Introduction to Information Retrieval
http://informationretrieval.org

IIR 7: Scores in a Complete Search System

Hinrich Schütze

Institute for Natural Language Processing, Universität Stuttgart

2008.05.27
Overview

1. Recap
2. Why rank?
3. More on cosine
4. Implementation
5. The complete search system
Outline

1. Recap
2. Why rank?
3. More on cosine
4. Implementation
5. The complete search system
Term frequency weighting

- The log frequency weight of term t in d is defined as follows:

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d} & \text{if } tf_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$$

- Score for a document-query pair: sum over terms t in both q and d:

$$\text{matching-score} = \sum_{t \in q \cap d} (1 + \log \text{tf}_{t,d})$$
idf weight

- df_t is the document frequency, the number of documents that t occurs in.
- df is an inverse measure of the informativeness of the term.
- We define the idf weight of term t as follows:

$$idf_t = \log_{10} \frac{N}{df_t}$$

- idf is a measure of the informativeness of the term.
The tf-idf weight of a term is the \textbf{product of its tf weight and its idf weight}.

\[
 w_{t,d} = (1 + \log \text{tf}_{t,d}) \cdot \log \frac{N}{\text{df}_t}
\]

Best known weighting scheme in information retrieval
Cosine similarity between query and document

\[
\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\sum_{i=1}^{V} q_i d_i}{\sqrt{\sum_{i=1}^{V} q_i^2} \sqrt{\sum_{i=1}^{V} d_i^2}}
\]

- \(q_i\) is the tf-idf weight of term \(i\) in the query.
- \(d_i\) is the tf-idf weight of term \(i\) in the document.
- \(|\vec{q}|\) and \(|\vec{d}|\) are the lengths of \(\vec{q}\) and \(\vec{d}\).
Cosine similarity illustrated

\[\vec{v}(d_1) \]
\[\vec{v}(q) \]
\[\vec{v}(d_2) \]
\[\vec{v}(d_3) \]
tf-idf example: ltn.lnc

Query: “best car insurance”. Document: “car insurance auto insurance”.

<table>
<thead>
<tr>
<th>word</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>df</th>
<th>idf</th>
<th>weight</th>
<th>tf-raw</th>
<th>tf-wght</th>
<th>weight</th>
<th>n’lized</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>0</td>
<td>0</td>
<td>5000</td>
<td>2.3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.52</td>
<td>0</td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td>1</td>
<td>50000</td>
<td>1.3</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>10000</td>
<td>2.0</td>
<td>2.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.52</td>
<td>1.04</td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>3.0</td>
<td>3.0</td>
<td>2</td>
<td>1.3</td>
<td>1.3</td>
<td>0.68</td>
<td>2.04</td>
</tr>
</tbody>
</table>

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n’lized: document weights after cosine normalization, product: the product of final query weight and final document weight.

\[\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92 \]

\[1/1.92 \approx 0.52 \]

\[1.3/1.92 \approx 0.68 \]

Final similarity score between query and document: \[\sum_i w_{qi} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08 \]
Outline

1 Recap

2 Why rank?

3 More on cosine

4 Implementation

5 The complete search system
Why is ranking so important?

- Last lecture: Problems with unranked retrieval
Why is ranking so important?

- Last lecture: Problems with unranked retrieval
 - Users want to look at a few results – not thousands.
Why is ranking so important?

- Last lecture: Problems with unranked retrieval
 - Users want to look at a few results – not thousands.
 - It’s very hard to write queries that produce a few results.
Why is ranking so important?

- Last lecture: Problems with unranked retrieval
 - Users want to look at a few results – not thousands.
 - It’s very hard to write queries that produce a few results.
 - Even for expert searchers
Why is ranking so important?

- Last lecture: Problems with unranked retrieval
 - Users want to look at a few results – not thousands.
 - It’s very hard to write queries that produce a few results.
 - Even for expert searchers
 - → Ranking is important because it effectively reduces a large set of results to a very small one.
Why is ranking so important?

- Last lecture: Problems with unranked retrieval
 - Users want to look at a few results – not thousands.
 - It’s very hard to write queries that produce a few results.
 - Even for expert searchers
 - → Ranking is important because it effectively reduces a large set of results to a very small one.

- Next: More data on “users only look at a few results”
Why is ranking so important?

Last lecture: Problems with unranked retrieval
- Users want to look at a few results – not thousands.
- It’s very hard to write queries that produce a few results.
- Even for expert searchers
 → Ranking is important because it effectively reduces a large set of results to a very small one.

Next: More data on “users only look at a few results”
- Actually, in the vast majority of cases they only look at 1, 2, or 3 results.
Empirical investigation of the effect of ranking

- How can we measure how important ranking is?
Empirical investigation of the effect of ranking

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
Empirical investigation of the effect of ranking

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
Empirical investigation of the effect of ranking

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to “think aloud”
Empirical investigation of the effect of ranking

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to “think aloud”
 - Interview them
Empirical investigation of the effect of ranking

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to “think aloud”
 - Interview them
 - Eye-track them
Empirical investigation of the effect of ranking

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to “think aloud”
 - Interview them
 - Eye-track them
 - Time them
Empirical investigation of the effect of ranking

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to “think aloud”
 - Interview them
 - Eye-track them
 - Time them
 - Record and count their clicks
Empirical investigation of the effect of ranking

How can we measure how important ranking is?

- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to “think aloud”
 - Interview them
 - Eye-track them
 - Time them
 - Record and count their clicks

- The following slides are from Dan Russell’s JCDL talk
Empirical investigation of the effect of ranking

- How can we measure how important ranking is?
- Observe what searchers do when they are searching in a controlled setting
 - Videotape them
 - Ask them to “think aloud”
 - Interview them
 - Eye-track them
 - Time them
 - Record and count their clicks

- The following slides are from Dan Russell’s JCDL talk
- Dan Russell is the “Über Tech Lead for Search Quality & User Happiness” at Google.
So.. Did you notice the FTD official site?

To be honest, I didn’t even look at that.

At first I saw “from $20” and $20 is what I was looking for.

To be honest, 1800-flowers is what I’m familiar with and why I went there next even though I kind of assumed they wouldn’t have $20 flowers.

And you knew they were expensive?

I knew they were expensive but I thought “hey, maybe they’ve got some flowers for under $20 here…”

But you didn’t notice the FTD?

No I didn’t, actually… that’s really funny.
Rapidly scanning the results

Note scan pattern:

Page 3:
- Result 1
- Result 2
- Result 3
- Result 4
- Result 3
- Result 2
- Result 4
- Result 5
- Result 6 <click>

Q: Why do this?
A: What’s learned later influences judgment of earlier content.
Kinds of behaviors we see in the data

Short / Nav

Topic exploration

Topic switch

Methodical results exploration

Query reform

Multitasking

Task 2

Stacking behavior
How many links do users view?

Total number of abstracts viewed per page

Mean: 3.07 Median/Mode: 2.00

Dip after page break
Looking vs. Clicking

- Users view results one and two more often / thoroughly
- Users click most frequently on result one
Presentation bias – reversed results

- Order of presentation influences where users look **AND** where they click

![Graph showing probability of click for normal and swapped orders]

- More relevant
Importance of ranking: Summary

- **Viewing abstracts**: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).
Importance of ranking: Summary

- **Viewing abstracts**: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).

- **Clicking on hits**: Distribution is even more skewed for clicking
Importance of ranking: Summary

- **Viewing abstracts:** Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).

- **Clicking on hits:** Distribution is even more skewed for clicking.

- In 1 out of 2 cases, users click on the top-ranked page.
Importance of ranking: Summary

- **Viewing abstracts**: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).
- **Clicking on hits**: Distribution is even more skewed for clicking.
 - In 1 out of 2 cases, users click on the top-ranked page.
 - Even if the top-ranked page is not relevant, 30% of users will click on it.
Importance of ranking: Summary

- **Viewing abstracts:** Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).

- **Clicking on hits:** Distribution is even more skewed for clicking.

 - In 1 out of 2 cases, users click on the top-ranked page.
 - Even if the top-ranked page is not relevant, 30% of users will click on it.

- → Getting the ranking right is very important.
Importance of ranking: Summary

- **Viewing abstracts:** Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).

- **Clicking on hits:** Distribution is even more skewed for clicking:
 - In 1 out of 2 cases, users click on the top-ranked page.
 - Even if the top-ranked page is not relevant, 30% of users will click on it.

→ Getting the ranking right is very important.

→ Getting the top-ranked page right is most important.
Importance of ranking: Summary

- **Viewing abstracts:** Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).

- **Clicking on hits:** Distribution is even more skewed for clicking.
 - In 1 out of 2 cases, users click on the top-ranked page.
 - Even if the top-ranked page is not relevant, 30% of users will click on it.

→ **Getting the ranking right is very important.**

→ **Getting the top-ranked page right is most important.**
A problem for cosine normalization

- Query q: “anti-doping rules Beijing 2008 olympics”
A problem for cosine normalization

- Query q: “anti-doping rules Beijing 2008 olympics”
- Compare three documents
A problem for cosine normalization

- Query q: “anti-doping rules Beijing 2008 olympics”
- Compare three documents
 - d_1: a short document on anti-doping rules at 2008 olympics
A problem for cosine normalization

- Query q: “anti-doping rules Beijing 2008 olympics”
- Compare three documents
 - d_1: a short document on anti-doping rules at 2008 olympics
 - d_2: a long document that consists of a copy of d_1 and 5 other short stories on the 2008 olympics, all on topics different from anti-doping rules
A problem for cosine normalization

- Query q: “anti-doping rules Beijing 2008 olympics”
- Compare three documents
 - d_1: a short document on anti-doping rules at 2008 olympics
 - d_2: a long document that consists of a copy of d_1 and 5 other short stories on the 2008 olympics, all on topics different from anti-doping rules
 - d_3: a short document on anti-doping rules at the 2004 Athens olympics
A problem for cosine normalization

