Introduction to Information Retrieval http://informationretrieval.org

IIR 7: Scores in a Complete Search System

Hinrich Schütze

Institute for Natural Language Processing, Universität Stuttgart

2008.05.27

Overview

Implementation

Outline

3 More on cosine

Implementation

Term frequency weighting

• The log frequency weight of term t in d is defined as follows

$$\mathsf{w}_{t,d} = \left\{ \begin{array}{ll} 1 + \log_{10} \mathsf{tf}_{t,d} & \text{if } \mathsf{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

• Score for a document-query pair: sum over terms t in both q and d: matching score = $\sum_{i=1}^{n} (1 + \log tf_{i-i})$

matching-score =
$$\sum_{t \in q \cap d} (1 + \log tf_{t,d})$$

idf weight

- df_t is the document frequency, the number of documents that t occurs in.
- df is an inverse measure of the informativeness of the term.
- We define the idf weight of term t as follows:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{N}{\mathsf{df}_t}$$

• idf is a measure of the informativeness of the term.

tf-idf weighting

٢

• The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log rac{N}{\mathsf{df}_t}$$

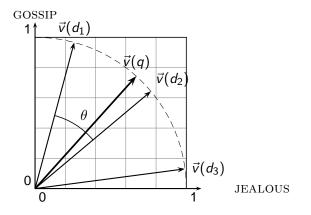
• Best known weighting scheme in information retrieval

Cosine similarity between query and document

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i is the tf-idf weight of term i in the query.
- d_i is the tf-idf weight of term *i* in the document.
- $|\vec{q}|$ and $|\vec{d}|$ are the lengths of \vec{q} and \vec{d} .

Cosine similarity illustrated



tf-idf example: ltn.lnc

word	query				document				product	
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Query: "best car insurance". Document: "car insurance auto insurance".

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n'lized: document weights after cosine normalization, product: the product of final query weight and final document weight

$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

1/1.92 ≈ 0.52
1.3/1.92 ≈ 0.68

Final similarity score between query and document: $\sum_{i} w_{ai} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08$

Outline

3 More on cosine

Implementation

• Last lecture: Problems with unranked retrieval

• Users want to look at a few results - not thousands.

- Users want to look at a few results not thousands.
- It's very hard to write queries that produce a few results.

- Users want to look at a few results not thousands.
- It's very hard to write queries that produce a few results.
- Even for expert searchers

- Users want to look at a few results not thousands.
- It's very hard to write queries that produce a few results.
- Even for expert searchers
- → Ranking is important because it effectively reduces a large set of results to a very small one.

- Users want to look at a few results not thousands.
- It's very hard to write queries that produce a few results.
- Even for expert searchers
- → Ranking is important because it effectively reduces a large set of results to a very small one.
- Next: More data on "users only look at a few results"

- Users want to look at a few results not thousands.
- It's very hard to write queries that produce a few results.
- Even for expert searchers
- → Ranking is important because it effectively reduces a large set of results to a very small one.
- Next: More data on "users only look at a few results"
- Actually, in the vast majority of cases they only look at 1, 2, or 3 results.

• How can we measure how important ranking is?

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to "think aloud"

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to "think aloud"
 - Interview them

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to "think aloud"
 - Interview them
 - Eye-track them

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to "think aloud"
 - Interview them
 - Eye-track them
 - Time them

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to "think aloud"
 - Interview them
 - Eye-track them
 - Time them
 - Record and count their clicks

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to "think aloud"
 - Interview them
 - Eye-track them
 - Time them
 - Record and count their clicks
- The following slides are from Dan Russell's JCDL talk

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to "think aloud"
 - Interview them
 - Eye-track them
 - Time them
 - Record and count their clicks
- The following slides are from Dan Russell's JCDL talk
- Dan Russell is the "Über Tech Lead for Search Quality & User Happiness" at Google.

So.. Did you notice the FTD official site?

- To be honest, I didn't even look at that.
- At first I saw "from \$20" and \$20 is what I was looking for.
- To be honest, 1800-flowers is what I'm familiar with and why I went there next even though I kind of assumed they wouldn't have \$20 flowers

And you knew they were expensive?

I knew they were expensive but I thought "hey, maybe they've got some flowers for under \$20 here..."

But you didn't notice the FTD?

No I didn't, actually... that's really funny.

