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Recap

Term frequency weighting

@ The log frequency weight of term t in d is defined as follows

W o 1 =+ |Og10 tft,d |f tft,d > 0
5470 otherwise

@ Score for a document-query pair: sum over terms t in both g
and d:
matching-score = 3, ., (1 + log tf: 4)
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Recap

idf weight

o df; is the document frequency, the number of documents that t
occurs in.

@ df is an inverse measure of the informativeness of the term.

@ We define the idf weight of term t as follows:

. N
idfy = logyg 9.
t

@ idf is a measure of the informativeness of the term.
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Recap

tf-idf weighting

@ The tf-idf weight of a term is the product of its tf weight and
its idf weight.

N
Wt,d = (1 + |0gtft7d) . IOg dT
t

@ Best known weighting scheme in information retrieval
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Recap

Cosine similarity between query and document

- 3 V|

qd _ Z| 1q/ i

G||d Vi 4
|q|| | \/ i=1 9i \/Zizl dl2

cos(q, d) = st(g, d) =

@ q; is the tf-idf weight of term / in the query.
@ d; is the tf-idf weight of term i in the document.
o |G| and |d| are the lengths of g and d.
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Recap

Cosine similarity illustrated
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Recap

tf-idf example: Itn.Inc

Query: “best car insurance”. Document: “car insurance auto insurance”.

word query document product
tf-raw  tf-wght df idf  weight | tf-raw tf-wght weight n'lized

auto 0 0 5000 23 0 1 1 1 052 |0

best 1 1 50000 13 1.3 0 0 0 0 0

car 1 1 10000 2.0 2.0 1 1 1 052 | 1.04

insurance | 1 1 1000 3.0 3.0 2 1.3 1.3 0.68 | 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted
term frequency, df: document frequency, idf: inverse document frequency, weight: the final
weight of the term in the query or document, n'lized: document weights after cosine
normalization, product: the product of final query weight and final document weight
VI24+02+12+ 132~ 1.92

1/1.92 ~ 0.52

1.3/1.92 ~ 0.68

Final similarity score between query and document: »; wg; - wg; = 0+ 0+ 1.04 +2.04 = 3.08

: Scores in a complete search system
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Why rank?

Why is ranking so important?

o Last lecture: Problems with unranked retrieval

Schiitze: Scores in a complete search system 11 / 50



Why rank?

Why is ranking so important?

o Last lecture: Problems with unranked retrieval
@ Users want to look at a few results — not thousands.

Schiitze: Scores in a complete search system 11 / 50



Why rank?

Why is ranking so important?

o Last lecture: Problems with unranked retrieval

@ Users want to look at a few results — not thousands.
@ It's very hard to write queries that produce a few results.

Schiitze: Scores in a complete search system 11 / 50



Why rank?

Why is ranking so important?

o Last lecture: Problems with unranked retrieval

@ Users want to look at a few results — not thousands.
@ It's very hard to write queries that produce a few results.
o Even for expert searchers

Schiitze: Scores in a complete search system 11 / 50



Why rank?

Why is ranking so important?

o Last lecture: Problems with unranked retrieval
Users want to look at a few results — not thousands.

@

@ It's very hard to write queries that produce a few results.

o Even for expert searchers

o — Ranking is important because it effectively reduces a large

set of results to a very small one.

Schiitze: Scores in a complete search system 11 / 50



Why rank?

Why is ranking so important?

o Last lecture: Problems with unranked retrieval
Users want to look at a few results — not thousands.

@

@ It's very hard to write queries that produce a few results.

o Even for expert searchers

o — Ranking is important because it effectively reduces a large

set of results to a very small one.

@ Next: More data on “users only look at a few results”

Schiitze: Scores in a complete search system 11 / 50



Why rank?

Why is ranking so important?

@ Last lecture: Problems with unranked retrieval
Users want to look at a few results — not thousands.
It's very hard to write queries that produce a few results.

Even for expert searchers
— Ranking is important because it effectively reduces a large
set of results to a very small one.

<

¢ © €

@ Next: More data on “users only look at a few results”

@ Actually, in the vast majority of cases they only look at 1, 2,
or 3 results.
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Why rank?

Empirical investigation of the effect of ranking

@ How can we measure how important ranking is?
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Why rank?

Empirical investigation of the effect of ranking

@ How can we measure how important ranking is?

@ Observe what searchers do when they are searching in a
controlled setting
@ Videotape them
o Ask them to “think aloud”
o Interview them
o Eye-track them
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Why rank?