- Query \(q \): “anti-doping rules Beijing 2008 olympics”
- Compare three documents
 - \(d_1 \): a short document on anti-doping rules at 2008 olympics
 - \(d_2 \): a long document that consists of a copy of \(d_1 \) and 5 other short stories on the 2008 olympics, all on topics different from anti-doping rules
 - \(d_3 \): a short document on anti-doping rules at the 2004 Athens olympics
- What ranking do we expect in the vector space model?
A problem for cosine normalization

- Query \(q \): “anti-doping rules Beijing 2008 olympics”
- Compare three documents
 - \(d_1 \): a short document on anti-doping rules at 2008 olympics
 - \(d_2 \): a long document that consists of a copy of \(d_1 \) and 5 other short stories on the 2008 olympics, all on topics different from anti-doping rules
 - \(d_3 \): a short document on anti-doping rules at the 2004 Athens olympics
- What ranking do we expect in the vector space model?
 - \(d_2 \) is likely to be ranked below \(d_3 \) . . .
A problem for cosine normalization

- Query q: “anti-doping rules Beijing 2008 olympics”
- Compare three documents
 - d_1: a short document on anti-doping rules at 2008 olympics
 - d_2: a long document that consists of a copy of d_1 and 5 other short stories on the 2008 olympics, all on topics different from anti-doping rules
 - d_3: a short document on anti-doping rules at the 2004 Athens olympics
- What ranking do we expect in the vector space model?
 - d_2 is likely to be ranked below d_3 ...
 - ...but d_2 is more relevant than d_3.
Query \(q \): “anti-doping rules Beijing 2008 olympics”

Compare three documents

- \(d_1 \): a short document on anti-doping rules at 2008 olympics
- \(d_2 \): a long document that consists of a copy of \(d_1 \) and 5 other short stories on the 2008 olympics, all on topics different from anti-doping rules
- \(d_3 \): a short document on anti-doping rules at the 2004 Athens olympics

What ranking do we expect in the vector space model?

- \(d_2 \) is likely to be ranked below \(d_3 \) . . .
- . . . but \(d_2 \) is more relevant than \(d_3 \).

What can we do about this?
Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).
Pivot normalization

- Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).
- Adjust cosine normalization by linear adjustment: “turning” the average normalization on the pivot.
Pivot normalization

- Cosine normalization produces weights that are **too large for short documents** and **too small for long documents** (on average).
- Adjust cosine normalization by linear adjustment: “turning” the average normalization on the pivot
- Effect: Similarities of short documents with query decrease; similarities of long documents with query increase.
Pivot normalization

- Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).
- Adjust cosine normalization by linear adjustment: “turning” the average normalization on the pivot
- Effect: Similarities of short documents with query decrease; similarities of long documents with query increase.
- This removes an unfair advantage that short documents have.
Pivot normalization

- Cosine normalization produces weights that are too large for short documents and too small for long documents (on average).
- Adjust cosine normalization by linear adjustment: “turning” the average normalization on the pivot
- Effect: Similarities of short documents with query decrease; similarities of long documents with query increase.
- This removes an unfair advantage that short documents have.
- Note that “pivoted” scores are no longer bounded by 1.
Predicted and true probability of relevance
Pivot normalization

\[\text{Cosine Normalization} \]

\[\text{Pivoted Normalization} \]

\[\alpha \]

\[\text{slope} = \tan(\alpha) \]

source: Lillian Lee
Outline

1. Recap
2. Why rank?
3. More on cosine
4. Implementation
5. The complete search system
Now we also need term frequency in the index

<table>
<thead>
<tr>
<th>Name</th>
<th>Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brutus</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>7,3</td>
</tr>
<tr>
<td></td>
<td>83,1</td>
</tr>
<tr>
<td></td>
<td>87,2</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>Caesar</td>
<td>1,1</td>
</tr>
<tr>
<td></td>
<td>5,1</td>
</tr>
<tr>
<td></td>
<td>13,1</td>
</tr>
<tr>
<td></td>
<td>17,1</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>7,1</td>
</tr>
<tr>
<td></td>
<td>8,2</td>
</tr>
<tr>
<td></td>
<td>40,1</td>
</tr>
<tr>
<td></td>
<td>97,3</td>
</tr>
</tbody>
</table>
Now we also need term frequency in the index

<table>
<thead>
<tr>
<th>Term</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brutus</td>
<td>1,2 7,3 83,1 87,2 ...</td>
</tr>
<tr>
<td>Caesar</td>
<td>1,1 5,1 13,1 17,1 ...</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>7,1 8,2 40,1 97,3</td>
</tr>
</tbody>
</table>

term frequencies
Now we also need term frequency in the index

Brutus → 1,2 7,3 83,1 87,2 ...

Caesar → 1,1 5,1 13,1 17,1 ...