Interview video

Rapidly scanning the results

Note scan pattern:

Page 3:

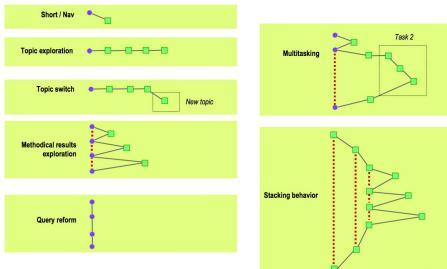
Result 1 Result 2 Result 3 Result 4 Result 3 Result 2 Result 4 Result 5 Result 6 <click>

Q: Why do this?

 A: What's learned later influences judgment of earlier content.

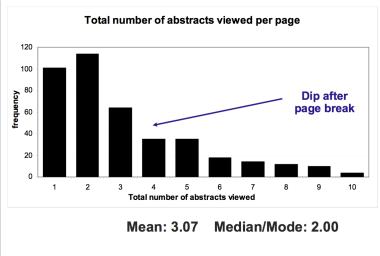
Google

Kinds of behaviors we see in the data

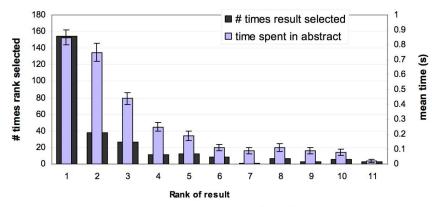


Google

How many links do users view?



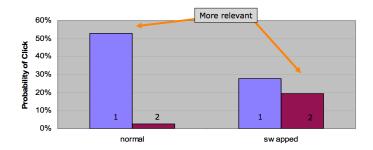
Looking vs. Clicking



- · Users view results one and two more often / thoroughly
- · Users click most frequently on result one

Presentation bias - reversed results

Order of presentation influences where users look
 AND where they click



Importance of ranking: Summary

• Viewing abstracts: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).

Importance of ranking: Summary

- Viewing abstracts: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).
- Clicking on hits: Distribution is even more skewed for clicking

Importance of ranking: Summary

- Viewing abstracts: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).
- Clicking on hits: Distribution is even more skewed for clicking
- In 1 out of 2 cases, users click on the top-ranked page.

- Viewing abstracts: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).
- Clicking on hits: Distribution is even more skewed for clicking
- In 1 out of 2 cases, users click on the top-ranked page.
- Even if the top-ranked page is not relevant, 30% of users will click on it.

- Viewing abstracts: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).
- Clicking on hits: Distribution is even more skewed for clicking
- In 1 out of 2 cases, users click on the top-ranked page.
- Even if the top-ranked page is not relevant, 30% of users will click on it.
- $\bullet \rightarrow$ Getting the ranking right is very important.

- Viewing abstracts: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).
- Clicking on hits: Distribution is even more skewed for clicking
- In 1 out of 2 cases, users click on the top-ranked page.
- Even if the top-ranked page is not relevant, 30% of users will click on it.
- $\bullet \rightarrow$ Getting the ranking right is very important.
- \rightarrow Getting the top-ranked page right is most important.

- Viewing abstracts: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).
- Clicking on hits: Distribution is even more skewed for clicking
- In 1 out of 2 cases, users click on the top-ranked page.
- Even if the top-ranked page is not relevant, 30% of users will click on it.
- $\bullet \rightarrow$ Getting the ranking right is very important.
- $\bullet \rightarrow$ Getting the top-ranked page right is most important.

Outline



Implementation

• Query q: "anti-doping rules Beijing 2008 olympics"

- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents

- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents
 - d_1 : a short document on anti-doping rules at 2008 olympics

- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents
 - d_1 : a short document on anti-doping rules at 2008 olympics
 - *d*₂: a long document that consists of a copy of *d*₁ and 5 other short stories on the 2008 olympics, all on topics different from anti-doping rules

- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents
 - d_1 : a short document on anti-doping rules at 2008 olympics
 - *d*₂: a long document that consists of a copy of *d*₁ and 5 other short stories on the 2008 olympics, all on topics different from anti-doping rules
 - *d*₃: a short document on anti-doping rules at the 2004 Athens olympics

- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents
 - d_1 : a short document on anti-doping rules at 2008 olympics
 - *d*₂: a long document that consists of a copy of *d*₁ and 5 other short stories on the 2008 olympics, all on topics different from anti-doping rules
 - *d*₃: a short document on anti-doping rules at the 2004 Athens olympics
- What ranking do we expect in the vector space model?

- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents
 - d_1 : a short document on anti-doping rules at 2008 olympics
 - *d*₂: a long document that consists of a copy of *d*₁ and 5 other short stories on the 2008 olympics, all on topics different from anti-doping rules
 - *d*₃: a short document on anti-doping rules at the 2004 Athens olympics
- What ranking do we expect in the vector space model?
- d_2 is likely to be ranked below $d_3 \ldots$

- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents
 - d_1 : a short document on anti-doping rules at 2008 olympics
 - d₂: a long document that consists of a copy of d₁ and 5 other short stories on the 2008 olympics, all on topics different from anti-doping rules
 - *d*₃: a short document on anti-doping rules at the 2004 Athens olympics
- What ranking do we expect in the vector space model?
- d_2 is likely to be ranked below $d_3 \ldots$
- ... but d_2 is more relevant than d_3 .

- Query q: "anti-doping rules Beijing 2008 olympics"
- Compare three documents
 - d_1 : a short document on anti-doping rules at 2008 olympics
 - d₂: a long document that consists of a copy of d₁ and 5 other short stories on the 2008 olympics, all on topics different from anti-doping rules
 - *d*₃: a short document on anti-doping rules at the 2004 Athens olympics
- What ranking do we expect in the vector space model?
- d_2 is likely to be ranked below $d_3 \ldots$
- ... but d_2 is more relevant than d_3 .
- What can we do about this?

 Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).

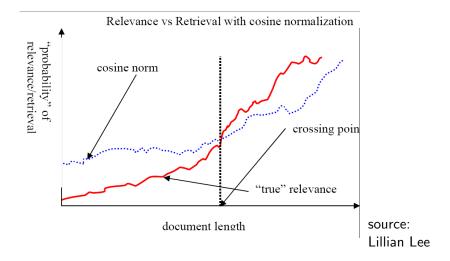
- Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).
- Adjust cosine normalization by linear adjustment: "turning" the average normalization on the pivot

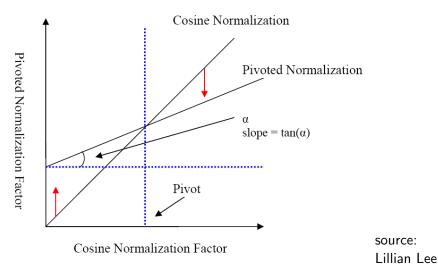
- Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).
- Adjust cosine normalization by linear adjustment: "turning" the average normalization on the pivot
- Effect: Similarities of short documents with query decrease; similarities of long documents with query increase.

- Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).
- Adjust cosine normalization by linear adjustment: "turning" the average normalization on the pivot
- Effect: Similarities of short documents with query decrease; similarities of long documents with query increase.
- This removes an unfair advantage that short documents have.

- Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).
- Adjust cosine normalization by linear adjustment: "turning" the average normalization on the pivot
- Effect: Similarities of short documents with query decrease; similarities of long documents with query increase.
- This removes an unfair advantage that short documents have.
- Note that "pivoted" scores are no longer bounded by 1.

Predicted and true probability of relevance





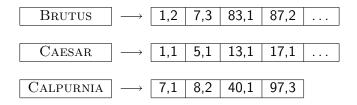
Outline

3 More on cosine

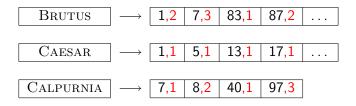
Implementation

5 The complete search system

Now we also need term frequency in the index

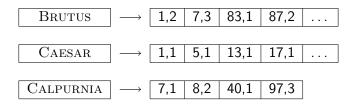


Now we also need term frequency in the index



term frequencies

Now we also need term frequency in the index



term frequencies

We also need positions. Not shown here.

• In each posting, store $tf_{t,d}$ in addition to docID d

- In each posting, store $tf_{t,d}$ in addition to docID d
- As an integer frequency, not as a (log-)weighted real number

. . .

- In each posting, store $tf_{t,d}$ in addition to docID d
- As an integer frequency, not as a (log-)weighted real number
- ... because real numbers are difficult to compress.

. . .

