = # in-links
Imagine a browser doing a random walk on web pages:
- Start at a random page
- At each step, follow one of the n links on that page, each with $1/n$ probability

Do this repeatedly. Use the “long-term visit rate” as the page’s score.
Not quite enough

- The web is full of dead ends.
 - What sites have dead ends?
 - Our random walk can get stuck.
Teleporting

- At each step, with probability 10%, teleport to a random web page.
- With remaining probability (90%), follow a random link on the page.
 - If a dead-end, stay put in this case.

This is lay explanation of the “damping factor” (1-a) in the rank propagation algorithm.
Result of teleporting

- Now we cannot get stuck locally
- There is a long-term rate at which any page is visited (not obvious, will show this)
 - How do we compute this visit rate?
Markov chains

A Markov chain consists of \(n \) states, plus an \(n \times n \) transition probability matrix \(P \).

- At each step, we are in exactly one of the states.
- For \(1 \leq i, k \leq n \), the matrix entry \(P_{ik} \) tells us the probability of \(k \) being the next state, given we are currently in state \(i \).

\[P_{ik} > 0 \text{ is OK.} \]
Clearly, for all i, $\sum_{k=1}^{n} P_{ik} = 1$.

Markov chains are abstractions of random walks.

Try this: Calculate the matrix P_{ik} using a 10% probability of uniform teleportation.

$$\begin{array}{ccc}
P_{ik}:
\begin{array}{ccc}
A & B & C \\
A & .03 & .48 & .48 \\
B & .48 & .03 & .48 \\
C & .03 & .03 & .93 \\
\end{array}
\end{array}$$
Ergodic Markov chains

- A Markov chain is ergodic if
 - you have a path from any state to any other
 - you can be in any state at every time step, with non-zero probability
- With teleportation, our Markov chain is ergodic
Steady State

- For any ergodic Markov chain, there is a unique long-term visit rate for each state.
 - Over a long period, we’ll visit each state in proportion to this rate.
 - It doesn’t matter where we start.
Probability vectors

- A probability (row) vector \(\mathbf{x} = (x_1, \ldots, x_n) \) tells us where the walk is at any point.
- E.g., (000…1…000) means we’re in state \(i \).

More generally, the vector \(\mathbf{x} = (x_1, \ldots, x_n) \) means the walk is in state \(i \) with probability \(x_i \).

\[
\sum_{i=1}^{n} x_i = 1.
\]
If the probability vector is $\mathbf{x} = (x_1, \ldots, x_n)$ at this step, what is it at the next step?

Recall that row i of the transition probability matrix \mathbf{P} tells us where we go next from state i.

So from \mathbf{x}, our next state is distributed as \mathbf{xP}.
Pagerank algorithm

- Regardless of where we start, we eventually reach the steady state a
 - Start with any distribution (say $x = (10\ldots0)$)
 - After one step, we’re at xP
 - After two steps at xP^2, then xP^3 and so on.
 - “Eventually” means for “large” k, $xP^k = a$
- Algorithm: multiply x by increasing powers of P until the product looks stable
Pagerank summary

- Pre-processing:
 - Given graph of links, build matrix P
 - From it compute a
 - The pagerank a_i is a scaled number between 0 and 1

- Query processing:
 - Retrieve pages meeting query
 - Rank them by their pagerank
 - Order is query-independent
Hyperlink-Induced Topic Search (HITS)

- In response to a query, instead of an ordered list of pages each meeting the query, find two sets of inter-related pages:
 - Hub pages are good lists of links on a subject.
 - e.g., “Bob’s list of cancer-related links.”
 - Authority pages occur recurrently on good hubs for the subject.

- Best suited for “broad topic” browsing queries rather than for known-item queries.
- Gets at a broader slice of common opinion.
Hubs and Authorities

- Thus, a good hub page for a topic *points* to many authoritative pages for that topic.

- A good authority page for a topic is *pointed* to by many good hubs for that topic.

- Circular definition - will turn this into an iterative computation.
Hubs and Authorities

Hubs

Asiaweek

USNWR

Authorities

NUS

Tsinghua

NTU
High-level scheme

- Extract from the web a base set of pages that could be good hubs or authorities.

- From these, identify a small set of top hub and authority pages → iterative algorithm
Base set

1. Given text query (say university), use a text index to get all pages containing university.
 - Call this the root set of pages

2. Add in any page that either:
 - points to a page in the root set, or
 - is pointed to by a page in the root set

3. Call this the base set
Assembling the base set

- Root set typically 200-1000 nodes.
- Base set may have up to 5000 nodes.
- How do you find the base set nodes?
 - Follow out-links by parsing root set pages.
 - Get in-links (and out-links) from a connectivity server.
Distilling hubs and authorities

1. Compute, for each page \(x \) in the base set, a **hub score** \(h(x) \) and an **authority score** \(a(x) \).

2. Initialize: for all \(x \), \(h(x) \leftarrow 1; \ a(x) \leftarrow 1; \)

3. Iteratively update all \(h(x), a(x); \)

4. After iterations:
 - highest \(h() \) scores are hubs
 - highest \(a() \) scores are authorities
Iterative update

- Repeat the following updates, for all x:

\[h(x) \leftarrow \sum_{y \leftarrow x} a(y) \]

\[a(x) \leftarrow \sum_{y \leftarrow x} h(y) \]
How many iterations?

- Relative values of scores will converge after a few iterations.
- We only require the relative order of the $h()$ and $a()$ scores - not their absolute values.
- In practice, ~5 iterations needed.
Things to think about

- Use *only* link analysis *after* base set assembled
 - iterative scoring is query-independent
- Iterative computation *after* text index retrieval - significant overhead
Things to think about

- How does the selection of the base set influence computation of H & As?
- Can we embed the computation of H & A during the standard VS retrieval algorithm?
- A pagerank score is a global score. Can there be a fusion between H&A (which are query sensitive) and pagerank? How would you do it?
- How do you relate CCIDF in Citeseer to Pagerank?