Calpurnia → 7,1 8,2 40,1 97,3

term frequencies

We also need positions. Not shown here.
Term frequencies in the inverted index

- In each posting, store $tf_{t,d}$ in addition to docID d
Term frequencies in the inverted index

- In each posting, store $tf_{t,d}$ in addition to docID d
- As an integer frequency, not as a (log-)weighted real number
Term frequencies in the inverted index

- In each posting, store $tf_{t,d}$ in addition to docID d.
- As an integer frequency, not as a (log-)weighted real number.
- ... because real numbers are difficult to compress.
Term frequencies in the inverted index

- In each posting, store $tf_{t,d}$ in addition to docID d
- As an integer frequency, not as a (log-)weighted real number
 ...
- ...because real numbers are difficult to compress.
- Unary code is effective for encoding term frequencies.
Term frequencies in the inverted index

- In each posting, store $tf_{t,d}$ in addition to docID d
- As an integer frequency, not as a (log-)weighted real number
 ... because real numbers are difficult to compress.
- Unary code is effective for encoding term frequencies.
- Why?
Term frequencies in the inverted index

- In each posting, store $tf_{t,d}$ in addition to docID d
- As an integer frequency, not as a (log-)weighted real number
 - ... because real numbers are difficult to compress.
- Unary code is effective for encoding term frequencies.
- Why?
- Overall, additional space requirements are small: much less than a byte per posting.
How do we compute the top k in ranking?

- In many applications, we don’t need a complete ranking.
How do we compute the top k in ranking?

- In many applications, we don’t need a complete ranking.
- We just need the top k for a small k (e.g., $k = 100$).
How do we compute the top k in ranking?

- In many applications, we don’t need a complete ranking.
- We just need the top k for a small k (e.g., $k = 100$).
- If we don’t need a complete ranking, is there an efficient way of computing just the top k?
How do we compute the top k in ranking?

- In many applications, we don’t need a complete ranking.
- We just need the top k for a small k (e.g., $k = 100$).
- If we don’t need a complete ranking, is there an efficient way of computing just the top k?
- Naive:
How do we compute the top k in ranking?

- In many applications, we don’t need a complete ranking.
- We just need the top k for a small k (e.g., $k = 100$).
- If we don’t need a complete ranking, is there an efficient way of computing just the top k?
- Naive:
 - Compute scores for all N documents
How do we compute the top k in ranking?

- In many applications, we don’t need a complete ranking.
- We just need the top k for a small k (e.g., $k = 100$).
- If we don’t need a complete ranking, is there an efficient way of computing just the top k?
- Naive:
 - Compute scores for all N documents
 - Sort
How do we compute the top k in ranking?

In many applications, we don’t need a complete ranking.

We just need the top k for a small k (e.g., $k = 100$).

If we don’t need a complete ranking, is there an efficient way of computing just the top k?

Naive:
- Compute scores for all N documents
- Sort
- Return the top k
How do we compute the top k in ranking?

- In many applications, we don’t need a complete ranking.
- We just need the top k for a small k (e.g., $k = 100$).
- If we don’t need a complete ranking, is there an efficient way of computing just the top k?

Naive:
- Compute scores for all N documents
- Sort
- Return the top k

What’s bad about this?
How do we compute the top k in ranking?

- In many applications, we don’t need a complete ranking.
- We just need the top k for a small k (e.g., $k = 100$).
- If we don’t need a complete ranking, is there an efficient way of computing just the top k?
- Naive:
 - Compute scores for all N documents
 - Sort
 - Return the top k
- What’s bad about this?
- Alternative?
Use heap for selecting the top k

- A heap efficiently implements a priority queue.
Use heap for selecting the top k

- A heap efficiently implements a priority queue.
- Binary tree in which each node’s value is greater than the values of its children.
Use heap for selecting the top k

- A heap efficiently implements a priority queue.
- Binary tree in which each node’s value is greater than the values of its children.
- Takes $O(N)$ operations to construct (where N is the number of documents) . . .
Use heap for selecting the top k

- A heap efficiently implements a priority queue.
- Binary tree in which each node’s value is greater than the values of its children.
- Takes $O(N)$ operations to construct (where N is the number of documents) . . .
- . . . then each of k winners read off in $O(k \log k)$ steps
Use heap for selecting the top k

- A heap efficiently implements a priority queue.
- Binary tree in which each node’s value is greater than the values of its children.
- Takes $O(N)$ operations to construct (where N is the number of documents) . . .
- . . . then each of k winners read off in $O(k \log k)$ steps
- Essentially linear in N for small k and large N.

Schütze: Scores in a complete search system
Binary max heap
Even more efficient computation of top k?

- Ranking has time complexity $O(N)$ where N is the number of documents.
Even more efficient computation of top k?

- Ranking has time complexity $O(N)$ where N is the number of documents.
- Optimizations reduce the constant factor, but they are still $O(N)$.
Even more efficient computation of top k?

- Ranking has time complexity $O(N)$ where N is the number of documents.
- Optimizations reduce the constant factor, but they are still $O(N)$.
- Are there sublinear algorithms?
Even more efficient computation of top k?

- Ranking has time complexity $O(N)$ where N is the number of documents.
- Optimizations reduce the constant factor, but they are still $O(N)$.
- Are there sublinear algorithms?
- Ideas?
Even more efficient computation of top k?

- Ranking has time complexity $O(N)$ where N is the number of documents.
- Optimizations reduce the constant factor, but they are still $O(N)$.
- Are there sublinear algorithms?
- Ideas?
- What we’re doing in effect: solving the k-nearest neighbor (kNN) problem for the query vector (= query point).
Even more efficient computation of top k?