- In each posting, store $tf_{t,d}$ in addition to docID d
- As an integer frequency, not as a (log-)weighted real number
- ... because real numbers are difficult to compress.
- Unary code is effective for encoding term frequencies.

- In each posting, store $tf_{t,d}$ in addition to docID d
- As an integer frequency, not as a (log-)weighted real number
- ... because real numbers are difficult to compress.
- Unary code is effective for encoding term frequencies.
- Why?

- In each posting, store $tf_{t,d}$ in addition to docID d
- As an integer frequency, not as a (log-)weighted real number
- ... because real numbers are difficult to compress.
- Unary code is effective for encoding term frequencies.
- Why?
- Overall, additional space requirements are small: much less than a byte per posting.

• In many applications, we don't need a complete ranking.

- In many applications, we don't need a complete ranking.
- We just need the top k for a small k (e.g., k = 100).

- In many applications, we don't need a complete ranking.
- We just need the top k for a small k (e.g., k = 100).
- If we don't need a complete ranking, is there an efficient way of computing just the top *k*?

- In many applications, we don't need a complete ranking.
- We just need the top k for a small k (e.g., k = 100).
- If we don't need a complete ranking, is there an efficient way of computing just the top k?
- Naive:

- In many applications, we don't need a complete ranking.
- We just need the top k for a small k (e.g., k = 100).
- If we don't need a complete ranking, is there an efficient way of computing just the top k?
- Naive:
 - Compute scores for all N documents

- In many applications, we don't need a complete ranking.
- We just need the top k for a small k (e.g., k = 100).
- If we don't need a complete ranking, is there an efficient way of computing just the top k?
- Naive:
 - Compute scores for all N documents
 - Sort

- In many applications, we don't need a complete ranking.
- We just need the top k for a small k (e.g., k = 100).
- If we don't need a complete ranking, is there an efficient way of computing just the top k?
- Naive:
 - Compute scores for all N documents
 - Sort
 - Return the top k

- In many applications, we don't need a complete ranking.
- We just need the top k for a small k (e.g., k = 100).
- If we don't need a complete ranking, is there an efficient way of computing just the top k?
- Naive:
 - Compute scores for all N documents
 - Sort
 - Return the top k
- What's bad about this?

- In many applications, we don't need a complete ranking.
- We just need the top k for a small k (e.g., k = 100).
- If we don't need a complete ranking, is there an efficient way of computing just the top k?
- Naive:
 - Compute scores for all N documents
 - Sort
 - Return the top k
- What's bad about this?
- Alternative?

• A heap efficiently implements a priority queue.

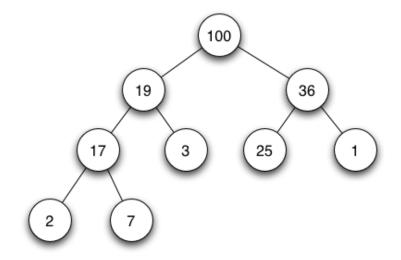
- A heap efficiently implements a priority queue.
- Binary tree in which each node's value is greater than the values of its children.

- A heap efficiently implements a priority queue.
- Binary tree in which each node's value is greater than the values of its children.
- Takes O(N) operations to construct (where N is the number of documents) ...

- A heap efficiently implements a priority queue.
- Binary tree in which each node's value is greater than the values of its children.
- Takes O(N) operations to construct (where N is the number of documents) . . .
- ... then each of k winners read off in $O(k \log k)$ steps

- A heap efficiently implements a priority queue.
- Binary tree in which each node's value is greater than the values of its children.
- Takes O(N) operations to construct (where N is the number of documents) . . .
- ... then each of k winners read off in $O(k \log k)$ steps
- Essentially linear in N for small k and large N.

Binary max heap



• Ranking has time complexity O(N) where N is the number of documents.

- Ranking has time complexity O(N) where N is the number of documents.
- Optimizations reduce the constant factor, but they are still O(N).

- Ranking has time complexity O(N) where N is the number of documents.
- Optimizations reduce the constant factor, but they are still O(N).
- Are there sublinear algorithms?

- Ranking has time complexity O(N) where N is the number of documents.
- Optimizations reduce the constant factor, but they are still O(N).
- Are there sublinear algorithms?
- Ideas?