Empirical investigation of the effect of ranking

@ How can we measure how important ranking is?

@ Observe what searchers do when they are searching in a
controlled setting
@ Videotape them
Ask them to “think aloud”
Interview them
Eye-track them
Time them
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Why rank?

Empirical investigation of the effect of ranking

@ How can we measure how important ranking is?

@ Observe what searchers do when they are searching in a
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Why rank?

Empirical investigation of the effect of ranking

@ How can we measure how important ranking is?

@ Observe what searchers do when they are searching in a
controlled setting
@ Videotape them
Ask them to “think aloud”
Interview them
Eye-track them
Time them
Record and count their clicks

¢ ¢ ¢ ¢ @

@ The following slides are from Dan Russell's JCDL talk

@ Dan Russell is the “Uber Tech Lead for Search Quality & User
Happiness” at Google.
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Interview video

So.. Did you notice the FTD official
site?

To be honest, | didn't even look at
that.

At first | saw “from $20” and $20 is
what | was looking for.

To be honest, 1800-flowers is
what I'm familiar with and
why | went there next even
though I kind of assumed
they wouldn’t have $20
flowers

And you knew they were
expensive?

I knew they were expensive but |
thought “hey, maybe they've
got some flowers for under
$20 here...”

But you didn’t notice the FTD?

No | didn't, actually... that’s really
funny.



Rapidly scanning the results

Note scan pattern:

Result 1
Result 2
Result 3
Result 4
Result 3
Result 2
Result 4
Result 5
Result 6 <click>

Page 3:

Q: Why do this?

A: What's learned later
influences judgment
of earlier content.

Google
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ildren's unicycle size. Is good for children who are
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16" wheel unicycle: th
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UNICYCLE DISTANGE RECORD. ...
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ni
Check out a Unicycle Leamers Pack for an easy and economical way to take your ifff steps
into the One Wheeled Warld ... Suiable as a Children's Unicycle. ..

wirw_unicycle au. com/View php?action=Page&Name=Unicycles - 10k

Article - News - A unicycle ride for children

Adam Brody, 21, of San Juan Capistrano, led a charity event Samrdsy that beneits the

Omxgewnod Children's Fnuudmmn The Unicycle Club of Snul}\ém
ister com/ocregister/news/homepagefarticle_12937
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Kinds of behaviors we see in the data

Short/ Nav

Topic exploration

Topic switch
Methodical results
exploration

Query reform

Google

o

—E—E—E—N

New topic

Multitasking ?\E_Ax
|
é

Stacking behavior S r |



How many links do users view?

Total number of abstracts viewed per page

Dip after
page break

frequency
[}
o

40

20

1 2 3 4 5 6 7 8 9 10
Total number of abstracts viewed

Mean: 3.07 Median/Mode: 2.00
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Looking vs. Clicking
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Rank of result
- Users view results one and two more often / thoroughly
- Users click most frequently on result one
29
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Presentation bias — reversed results

« Order of presentation influences where users look
AND where they click

Probability of Click

Google

60%

50%

40%

30%

20%

10%

0%

normal

More relevant

sw apped
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Why rank?

Importance of ranking: Summary

@ Viewing abstracts: Users are a lot more likely to read the
abstracts of the top-ranked pages (1, 2, 3, 4) than the
abstracts of the lower ranked pages (7, 8, 9, 10).
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— Getting the top-ranked page right is most important.
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© More on cosine
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More on cosine

A problem for cosine normalization

@ Query g: "anti-doping rules Beijing 2008 olympics”
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More on cosine

A problem for cosine normalization

Query g: "anti-doping rules Beijing 2008 olympics”

Compare three documents
@ dj: a short document on anti-doping rules at 2008 olympics
@ d>: a long document that consists of a copy of d; and 5 other
short stories on the 2008 olympics, all on topics different from
anti-doping rules
o ds: a short document on anti-doping rules at the 2004 Athens
olympics

® What ranking do we expect in the vector space model?

d> is likely to be ranked below ds ...

...but d> is more relevant than ds.
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More on cosine

A problem for cosine normalization

Query g: "anti-doping rules Beijing 2008 olympics”

Compare three documents
@ dj: a short document on anti-doping rules at 2008 olympics
@ d>: a long document that consists of a copy of d; and 5 other
short stories on the 2008 olympics, all on topics different from
anti-doping rules
o ds: a short document on anti-doping rules at the 2004 Athens
olympics
What ranking do we expect in the vector space model?
d> is likely to be ranked below ds ...
...but d> is more relevant than ds.