- Ranking has time complexity $O(N)$ where N is the number of documents.
- Optimizations reduce the constant factor, but they are still $O(N)$.
- Are there sublinear algorithms?
- Ideas?
- What we’re doing in effect: solving the k-nearest neighbor (kNN) problem for the query vector (= query point).
- There are no general solutions to this problem that are sublinear.
Even more efficient computation of top k?

- Ranking has time complexity $O(N)$ where N is the number of documents.
- Optimizations reduce the constant factor, but they are still $O(N)$.
- Are there sublinear algorithms?
- Ideas?
- What we’re doing in effect: solving the k-nearest neighbor (kNN) problem for the query vector (≡ query point).
- There are no general solutions to this problem that are sublinear.
- We will revisit this issue when we do kNN classification in IIR 14.
Non-docID ordering of postings lists

- So far: postings lists are ordered according to docID
Non-docID ordering of postings lists

- So far: postings lists are ordered according to docID
- Alternative: a query-independent measure of “goodness” of a page.
Non-docID ordering of postings lists

- So far: postings lists are ordered according to docID
- Alternative: a query-independent measure of “goodness” of a page.
- Example: PageRank $g(d)$ of page d, a measure of how many “good” pages hyperlink to d
Non-docID ordering of postings lists

- So far: postings lists are ordered according to docID
- Alternative: a query-independent measure of “goodness” of a page.
- Example: PageRank $g(d)$ of page d, a measure of how many “good” pages hyperlink to d
- Order documents in postings lists according to PageRank: $g(d_1) > g(d_2) > g(d_3) > \ldots$
Non-docID ordering of postings lists

- So far: postings lists are ordered according to docID
- Alternative: a query-independent measure of “goodness” of a page.
- Example: PageRank \(g(d) \) of page \(d \), a measure of how many “good” pages hyperlink to \(d \)
- Order documents in postings lists according to PageRank:
 \[g(d_1) > g(d_2) > g(d_3) > \ldots \]
- Define composite score of a document:
 \[
 \text{net-score}(q, d) = g(d) + \cos(q, d)
 \]
Non-docID ordering of postings lists

- So far: postings lists are ordered according to docID.
- Alternative: a query-independent measure of “goodness” of a page.
- Example: PageRank $g(d)$ of page d, a measure of how many “good” pages hyperlink to d.
- Order documents in postings lists according to PageRank: $g(d_1) > g(d_2) > g(d_3) > \ldots$
- Define composite score of a document:

$$\text{net-score}(q, d) = g(d) + \cos(q, d)$$

- This scheme supports early termination: We do not have to process postings lists in their entirety to find top k.
Non-docID ordering of postings lists (2)

- Order documents in postings lists according to PageRank:
 \[g(d_1) > g(d_2) > g(d_3) > \ldots \]
- Define composite score of a document:
 \[
 \text{net-score}(q, d) = g(d) + \cos(q, d)
 \]
Non-docID ordering of postings lists (2)

- Order documents in postings lists according to PageRank:
 \[g(d_1) > g(d_2) > g(d_3) > \ldots \]
- Define composite score of a document:
 \[
 \text{net-score}(q, d) = g(d) + \cos(q, d)
 \]
- Suppose: (i) \(g \rightarrow [0, 1] \); (ii) \(g(d) < 0.1 \) for the document \(d \) we’re currently processing; (iii) smallest top \(k \) score we’ve found so far is 1.2
Non-docID ordering of postings lists (2)

- Order documents in postings lists according to PageRank:
 \[g(d_1) > g(d_2) > g(d_3) > \ldots \]
- Define composite score of a document:
 \[\text{net-score}(q, d) = g(d) + \cos(q, d) \]

- Suppose: (i) \(g \to [0, 1] \); (ii) \(g(d) < 0.1 \) for the document \(d \) we’re currently processing; (iii) smallest top \(k \) score we’ve found so far is 1.2
- Then all subsequent scores will be < 1.1.
Non-docID ordering of postings lists (2)

- Order documents in postings lists according to PageRank:
 \[g(d_1) > g(d_2) > g(d_3) > \ldots \]
- Define composite score of a document:
 \[
 \text{net-score}(q, d) = g(d) + \cos(q, d)
 \]

- Suppose: (i) \(g \rightarrow [0, 1] \); (ii) \(g(d) < 0.1 \) for the document \(d \) we’re currently processing; (iii) smallest top \(k \) score we’ve found so far is 1.2
- Then all subsequent scores will be \(< 1.1\).
- So we’ve already found the top \(k \) and can stop processing the remainder of postings lists.
Non-docID ordering of postings lists (2)

- Order documents in postings lists according to PageRank:
 \[g(d_1) > g(d_2) > g(d_3) > \ldots \]
- Define composite score of a document:
 \[
 \text{net-score}(q, d) = g(d) + \cos(q, d)
 \]
- Suppose: (i) \(g \to [0, 1] \); (ii) \(g(d) < 0.1 \) for the document \(d \) we’re currently processing; (iii) smallest top \(k \) score we’ve found so far is 1.2
- Then all subsequent scores will be < 1.1.
- So we’ve already found the top \(k \) and can stop processing the remainder of postings lists.
- Questions?
Document-at-a-time processing