- Ranking has time complexity O(N) where N is the number of documents.
- Optimizations reduce the constant factor, but they are still O(N).
- Are there sublinear algorithms?
- Ideas?
- What we're doing in effect: solving the *k*-nearest neighbor (kNN) problem for the query vector (= query point).

- Ranking has time complexity O(N) where N is the number of documents.
- Optimizations reduce the constant factor, but they are still O(N).
- Are there sublinear algorithms?
- Ideas?
- What we're doing in effect: solving the *k*-nearest neighbor (kNN) problem for the query vector (= query point).
- There are no general solutions to this problem that are sublinear.

- Ranking has time complexity O(N) where N is the number of documents.
- Optimizations reduce the constant factor, but they are still O(N).
- Are there sublinear algorithms?
- Ideas?
- What we're doing in effect: solving the *k*-nearest neighbor (kNN) problem for the query vector (= query point).
- There are no general solutions to this problem that are sublinear.
- We will revisit this issue when we do kNN classification in IIR 14.

• So far: postings lists are ordered according to docID

- So far: postings lists are ordered according to docID
- Alternative: a query-independent measure of "goodness" of a page.

- So far: postings lists are ordered according to docID
- Alternative: a query-independent measure of "goodness" of a page.
- Example: PageRank g(d) of page d, a measure of how many "good" pages hyperlink to d

- So far: postings lists are ordered according to docID
- Alternative: a query-independent measure of "goodness" of a page.
- Example: PageRank g(d) of page d, a measure of how many "good" pages hyperlink to d
- Order documents in postings lists according to PageRank:
 g(d₁) > g(d₂) > g(d₃) > ...

- So far: postings lists are ordered according to docID
- Alternative: a query-independent measure of "goodness" of a page.
- Example: PageRank g(d) of page d, a measure of how many "good" pages hyperlink to d
- Order documents in postings lists according to PageRank:
 g(d₁) > g(d₂) > g(d₃) > ...
- Define composite score of a document:

$$\mathsf{net}\text{-}\mathsf{score}(q,d) = g(d) + \cos(q,d)$$

- So far: postings lists are ordered according to docID
- Alternative: a query-independent measure of "goodness" of a page.
- Example: PageRank g(d) of page d, a measure of how many "good" pages hyperlink to d
- Order documents in postings lists according to PageRank:
 g(d₁) > g(d₂) > g(d₃) > ...
- Define composite score of a document:

$$net-score(q, d) = g(d) + cos(q, d)$$

• This scheme supports early termination: We do not have to process postings lists in their entirety to find top *k*.

- Order documents in postings lists according to PageRank:
 g(d₁) > g(d₂) > g(d₃) > ...
- Define composite score of a document:

$$\operatorname{net-score}(q,d) = g(d) + \cos(q,d)$$

- Order documents in postings lists according to PageRank:
 g(d₁) > g(d₂) > g(d₃) > ...
- Define composite score of a document:

$$net-score(q, d) = g(d) + cos(q, d)$$

Suppose: (i) g → [0,1]; (ii) g(d) < 0.1 for the document d we're currently processing; (iii) smallest top k score we've found so far is 1.2

- Order documents in postings lists according to PageRank:
 g(d₁) > g(d₂) > g(d₃) > ...
- Define composite score of a document:

$$net-score(q, d) = g(d) + cos(q, d)$$

- Suppose: (i) g → [0,1]; (ii) g(d) < 0.1 for the document d we're currently processing; (iii) smallest top k score we've found so far is 1.2
- Then all subsequent scores will be < 1.1.

- Order documents in postings lists according to PageRank:
 g(d₁) > g(d₂) > g(d₃) > ...
- Define composite score of a document:

$$net-score(q, d) = g(d) + cos(q, d)$$

- Suppose: (i) g → [0,1]; (ii) g(d) < 0.1 for the document d we're currently processing; (iii) smallest top k score we've found so far is 1.2
- Then all subsequent scores will be < 1.1.
- So we've already found the top k and can stop processing the remainder of postings lists.

- Order documents in postings lists according to PageRank:
 g(d₁) > g(d₂) > g(d₃) > ...
- Define composite score of a document:

$$net-score(q, d) = g(d) + cos(q, d)$$

- Suppose: (i) g → [0,1]; (ii) g(d) < 0.1 for the document d we're currently processing; (iii) smallest top k score we've found so far is 1.2
- Then all subsequent scores will be < 1.1.
- So we've already found the top k and can stop processing the remainder of postings lists.
- Questions?