What can we do about this?
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More on cosine

Pivot normalization

@ Cosine normalization produces weights that are too large for
short documents and too small for long documents (on
average).
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More on cosine

Pivot normalization

@ Cosine normalization produces weights that are too large for
short documents and too small for long documents (on
average).

@ Adjust cosine normalization by linear adjustment: “turning’
the average normalization on the pivot

o Effect: Similarities of short documents with query decrease;
similarities of long documents with query increase.
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average).
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More on cosine

Pivot normalization

@ Cosine normalization produces weights that are too large for
short documents and too small for long documents (on
average).

@ Adjust cosine normalization by linear adjustment: “turning”
the average normalization on the pivot

o Effect: Similarities of short documents with query decrease;
similarities of long documents with query increase.

@ This removes an unfair advantage that short documents have.

@ Note that “pivoted” scores are no longer bounded by 1.
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More on cosine

Predicted and true probability of relevance

Relevance vs Retrieval with cosine normalization

>

d..

Jo Auiqeqoud

cosine norm

[BADLINOI/OOUBAD[ I

crossing poin

“true” relevance

document length source:
Lillian Lee
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More on cosine

Pivot normalization

A Cosine Normalization

Pivoted Normalization

a
slope = tan(o)

10108 UONBZI[BEUWION PAI0AL]

v

source:

Cosine Normalization Factor T
Lillian Lee
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@ Implementation
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Implementation

Now we also need term frequency in the index

Brutus | — [1,2]73[831[872]... |

CAESAR — ] 1,1 \ 5,1 \ 13,1 \ 17,1 \ \

CALPURNIA | — [7,1]82]40,1 97,3 |
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Implementation
Now we also need term frequency in the index

Brutus | — [1,2]73[831[872]... |

CaEsaR | — [1,1]51[131[171 ... |

CALPURNIA | — [7,1[82]40,1 973 |

term frequencies
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Implementation
Now we also need term frequency in the index

Brutus | — [1,2]73[831[872]... |

CAESAR — ] 1,1 \ 5,1 \ 13,1 \ 17,1 \ \

CALPURNIA | — [7,1]82]40,1 97,3 |

term frequencies

We also need positions. Not shown here.
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Implementation

Term frequencies in the inverted index

@ In each posting, store tf; 4 in addition to doclD d
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Implementation

Term frequencies in the inverted index

(]

In each posting, store tf; 4 in addition to doclD d

As an integer frequency, not as a (log-)weighted real number

... because real numbers are difficult to compress.

Unary code is effective for encoding term frequencies.
Why?

(]
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Implementation

Term frequencies in the inverted index

(]

In each posting, store tf; 4 in addition to doclD d

As an integer frequency, not as a (log-)weighted real number

... because real numbers are difficult to compress.

Why?
Overall, additional space requirements are small: much less
than a byte per posting.

°
@ Unary code is effective for encoding term frequencies.
°
°
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Implementation

How do we compute the top k in ranking?

@ In many applications, we don’t need a complete ranking.
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How do we compute the top k in ranking?

@ In many applications, we don’t need a complete ranking.
@ We just need the top k for a small k (e.g., k = 100).

o If we don't need a complete ranking, is there an efficient way
of computing just the top k?
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@ In many applications, we don’t need a complete ranking.
@ We just need the top k for a small k (e.g., k = 100).
o If we don't need a complete ranking, is there an efficient way
of computing just the top k?
o Naive:
o Compute scores for all N documents
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@ What's bad about this?
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Implementation

How do we compute the top k in ranking?

In many applications, we don't need a complete ranking.
We just need the top k for a small k (e.g., kK = 100).

If we don't need a complete ranking, is there an efficient way
of computing just the top k?

@ Naive:

o Compute scores for all N documents
s Sort
@ Return the top k

What's bad about this?

Alternative?
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Implementation

Use heap for selecting the top k

@ A heap efficiently implements a priority queue.
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Implementation
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@ Binary tree in which each node's value is greater than the
values of its children.
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Implementation

Use heap for selecting the top k

@ A heap efficiently implements a priority queue.

@ Binary tree in which each node's value is greater than the
values of its children.

@ Takes O(N) operations to construct (where N is the number
of documents) . ..

Schiitze: Scores in a complete search system



Implementation

Use heap for selecting the top k

@ A heap efficiently implements a priority queue.

@ Binary tree in which each node's value is greater than the
values of its children.