- Both docID-ordering and PageRank-ordering impose a consistent ordering on documents in postings lists.
Document-at-a-time processing

- Both docID-ordering and PageRank-ordering impose a consistent ordering on documents in postings lists.
- Computing cosines in this scheme is document-at-a-time.
Document-at-a-time processing

- Both docID-ordering and PageRank-ordering impose a consistent ordering on documents in postings lists.
- Computing cosines in this scheme is document-at-a-time.
- We complete computation of the cosine score of document d_i before starting to compute the cosine score of d_{i+1}.
Document-at-a-time processing

- Both docID-ordering and PageRank-ordering impose a consistent ordering on documents in postings lists.
- Computing cosines in this scheme is document-at-a-time.
- We complete computation of the cosine score of document d_i before starting to compute the cosine score of d_{i+1}.
- Alternative: term-at-a-time processing
Weight-sorted postings lists

- Idea: don’t process postings that contribute little to final score
Weight-sorted postings lists

- Idea: don’t process postings that contribute little to final score
- Order documents in inverted list according to weight
Weight-sorted postings lists

- Idea: don’t process postings that contribute little to final score
- Order documents in inverted list according to weight
- Simplest case: normalized tf-idf weight (rarely done: hard to compress)
Weight-sorted postings lists

- Idea: don’t process postings that contribute little to final score
- Order documents in inverted list according to weight
- Simplest case: normalized tf-idf weight (rarely done: hard to compress)
- Documents in the top k are likely to occur early in these ordered lists
Weight-sorted postings lists

- Idea: don’t process postings that contribute little to final score
- Order documents in inverted list according to weight
- Simplest case: normalized tf-idf weight (rarely done: hard to compress)
- Documents in the top k are likely to occur early in these ordered lists
- Early termination while processing inverted lists is unlikely to change top k
Weight-sorted postings lists

- Idea: don’t process postings that contribute little to final score
- Order documents in inverted list according to weight
- Simplest case: normalized tf-idf weight (rarely done: hard to compress)
- Documents in the top k are likely to occur early in these ordered lists
- Early termination while processing inverted lists is unlikely to change top k
- We no longer have a consistent ordering of documents in postings lists.
Weight-sorted postings lists

- Idea: don’t process postings that contribute little to final score
- Order documents in inverted list according to **weight**
- Simplest case: normalized tf-idf weight (rarely done: hard to compress)
- Documents in the top k are likely to occur early in these ordered lists
- Early termination while processing inverted lists is unlikely to change top k
- We no longer have a consistent ordering of documents in postings lists.
- We no longer can employ document-at-a-time processing.
Term-at-a-time processing

- Simplest case: completely process the postings list of the first query term
Term-at-a-time processing

- Simplest case: completely process the postings list of the first query term
- Create an accumulator for each docID you encounter
Term-at-a-time processing

- Simplest case: completely process the postings list of the first query term
- Create an accumulator for each docID you encounter
- Then completely process the postings list of the second query term
Term-at-a-time processing

- Simplest case: completely process the postings list of the first query term
- Create an accumulator for each docID you encounter
- Then completely process the postings list of the second query term
- ... and so forth
Term-at-a-time processing

- Simplest case: completely process the postings list of the first query term
- Create an accumulator for each docID you encounter
- Then completely process the postings list of the second query term
- ... and so forth
- For early termination in weight-sorted indexes, we can interleave term-at-a-time and document-at-a-time processing.
Term-at-a-time processing

CosineScore(q)

1. $\text{float } \text{Scores}[N] = 0$
2. $\text{float } \text{Length}[N]$
3. for each query term t
4. do calculate $w_{t,q}$ and fetch postings list for t
5. for each pair(d, $tf_{t,d}$) in postings list
6. do $\text{Scores}[d] += w_{t,d} \times w_{t,q}$
7. Read the array Length
8. for each d
9. do $\text{Scores}[d] = \text{Scores}[d]/\text{Length}[d]$
10. return Top k components of $\text{Scores}[]$

The elements of the array “Scores” are called **accumulators**.
Computing cosine scores

- For the web (20 billion documents), an array of accumulators A in memory is infeasible.
Computing cosine scores

- For the web (20 billion documents), an array of accumulators A in memory is infeasible.
- Thus: Only create accumulators for docs occurring in postings lists
Computing cosine scores

- For the web (20 billion documents), an array of accumulators A in memory is infeasible.
- Thus: Only create accumulators for docs occurring in postings lists.
- This is equivalent to: Do not create accumulators for docs with zero scores (i.e., docs that do not contain any of the query terms).
Accumulators

<table>
<thead>
<tr>
<th>Name</th>
<th>Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brutus</td>
<td>1,2 7,3 83,1 87,2 ...</td>
</tr>
<tr>
<td>Caesar</td>
<td>1,1 5,1 13,1 17,1 ...</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>7,1 8,2 40,1 97,3</td>
</tr>
</tbody>
</table>

- For query: “Brutus Caesar”:

Schütze: Scores in a complete search system
Accumulators

- **Brutus** → 1,2 7,3 83,1 87,2 ...
- **Caesar** → 1,1 5,1 13,1 17,1 ...
- **Calpurnia** → 7,1 8,2 40,1 97,3

- For query: “Brutus Caesar”:
- Only need accumulators for 1, 5, 7, 13, 17, 83, 87
Accumulators

- **Brutus** → 1,2 7,3 83,1 87,2 ...
- **Caesar** → 1,1 5,1 13,1 17,1 ...
- **Calpurnia** → 7,1 8,2 40,1 97,3

For query: “Brutus Caesar”:
- Only need accumulators for 1, 5, 7, 13, 17, 83, 87
- Don’t need accumulators for 8, 40, 97
Removing bottlenecks

- Use heap / priority queue as discussed earlier
Removing bottlenecks

- Use heap / priority queue as discussed earlier
- Can further limit to docs with non-zero cosines on rare (high idf) words
Removing bottlenecks

- Use heap / priority queue as discussed earlier
- Can further limit to docs with non-zero cosines on rare (high idf) words
- Or enforce conjunctive search (a la Google): non-zero cosines on all words in query
Removing bottlenecks

- Use heap / priority queue as discussed earlier
- Can further limit to docs with non-zero cosines on rare (high idf) words
- Or enforce conjunctive search (a la Google): non-zero cosines on all words in query
- Example: just one accumulator for “Brutus Caesar” in the example above . . .
Removing bottlenecks

- Use heap / priority queue as discussed earlier
- Can further limit to docs with non-zero cosines on rare (high idf) words
- Or enforce conjunctive search (a la Google): non-zero cosines on all words in query
- Example: just one accumulator for “Brutus Caesar” in the example above . . .
- . . . because only d_1 contains both words.
Outline

1. Recap
2. Why rank?
3. More on cosine
4. Implementation
5. The complete search system
Tiered indexes

- Basic idea:
Tiered indexes

- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
Tiered indexes

- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
 - During query processing, start with highest-tier index
Tiered indexes

Basic idea:
- Create several tiers of indexes, corresponding to importance of indexing terms
- During query processing, start with highest-tier index
- If highest-tier index returns at least \(k \) (e.g., \(k = 100 \)) results: stop and return results to user
Tiered indexes

- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
 - During query processing, start with highest-tier index
 - If highest-tier index returns at least k (e.g., $k = 100$) results: stop and return results to user
 - If we’ve only found $< k$ hits: repeat for next index in tier cascade
Tiered indexes

- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
 - During query processing, start with highest-tier index
 - If highest-tier index returns at least k (e.g., $k = 100$) results: stop and return results to user
 - If we’ve only found $< k$ hits: repeat for next index in tier cascade

- Example: two-tier system
Tiered indexes

- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
 - During query processing, start with highest-tier index
 - If highest-tier index returns at least k (e.g., $k = 100$) results: stop and return results to user
 - If we’ve only found $< k$ hits: repeat for next index in tier cascade

- Example: two-tier system
 - Tier 1: Index of all titles
Tiered indexes

- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
 - During query processing, start with highest-tier index
 - If highest-tier index returns at least k (e.g., $k = 100$) results: stop and return results to user
 - If we’ve only found $< k$ hits: repeat for next index in tier cascade

- Example: two-tier system
 - Tier 1: Index of all titles
 - Tier 2: Index of the rest of documents
Tiered indexes

- Basic idea:
 - Create several tiers of indexes, corresponding to importance of indexing terms
 - During query processing, start with highest-tier index
 - If highest-tier index returns at least k (e.g., $k = 100$) results: stop and return results to user
 - If we’ve only found $< k$ hits: repeat for next index in tier cascade

- Example: two-tier system
 - Tier 1: Index of all titles
 - Tier 2: Index of the rest of documents
 - Pages containing the search words in the title are better hits than pages containing the search words in the body of the text.
Tiered index

Tier 1
- auto → Doc2
- best
- car → Doc1 → Doc3
- insurance → Doc2 → Doc3

Tier 2
- auto
- best → Doc1 → Doc3
- car
- insurance

Tier 3
- auto → Doc1
- best
- car → Doc2
- insurance
Tiered indexes

- The use of tiered indexes is believed to be one of the reasons that Google search quality was significantly higher initially (2000/01) than that of competitors.
The use of tiered indexes is believed to be one of the reasons that Google search quality was significantly higher initially (2000/01) than that of competitors.