• Both docID-ordering and PageRank-ordering impose a consistent ordering on documents in postings lists.

- Both docID-ordering and PageRank-ordering impose a consistent ordering on documents in postings lists.
- Computing cosines in this scheme is document-at-a-time.

- Both docID-ordering and PageRank-ordering impose a consistent ordering on documents in postings lists.
- Computing cosines in this scheme is document-at-a-time.
- We complete computation of the cosine score of document d_i before starting to compute the cosine score of d_{i+1}.

- Both docID-ordering and PageRank-ordering impose a consistent ordering on documents in postings lists.
- Computing cosines in this scheme is document-at-a-time.
- We complete computation of the cosine score of document d_i before starting to compute the cosine score of d_{i+1}.
- Alternative: term-at-a-time processing

• Idea: don't process postings that contribute little to final score

- Idea: don't process postings that contribute little to final score
- Order documents in inverted list according to weight

- Idea: don't process postings that contribute little to final score
- Order documents in inverted list according to weight
- Simplest case: normalized tf-idf weight (rarely done: hard to compress)

- Idea: don't process postings that contribute little to final score
- Order documents in inverted list according to weight
- Simplest case: normalized tf-idf weight (rarely done: hard to compress)
- Documents in the top k are likely to occur early in these ordered lists

Weight-sorted postings lists

- Idea: don't process postings that contribute little to final score
- Order documents in inverted list according to weight
- Simplest case: normalized tf-idf weight (rarely done: hard to compress)
- Documents in the top k are likely to occur early in these ordered lists
- Early termination while processing inverted lists is unlikely to change top *k*

Weight-sorted postings lists

- Idea: don't process postings that contribute little to final score
- Order documents in inverted list according to weight
- Simplest case: normalized tf-idf weight (rarely done: hard to compress)
- Documents in the top k are likely to occur early in these ordered lists
- Early termination while processing inverted lists is unlikely to change top *k*
- We no longer have a consistent ordering of documents in postings lists.

Weight-sorted postings lists

- Idea: don't process postings that contribute little to final score
- Order documents in inverted list according to weight
- Simplest case: normalized tf-idf weight (rarely done: hard to compress)
- Documents in the top k are likely to occur early in these ordered lists
- Early termination while processing inverted lists is unlikely to change top *k*
- We no longer have a consistent ordering of documents in postings lists.
- We no longer can employ document-at-a-time processing.

• Simplest case: completely process the postings list of the first query term

- Simplest case: completely process the postings list of the first query term
- Create an accumulator for each docID you encounter

- Simplest case: completely process the postings list of the first query term
- Create an accumulator for each docID you encounter
- Then completely process the postings list of the second query term

- Simplest case: completely process the postings list of the first query term
- Create an accumulator for each docID you encounter
- Then completely process the postings list of the second query term
- \bullet ...and so forth

- Simplest case: completely process the postings list of the first query term
- Create an accumulator for each docID you encounter
- Then completely process the postings list of the second query term
- ...and so forth
- For early termination in weight-sorted indexes, we can interleave term-at-a-time and document-at-a-time processing.

COSINESCORE(q)

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 **for each** query term *t*
- 4 **do** calculate $w_{t,q}$ and fetch postings list for t
- 5 **for each** $pair(d, tf_{t,d})$ in postings list

6 **do**
$$Scores[d] + = w_{t,d} \times w_{t,q}$$

- 7 Read the array Length
- 8 for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 return Top k components of Scores[]

The elements of the array "Scores" are called accumulators.

Computing cosine scores

• For the web (20 billion documents), an array of accumulators *A* in memory is infeasible.

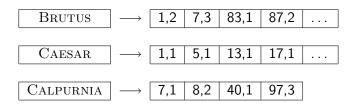
Computing cosine scores

- For the web (20 billion documents), an array of accumulators *A* in memory is infeasible.
- Thus: Only create accumulators for docs occurring in postings lists

Computing cosine scores

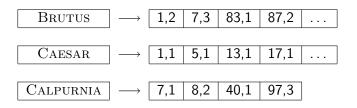
- For the web (20 billion documents), an array of accumulators *A* in memory is infeasible.
- Thus: Only create accumulators for docs occurring in postings lists
- This is equivalent to: Do not create accumulators for docs with zero scores (i.e., docs that do not contain any of the query terms)