@ Takes O(N) operations to construct (where N is the number
of documents) . ..

@ ...then each of k winners read off in O(k log k) steps
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Implementation

Use heap for selecting the top k

A heap efficiently implements a priority queue.

Binary tree in which each node’s value is greater than the
values of its children.

Takes O(N) operations to construct (where N is the number
of documents) . ..

(]

...then each of k winners read off in O(k log k) steps

(]

Essentially linear in N for small k and large N.
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Implementation

Binary max heap
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Implementation

Even more efficient computation of top k?

@ Ranking has time complexity O(N) where N is the number of
documents.
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@ Optimizations reduce the constant factor, but they are still

O(N).
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Even more efficient computation of top k?

@ Ranking has time complexity O(N) where N is the number of
documents.

@ Optimizations reduce the constant factor, but they are still
O(N).
@ Are there sublinear algorithms?
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Implementation

Even more efficient computation of top k?

@ Ranking has time complexity O(N) where N is the number of
documents.

@ Optimizations reduce the constant factor, but they are still
O(N).
@ Are there sublinear algorithms?

o |deas?
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Implementation

Even more efficient computation of top k?

)

Ranking has time complexity O(N) where N is the number of
documents.

Optimizations reduce the constant factor, but they are still
O(N).

Are there sublinear algorithms?

ldeas?

@ What we're doing in effect: solving the k-nearest neighbor
(kNN) problem for the query vector (= query point).
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Even more efficient computation of top k?

(]

Ranking has time complexity O(N) where N is the number of
documents.

Optimizations reduce the constant factor, but they are still
O(N).

Are there sublinear algorithms?

ldeas?

@ What we're doing in effect: solving the k-nearest neighbor
(kNN) problem for the query vector (= query point).

@ There are no general solutions to this problem that are
sublinear.

Schiitze: Scores in a complete search system 31 /50



Implementation

Even more efficient computation of top k?

@ Ranking has time complexity O(N) where N is the number of
documents.

@ Optimizations reduce the constant factor, but they are still
O(N).

@ Are there sublinear algorithms?

o |deas?

@ What we're doing in effect: solving the k-nearest neighbor
(kNN) problem for the query vector (= query point).

@ There are no general solutions to this problem that are
sublinear.

@ We will revisit this issue when we do kNN classification in IR
14.
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Implementation

Non-doclID ordering of postings lists

@ So far: postings lists are ordered according to doclD
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Implementation

Non-doclID ordering of postings lists

@ So far: postings lists are ordered according to doclD

@ Alternative: a query-independent measure of “goodness” of a
page.
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Implementation

Non-doclID ordering of postings lists

@ So far: postings lists are ordered according to doclD

@ Alternative: a query-independent measure of “goodness” of a
page.

@ Example: PageRank g(d) of page d, a measure of how many
“good” pages hyperlink to d
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Implementation

Non-doclID ordering of postings lists

@ So far: postings lists are ordered according to doclD

@ Alternative: a query-independent measure of “goodness” of a
page.

@ Example: PageRank g(d) of page d, a measure of how many
“good” pages hyperlink to d

@ Order documents in postings lists according to PageRank:
g(di) > g(db) > g(d3) > ...
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Implementation

Non-doclID ordering of postings lists

So far: postings lists are ordered according to doclD

Alternative: a query-independent measure of “goodness” of a
page.

Example: PageRank g(d) of page d, a measure of how many
“good” pages hyperlink to d

(]

Order documents in postings lists according to PageRank:
g(d1) > g(d2) > g(ds) > ...
Define composite score of a document:

net-score(q, d) = g(d) + cos(q, d)
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Implementation

Non-doclID ordering of postings lists

So far: postings lists are ordered according to doclD

Alternative: a query-independent measure of “goodness” of a
page.

@ Example: PageRank g(d) of page d, a measure of how many
“good” pages hyperlink to d

@ Order documents in postings lists according to PageRank:
g(d1) > g(d2) > g(ds) > ...
@ Define composite score of a document:

net-score(q, d) = g(d) + cos(q, d)

@ This scheme supports early termination: We do not have to
process postings lists in their entirety to find top k.
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Implementation

Non-docID ordering of postings lists (2)

@ Order documents in postings lists according to PageRank:
g(di) > g(d2) > g(d3) > ...
@ Define composite score of a document:

net-score(q, d) = g(d) + cos(q, d)
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Implementation

Non-docID ordering of postings lists (2)

@ Order documents in postings lists according to PageRank:
g(di) > g(d) > g(d3) > ...