(along with PageRank, use of anchor text and proximity constraints)
Complete search system

- Documents
- Parsing Linguistics
- Indexers
- Metadata in zone and field indexes
- Inexact top K retrieval
- Tiered inverted positional index
- k-gram
- Scoring parameters MLR
- Training set
- Results page
- User query
- Free text query parser
- Spell correction
- Scoring and ranking
- Indexes
Components we have introduced thus far

- Document preprocessing (linguistic and otherwise)
Components we have introduced thus far

- Document preprocessing (linguistic and otherwise)
- Positional indexes
Components we have introduced thus far

- Document preprocessing (linguistic and otherwise)
- Positional indexes
- Tiered indexes
Components we have introduced thus far

- Document preprocessing (linguistic and otherwise)
- Positional indexes
- Tiered indexes
- Spelling correction
Components we have introduced thus far

- Document preprocessing (linguistic and otherwise)
- Positional indexes
- Tiered indexes
- Spelling correction
- k-gram indexes for wildcard queries and spelling correction
Components we have introduced thus far

- Document preprocessing (linguistic and otherwise)
- Positional indexes
- Tiered indexes
- Spelling correction
- k-gram indexes for wildcard queries and spelling correction
- Query processing
Components we have introduced thus far

- Document preprocessing (linguistic and otherwise)
- Positional indexes
- Tiered indexes
- Spelling correction
- K-gram indexes for wildcard queries and spelling correction
- Query processing
- Document scoring
Components we have introduced thus far

- Document preprocessing (linguistic and otherwise)
- Positional indexes
- Tiered indexes
- Spelling correction
- k-gram indexes for wildcard queries and spelling correction
- Query processing
- Document scoring
- Term-at-a-time processing
Components we haven’t covered yet

- Document cache: we need this for generating snippets (≈ dynamic summaries)
Components we haven’t covered yet

- Document cache: we need this for generating snippets (= dynamic summaries)
- Zone indexes: They separate the indexes for different zones: the body of the document, all highlighted text in the document, anchor text, text in metadata fields etc
Components we haven’t covered yet

- Document cache: we need this for generating snippets (= dynamic summaries)
- Zone indexes: They separate the indexes for different zones: the body of the document, all highlighted text in the document, anchor text, text in metadata fields etc
- Machine-learned ranking functions
Components we haven’t covered yet

- **Document cache**: we need this for generating snippets (= dynamic summaries)
- **Zone indexes**: They separate the indexes for different zones: the body of the document, all highlighted text in the document, anchor text, text in metadata fields etc
- **Machine-learned ranking functions**
- **Proximity ranking** (e.g., rank documents in which the query terms occur in the same local window higher than documents in which the query terms occur far from each other)
Components we haven’t covered yet: Query parser

- IR systems often guess what the user intended.
Components we haven’t covered yet: Query parser

- IR systems often guess what the user intended.
- The two-term query *London tower* (without quotes) may be interpreted as the phrase query “*London tower*”.
Components we haven’t covered yet: Query parser

- IR systems often guess what the user intended.
- The two-term query *London tower* (without quotes) may be interpreted as the phrase query “*London tower*”.
- The query *100 Madison Avenue, New York* may be interpreted as a request for a map.
Components we haven’t covered yet: Query parser

- IR systems often guess what the user intended.
- The two-term query *London tower* (without quotes) may be interpreted as the phrase query “*London tower*”.
- The query *100 Madison Avenue, New York* may be interpreted as a request for a map.
- How do we “parse” the query and translate it into a formal specification containing phrase operators, proximity operators, indexes to search etc.?
Vector space retrieval: Complications

- How do we combine phrase retrieval with vector space retrieval?
Vector space retrieval: Complications

- How do we combine phrase retrieval with vector space retrieval?
- We do not want to compute document frequency / idf for every possible phrase. Why?
Vector space retrieval: Complications

- How do we combine phrase retrieval with vector space retrieval?
- We do not want to compute document frequency / idf for every possible phrase. Why?
- How do we combine Boolean retrieval with vector space retrieval?
Vector space retrieval: Complications

- How do we combine phrase retrieval with vector space retrieval?
- We do not want to compute document frequency / idf for every possible phrase. Why?
- How do we combine Boolean retrieval with vector space retrieval?
- For example: “+”-constraints and “-”-constraints
Vector space retrieval: Complications

- How do we combine phrase retrieval with vector space retrieval?
- We do not want to compute document frequency / idf for every possible phrase. Why?
- How do we combine Boolean retrieval with vector space retrieval?
- For example: “+”-constraints and “-”-constraints
- Postfiltering is simple, but can be very inefficient – no easy answer.
Vector space retrieval: Complications

- How do we combine phrase retrieval with vector space retrieval?
- We do not want to compute document frequency / idf for every possible phrase. Why?
- How do we combine Boolean retrieval with vector space retrieval?
- For example: “+”-constraints and “-”-constraints
- Postfiltering is simple, but can be very inefficient – no easy answer.
- How do we combine wild cards with vector space retrieval?
Vector space retrieval: Complications

- How do we combine phrase retrieval with vector space retrieval?
- We do not want to compute document frequency / idf for every possible phrase. Why?
- How do we combine Boolean retrieval with vector space retrieval?
- For example: “+”-constraints and “-”-constraints
- Postfiltering is simple, but can be very inefficient – no easy answer.
- How do we combine wild cards with vector space retrieval?
- Again, no easy answer
Resources

- Chapters 6 and 7 of IIR
Resources

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir
Resources

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir
- How Google tweaks its ranking function
Resources

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir
- How Google tweaks its ranking function
- Interview with Google search guru Udi Manber
Resources

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir
- How Google tweaks its ranking function
- Interview with Google search guru Udi Manber
- Yahoo SearchMonkey: Opens up the search engine to developers. For example, you can rerank search results.