Accumulators



• For query: "Brutus Caesar":

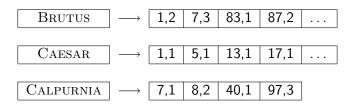
Accumulators



• For query: "Brutus Caesar":

• Only need accumulators for 1, 5, 7, 13, 17, 83, 87

Accumulators



- For query: "Brutus Caesar":
- Only need accumulators for 1, 5, 7, 13, 17, 83, 87
- Don't need accumulators for 8, 40, 97

• Use heap / priority queue as discussed earlier

- Use heap / priority queue as discussed earlier
- Can further limit to docs with non-zero cosines on rare (high idf) words

- Use heap / priority queue as discussed earlier
- Can further limit to docs with non-zero cosines on rare (high idf) words
- Or enforce conjunctive search (a la Google): non-zero cosines on *all* words in query

- Use heap / priority queue as discussed earlier
- Can further limit to docs with non-zero cosines on rare (high idf) words
- Or enforce conjunctive search (a la Google): non-zero cosines on *all* words in query
- Example: just one accumulator for "Brutus Caesar" in the example above ...

- Use heap / priority queue as discussed earlier
- Can further limit to docs with non-zero cosines on rare (high idf) words
- Or enforce conjunctive search (a la Google): non-zero cosines on *all* words in query
- Example: just one accumulator for "Brutus Caesar" in the example above ...
- ... because only d_1 contains both words.

Outline

3 More on cosine

Implementation

• Basic idea:

- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms

- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
 - During query processing, start with highest-tier index

- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
 - During query processing, start with highest-tier index
 - If highest-tier index returns at least k (e.g., k = 100) results: stop and return results to user

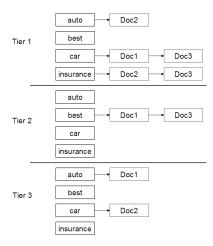
- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
 - During query processing, start with highest-tier index
 - If highest-tier index returns at least k (e.g., k = 100) results: stop and return results to user
 - If we've only found < k hits: repeat for next index in tier cascade

- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
 - During query processing, start with highest-tier index
 - If highest-tier index returns at least k (e.g., k = 100) results: stop and return results to user
 - If we've only found < k hits: repeat for next index in tier cascade
- Example: two-tier system

- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
 - During query processing, start with highest-tier index
 - If highest-tier index returns at least k (e.g., k = 100) results: stop and return results to user
 - If we've only found < k hits: repeat for next index in tier cascade
- Example: two-tier system
 - Tier 1: Index of all titles

- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
 - During query processing, start with highest-tier index
 - If highest-tier index returns at least k (e.g., k = 100) results: stop and return results to user
 - If we've only found < k hits: repeat for next index in tier cascade
- Example: two-tier system
 - Tier 1: Index of all titles
 - Tier 2: Index of the rest of documents

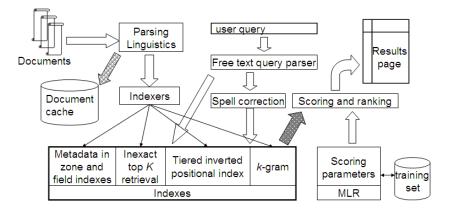
- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
 - During query processing, start with highest-tier index
 - If highest-tier index returns at least k (e.g., k = 100) results: stop and return results to user
 - If we've only found < k hits: repeat for next index in tier cascade
- Example: two-tier system
 - Tier 1: Index of all titles
 - Tier 2: Index of the rest of documents
 - Pages containing the search words in the title are better hits than pages containing the search words in the body of the text.



• The use of tiered indexes is believed to be one of the reasons that Google search quality was significantly higher initially (2000/01) than that of competitors.