@ Define composite score of a document:
net-score(q, d) = g(d) + cos(q, d)

@ Suppose: (i) g — [0,1]; (ii) g(d) < 0.1 for the document d we're
currently processing; (iii) smallest top k score we've found so far
is 1.2
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Implementation

Non-docID ordering of postings lists (2)

@ Order documents in postings lists according to PageRank:

g(d1) > g(d) > g(d3) > ...
@ Define composite score of a document:

net-score(q, d) = g(d) + cos(q, d)

@ Suppose: (i) g — [0,1]; (ii) g(d) < 0.1 for the document d we're
currently processing; (iii) smallest top k score we've found so far
is 1.2

@ Then all subsequent scores will be < 1.1.
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Implementation

Non-docID ordering of postings lists (2)

@ Order documents in postings lists according to PageRank:

g(d1) > g(d) > g(d3) > ...
@ Define composite score of a document:

net-score(q, d) = g(d) + cos(q, d)

@ Suppose: (i) g — [0,1]; (ii) g(d) < 0.1 for the document d we're
currently processing; (iii) smallest top k score we've found so far
is 1.2

@ Then all subsequent scores will be < 1.1.

@ So we've already found the top k and can stop processing the
remainder of postings lists.
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Implementation

Non-docID ordering of postings lists (2)

@ Order documents in postings lists according to PageRank:

g(d1) > g(d) > g(d3) > ...
@ Define composite score of a document:

net-score(q, d) = g(d) + cos(q, d)

@ Suppose: (i) g — [0,1]; (ii) g(d) < 0.1 for the document d we're
currently processing; (iii) smallest top k score we've found so far
is 1.2

@ Then all subsequent scores will be < 1.1.

@ So we've already found the top k and can stop processing the

remainder of postings lists.

Questions?

©
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Implementation

Document-at-a-time processing

@ Both docID-ordering and PageRank-ordering impose a
consistent ordering on documents in postings lists.
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consistent ordering on documents in postings lists.

@ Computing cosines in this scheme is document-at-a-time.
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Implementation

Document-at-a-time processing

@ Both docID-ordering and PageRank-ordering impose a
consistent ordering on documents in postings lists.

@ Computing cosines in this scheme is document-at-a-time.

@ We complete computation of the cosine score of document d;
before starting to compute the cosine score of d;y1.
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Implementation

Document-at-a-time processing

@ Both docID-ordering and PageRank-ordering impose a
consistent ordering on documents in postings lists.

@ Computing cosines in this scheme is document-at-a-time.

@ We complete computation of the cosine score of document d;
before starting to compute the cosine score of d;y1.

@ Alternative: term-at-a-time processing
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Implementation

Weight-sorted postings lists

o Idea: don't process postings that contribute little to final score
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o Idea: don't process postings that contribute little to final score

@ Order documents in inverted list according to weight
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Implementation

Weight-sorted postings lists

o Idea: don't process postings that contribute little to final score
@ Order documents in inverted list according to weight

@ Simplest case: normalized tf-idf weight (rarely done: hard to
compress)
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Implementation

Weight-sorted postings lists

o Idea: don't process postings that contribute little to final score

@ Order documents in inverted list according to weight

@ Simplest case: normalized tf-idf weight (rarely done: hard to
compress)

@ Documents in the top k are likely to occur early in these
ordered lists
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Implementation

Weight-sorted postings lists

o Idea: don't process postings that contribute little to final score
@ Order documents in inverted list according to weight

@ Simplest case: normalized tf-idf weight (rarely done: hard to
compress)

@ Documents in the top k are likely to occur early in these
ordered lists

o Early termination while processing inverted lists is unlikely to
change top k
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Weight-sorted postings lists

o Idea: don't process postings that contribute little to final score

@ Order documents in inverted list according to weight

@ Simplest case: normalized tf-idf weight (rarely done: hard to
compress)

@ Documents in the top k are likely to occur early in these
ordered lists

o Early termination while processing inverted lists is unlikely to
change top k

@ We no longer have a consistent ordering of documents in
postings lists.
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Implementation

Weight-sorted postings lists

o Idea: don't process postings that contribute little to final score

@ Order documents in inverted list according to weight

@ Simplest case: normalized tf-idf weight (rarely done: hard to
compress)

@ Documents in the top k are likely to occur early in these
ordered lists

o Early termination while processing inverted lists is unlikely to
change top k

@ We no longer have a consistent ordering of documents in
postings lists.

