Product rule P(aÙb) = P(a | b) P(b) = P(b | a) P(a) | |||||
Þ Bayes' rule: P(a | b) = P(b | a) P(a) / P(b) | |||||
or in distribution form | |||||
P(Y|X) = P(X|Y) P(Y) / P(X) = αP(X|Y) P(Y) | |||||
Useful for assessing diagnostic probability from causal probability: | |||||
P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect) | |||||
E.g., let M be meningitis, S be stiff neck: | |||||
P(m|s) = P(s|m) P(m) / P(s) = 0.5 × 0.0002 / 0.05 = 0.0002 | |||||
Note: posterior probability of meningitis still very small! |
Bayes' Rule and conditional independence
P(Cavity | toothache Ù catch) | ||
= α · P(toothache Ù catch | Cavity) P(Cavity) | ||
= α · P(toothache | Cavity) P(catch | Cavity) P(Cavity) | ||
This is an example of a naïve Bayes model: | ||
P(Cause,Effect1, … ,Effectn) = P(Cause) πiP(Effecti|Cause) | ||
Total number of parameters is linear in n |
Calculate most probable function value | ||
Vmap = argmax P(vj| a1,a2, … , an) | ||
= argmax P(a1,a2, … , an| vj) P(vj) | ||
P(a1,a2, … , an) | ||
= argmax P(a1,a2, … , an| vj) P(vj) | ||
Naïve assumption: P(a1,a2, … , an) = P(a1)P(a2) … P(an) |
NaïveBayesLearn(examples) For each target value vj P’(vj) ← estimate P(vj) For each attribute value ai of each attribute a P’(ai|vj) ← estimate P(ai|vj) |
|
ClassfyingNewInstance(x) vnb= argmax P’(vj) Π P’(ai|vj) |
(due to MIT’s open coursework slides) | |
(due to MIT’s open coursework slides) | |