- The use of tiered indexes is believed to be one of the reasons that Google search quality was significantly higher initially (2000/01) than that of competitors.
- (along with PageRank, use of anchor text and proximity constraints)

Complete search system



Components we have introduced thus far

• Document preprocessing (linguistic and otherwise)

Components we have introduced thus far

- Document preprocessing (linguistic and otherwise)
- Positional indexes

- Document preprocessing (linguistic and otherwise)
- Positional indexes
- Tiered indexes

- Document preprocessing (linguistic and otherwise)
- Positional indexes
- Tiered indexes
- Spelling correction

- Document preprocessing (linguistic and otherwise)
- Positional indexes
- Tiered indexes
- Spelling correction
- k-gram indexes for wildcard queries and spelling correction

- Document preprocessing (linguistic and otherwise)
- Positional indexes
- Tiered indexes
- Spelling correction
- k-gram indexes for wildcard queries and spelling correction
- Query processing

- Document preprocessing (linguistic and otherwise)
- Positional indexes
- Tiered indexes
- Spelling correction
- k-gram indexes for wildcard queries and spelling correction
- Query processing
- Document scoring

- Document preprocessing (linguistic and otherwise)
- Positional indexes
- Tiered indexes
- Spelling correction
- k-gram indexes for wildcard queries and spelling correction
- Query processing
- Document scoring
- Term-at-a-time processing

• Document cache: we need this for generating snippets (= dynamic summaries)

- Document cache: we need this for generating snippets (= dynamic summaries)
- Zone indexes: They separate the indexes for different zones: the body of the document, all highlighted text in the document, anchor text, text in metadata fields etc

- Document cache: we need this for generating snippets (= dynamic summaries)
- Zone indexes: They separate the indexes for different zones: the body of the document, all highlighted text in the document, anchor text, text in metadata fields etc
- Machine-learned ranking functions

- Document cache: we need this for generating snippets (= dynamic summaries)
- Zone indexes: They separate the indexes for different zones: the body of the document, all highlighted text in the document, anchor text, text in metadata fields etc
- Machine-learned ranking functions
- Proximity ranking (e.g., rank documents in which the query terms occur in the same local window higher than documents in which the query terms occur far from each other)

• IR systems often guess what the user intended.

- IR systems often guess what the user intended.
- The two-term query *London tower* (without quotes) may be interpreted as the phrase query *"London tower"*.

- IR systems often guess what the user intended.
- The two-term query *London tower* (without quotes) may be interpreted as the phrase query *"London tower"*.
- The query 100 Madison Avenue, New York may be interpreted as a request for a map.

- IR systems often guess what the user intended.
- The two-term query *London tower* (without quotes) may be interpreted as the phrase query *"London tower"*.
- The query 100 Madison Avenue, New York may be interpreted as a request for a map.
- How do we "parse" the query and translate it into a formal specification containing phrase operators, proximity operators, indexes to search etc.?

• How do we combine phrase retrieval with vector space retrieval?

- How do we combine phrase retrieval with vector space retrieval?
- We do not want to compute document frequency / idf for every possible phrase. Why?

- How do we combine phrase retrieval with vector space retrieval?
- We do not want to compute document frequency / idf for every possible phrase. Why?
- How do we combine Boolean retrieval with vector space retrieval?

- How do we combine phrase retrieval with vector space retrieval?
- We do not want to compute document frequency / idf for every possible phrase. Why?
- How do we combine Boolean retrieval with vector space retrieval?
- For example: "+"-constraints and "-"-constraints

- How do we combine phrase retrieval with vector space retrieval?
- We do not want to compute document frequency / idf for every possible phrase. Why?
- How do we combine Boolean retrieval with vector space retrieval?
- For example: "+"-constraints and "-"-constraints
- Postfiltering is simple, but can be very inefficient no easy answer.

- How do we combine phrase retrieval with vector space retrieval?
- We do not want to compute document frequency / idf for every possible phrase. Why?
- How do we combine Boolean retrieval with vector space retrieval?
- For example: "+"-constraints and "-"-constraints
- Postfiltering is simple, but can be very inefficient no easy answer.
- How do we combine wild cards with vector space retrieval?

- How do we combine phrase retrieval with vector space retrieval?
- We do not want to compute document frequency / idf for every possible phrase. Why?
- How do we combine Boolean retrieval with vector space retrieval?
- For example: "+"-constraints and "-"-constraints
- Postfiltering is simple, but can be very inefficient no easy answer.
- How do we combine wild cards with vector space retrieval?
- Again, no easy answer

• Chapters 6 and 7 of IIR

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir
- How Google tweaks its ranking function

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir
- How Google tweaks its ranking function
- Interview with Google search guru Udi Manber

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir
- How Google tweaks its ranking function
- Interview with Google search guru Udi Manber
- Yahoo SearchMonkey: Opens up the search engine to developers. For example, you can rerank search results.