We no longer can employ document-at-a-time processing.
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Implementation

Term-at-a-time processing

@ Simplest case: completely process the postings list of the first
query term
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@ Simplest case: completely process the postings list of the first
query term

@ Create an accumulator for each doclD you encounter
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Implementation

Term-at-a-time processing

@ Simplest case: completely process the postings list of the first
query term

@ Create an accumulator for each doclD you encounter

@ Then completely process the postings list of the second query
term
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Implementation

Term-at-a-time processing

@ Simplest case: completely process the postings list of the first
query term

@ Create an accumulator for each doclD you encounter

@ Then completely process the postings list of the second query
term

@ ...and so forth
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Implementation

Term-at-a-time processing

@ Simplest case: completely process the postings list of the first
query term

@ Create an accumulator for each doclD you encounter

@ Then completely process the postings list of the second query
term

@ ...and so forth

@ For early termination in weight-sorted indexes, we can
interleave term-at-a-time and document-at-a-time processing.
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Implementation

Term-at-a-time processing

COSINESCORE(q)
1 float Scores[N] =0
2 float Length[N]
3 for each query term t
4 do calculate w¢ g and fetch postings list for t
5 for each pair(d,tf; 4) in postings list
6 do Scores[d]+ = w¢ g X Wt g
7 Read the array Length
8 for each d
9 do Scores[d] = Scores[d]/Length[d]
10 return Top k components of Scores]]

The elements of the array “Scores” are called accumulators.
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Implementation

Computing cosine scores

@ For the web (20 billion documents), an array of accumulators
A in memory is infeasible.
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Computing cosine scores

@ For the web (20 billion documents), an array of accumulators
A in memory is infeasible.

@ Thus: Only create accumulators for docs occurring in postings
lists
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Implementation

Computing cosine scores

@ For the web (20 billion documents), an array of accumulators
A in memory is infeasible.

@ Thus: Only create accumulators for docs occurring in postings
lists

@ This is equivalent to: Do not create accumulators for docs
with zero scores (i.e., docs that do not contain any of the
query terms)
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Implementation

Accumulators

Brutus | — [1,2]73[831[872]... |

CAESAR | — [LI[5I[131[17,1]... |

CALPURNIA | — [7,1[82]40,1 97,3 |

@ For query: “Brutus Caesar”:
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Implementation
Accumulators

Brutus | — [1,2]73[831[872]... |

CAESAR | — [LI[5I[131[17,1]... |

CALPURNIA | — [7,1[82]40,1 97,3 |

@ For query: “Brutus Caesar”:
@ Only need accumulators for 1, 5, 7, 13, 17, 83, 87
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Implementation
Accumulators

Brutus | — [1,2]73[831[872]... |

CAESAR | — [LI[5I[131[17,1]... |

CALPURNIA | — [7,1[82]40,1 97,3 |

@ For query: “Brutus Caesar”:
@ Only need accumulators for 1, 5, 7, 13, 17, 83, 87

@ Don't need accumulators for 8, 40, 97
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Implementation

Removing bottlenecks

@ Use heap / priority queue as discussed earlier
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Removing bottlenecks

@ Use heap / priority queue as discussed earlier

@ Can further limit to docs with non-zero cosines on rare (high
idf) words
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Implementation

Removing bottlenecks

@ Use heap / priority queue as discussed earlier

@ Can further limit to docs with non-zero cosines on rare (high
idf) words

@ Or enforce conjunctive search (a la Google): non-zero cosines
on all words in query
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Implementation

Removing bottlenecks

@ Use heap / priority queue as discussed earlier

@ Can further limit to docs with non-zero cosines on rare (high
idf) words

@ Or enforce conjunctive search (a la Google): non-zero cosines
on all words in query

@ Example: just one accumulator for “Brutus Caesar” in the
example above ...

Schiitze: Scores in a complete search system



Implementation

Removing bottlenecks

@ Use heap / priority queue as discussed earlier

@ Can further limit to docs with non-zero cosines on rare (high
idf) words

@ Or enforce conjunctive search (a la Google): non-zero cosines
on all words in query

@ Example: just one accumulator for “Brutus Caesar” in the
example above ...

@ ...because only d; contains both words.
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The complete search system

Outline

© The complete search system
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The complete search system

Tiered indexes

@ Basic idea:
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Tiered indexes

@ Basic idea:

@ Create several tiers of indexes, corresponding to importance of
indexing terms
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Tiered indexes

@ Basic idea:
@ Create several tiers of indexes, corresponding to importance of
indexing terms
o During query processing, start with highest-tier index
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The complete search system

Tiered indexes

@ Basic idea:
@ Create several tiers of indexes, corresponding to importance of
indexing terms
o During query processing, start with highest-tier index
o If highest-tier index returns at least k (e.g., k = 100) results:
stop and return results to user
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The complete search system

Tiered indexes

@ Basic idea:

@ Create several tiers of indexes, corresponding to importance of
indexing terms

o During query processing, start with highest-tier index

o If highest-tier index returns at least k (e.g., k = 100) results:
stop and return results to user

o If we've only found < k hits: repeat for next index in tier
cascade
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The complete search system

Tiered indexes

@ Basic idea:

@ Create several tiers of indexes, corresponding to importance of
indexing terms

o During query processing, start with highest-tier index

o If highest-tier index returns at least k (e.g., k = 100) results:
stop and return results to user

o If we've only found < k hits: repeat for next index in tier
cascade

@ Example: two-tier system
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The complete search system

Tiered indexes

@ Basic idea:

@ Create several tiers of indexes, corresponding to importance of
indexing terms

o During query processing, start with highest-tier index

o If highest-tier index returns at least k (e.g., k = 100) results:
stop and return results to user

o If we've only found < k hits: repeat for next index in tier
cascade

@ Example: two-tier system
@ Tier 1: Index of all titles
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The complete search system

Tiered indexes

@ Basic idea:

@ Create several tiers of indexes, corresponding to importance of
indexing terms

o During query processing, start with highest-tier index

o If highest-tier index returns at least k (e.g., k = 100) results:
stop and return results to user

o If we've only found < k hits: repeat for next index in tier
cascade

@ Example: two-tier system

o Tier 1: Index of all titles
@ Tier 2: Index of the rest of documents
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The complete search system

Tiered indexes

@ Basic idea:
@ Create several tiers of indexes, corresponding to importance of
indexing terms
o During query processing, start with highest-tier index
o If highest-tier index returns at least k (e.g., k = 100) results:
stop and return results to user
o If we've only found < k hits: repeat for next index in tier
cascade
@ Example: two-tier system
@ Tier 1: Index of all titles
@ Tier 2: Index of the rest of documents
@ Pages containing the search words in the title are better hits
than pages containing the search words in the body of the text.

Schiitze: Scores in a complete search system



The complete search system

Tiered index

Tier 1

‘ car H Doc1 }—'{ Doc3 ‘
insurancel—-1 Doc2 H Doc3 ‘

Tier 2 best H Doc1 H Doc3 ‘

Tier 3
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The complete search system

Tiered indexes

@ The use of tiered indexes is believed to be one of the reasons
that Google search quality was significantly higher initially
(2000/01) than that of competitors.
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The complete search system

Tiered indexes

@ The use of tiered indexes is believed to be one of the reasons
that Google search quality was significantly higher initially
(2000/01) than that of competitors.

o (along with PageRank, use of anchor text and proximity
constraints)
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The complete search system

Complete search system

@ Parsing [user query ]
|:> Linguistics ﬂ Results

|Free text query parser| g‘_‘:> page

|Spe|| correction| | Scoring and ranking \

U

Document
cache

Metadata in | Inexact : . .
zone and top K TIe':e.d |nv§|'ted k-gram Scoring
field indexes | retrieval | POSitional index parameters raining
Indexes MLR set
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The complete search system

Components we have introduced thus far

@ Document preprocessing (linguistic and otherwise)
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Components we have introduced thus far

@ Document preprocessing (linguistic and otherwise)
@ Positional indexes

o Tiered indexes
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The complete search system

Components we have introduced thus far

o
o
o
o
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The complete search system

Components we have introduced thus far

]
]
]
*]
*]

Document preprocessing (linguistic and otherwise)
Positional indexes

Tiered indexes

Spelling correction

k-gram indexes for wildcard queries and spelling correction
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The complete search system

Components we have introduced thus far

]
]
]
*]
*]
*]

Document preprocessing (linguistic and otherwise)
Positional indexes

Tiered indexes

Spelling correction

k-gram indexes for wildcard queries and spelling correction

Query processing
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The complete search system

Components we have introduced thus far

]
]
]
*]
*]
*]
]

Document preprocessing (linguistic and otherwise)
Positional indexes

Tiered indexes

Spelling correction

k-gram indexes for wildcard queries and spelling correction
Query processing

Document scoring

Schiitze: Scores in a complete search system 46 / 50



The complete search system

Components we have introduced thus far

]
]
]
*]
*]
*]
]
]

Document preprocessing (linguistic and otherwise)
Positional indexes

Tiered indexes

Spelling correction

k-gram indexes for wildcard queries and spelling correction
Query processing

Document scoring

Term-at-a-time processing
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The complete search system

Components we haven't covered yet

@ Document cache: we need this for generating snippets (=
dynamic summaries)
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The complete search system

Components we haven't covered yet

@ Document cache: we need this for generating snippets (=
dynamic summaries)

@ Zone indexes: They separate the indexes for different zones:
the body of the document, all highlighted text in the
document, anchor text, text in metadata fields etc
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The complete search system

Components we haven't covered yet

@ Document cache: we need this for generating snippets (=
dynamic summaries)

@ Zone indexes: They separate the indexes for different zones:
the body of the document, all highlighted text in the
document, anchor text, text in metadata fields etc

@ Machine-learned ranking functions
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The complete search system

Components we haven't covered yet

@ Document cache: we need this for generating snippets (=
dynamic summaries)

@ Zone indexes: They separate the indexes for different zones:
the body of the document, all highlighted text in the
document, anchor text, text in metadata fields etc

@ Machine-learned ranking functions

@ Proximity ranking (e.g., rank documents in which the query
terms occur in the same local window higher than documents
in which the query terms occur far from each other)
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The complete search system

Components we haven't covered yet: Query parser

@ |R systems often guess what the user intended.
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The complete search system

Components we haven't covered yet: Query parser

@ |R systems often guess what the user intended.

@ The two-term query London tower (without quotes) may be
interpreted as the phrase query “London tower”.
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The complete search system

Components we haven't covered yet: Query parser

@ |R systems often guess what the user intended.

@ The two-term query London tower (without quotes) may be
interpreted as the phrase query “London tower”.

@ The query 100 Madison Avenue, New York may be interpreted
as a request for a map.
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The complete search system

Components we haven't covered yet: Query parser

@ |R systems often guess what the user intended.

@ The two-term query London tower (without quotes) may be
interpreted as the phrase query “London tower”.

@ The query 100 Madison Avenue, New York may be interpreted
as a request for a map.

@ How do we “parse” the query and translate it into a formal
specification containing phrase operators, proximity operators,
indexes to search etc.?
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The complete search system

Vector space retrieval: Complications

@ How do we combine phrase retrieval with vector space
retrieval?
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The complete search system

Vector space retrieval: Complications

@ How do we combine phrase retrieval with vector space
retrieval?

@ We do not want to compute document frequency / idf for
every possible phrase. Why?
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The complete search system

Vector space retrieval: Complications

@ How do we combine phrase retrieval with vector space
retrieval?

@ We do not want to compute document frequency / idf for
every possible phrase. Why?

@ How do we combine Boolean retrieval with vector space
retrieval?
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@ How do we combine phrase retrieval with vector space
retrieval?

@ We do not want to compute document frequency / idf for
every possible phrase. Why?

@ How do we combine Boolean retrieval with vector space
retrieval?

@ For example: “+"-constraints and "-"-constraints
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The complete search system

Vector space retrieval: Complications

@ How do we combine phrase retrieval with vector space
retrieval?

@ We do not want to compute document frequency / idf for
every possible phrase. Why?

@ How do we combine Boolean retrieval with vector space
retrieval?

@ For example: “+"-constraints and "-"-constraints

o Postfiltering is simple, but can be very inefficient — no easy
answer.
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The complete search system

Vector space retrieval: Complications

@ How do we combine phrase retrieval with vector space
retrieval?
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Vector space retrieval: Complications

@ How do we combine phrase retrieval with vector space
retrieval?

@ We do not want to compute document frequency / idf for
every possible phrase. Why?

@ How do we combine Boolean retrieval with vector space
retrieval?

@ For example: “+"-constraints and "-"-constraints

o Postfiltering is simple, but can be very inefficient — no easy
answer.

@ How do we combine wild cards with vector space retrieval?

@ Again, no easy answer
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Interview with Google search guru Udi Manber
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Chapters 6 and 7 of IIR

Resources at http://ifnlp.org/ir

How Google tweaks its ranking function
Interview with Google search guru Udi Manber

Yahoo SearchMonkey: Opens up the search engine to
developers. For example, you can rerank search results.
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