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The web as a directed graph

page d1 anchor text page d2

hyperlink

Assumption 1: A hyperlink is a quality signal.

A hyperlink between pages denotes that the author perceived relevance.

Assumption 2: The anchor text describes the target page d2.

We use anchor text somewhat loosely here: the text surrounding the
hyperlink. Example: “You can find cheap cars <a
href=http://...>here</a>.”

Examples for hyperlinks that violate these two assumptions?
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Indexing anchor text

Thus: Anchor text is often a better description of a page’s
content than the page itself.

Anchor text can be weighted more highly than document text.
(based on Assumptions 1&2)

Indexing anchor text can have unexpected side effects –
Google bombs.

A Google bomb is a search with “bad” results due to
maliciously manipulated anchor text.

Google introduced a new weighting function in January 2007
that fixed many google bombs.

Any “live” Google bombs?
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“who is a failure” on Google
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Origins of PageRank: Citation analysis (1)

Citation analysis: analysis of citations in the scientific
literature

Example citation: “Miller (2001) has shown that physical
activity alters the metabolism of estrogens.”

“Miller (2001)” is a hyperlink linking two scientific articles.

One application of these “hyperlinks” in the scientific
literature:

Measure the similarity of two articles by the overlap of other
articles citing them.
This is called cocitation similarity.

Cocitation similarity on the web?
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Origins of PageRank: Citation analysis (2)

Citation frequency can be used to measure the impact of an
article.

Each article gets one vote.
Not a very accurate measure

Better measure: weighted citation frequency / citation rank

An article’s vote is weighted according to its citation impact.
Circular? No: can be formalized in a well-defined way.
This is basically PageRank.
PageRank was invented in the context of citation analysis by
Pinsker and Narin in the 1960s.
Citation analysis is a big deal: The budget and salary of this
lecturer are / will be determined by the impact of his
publications!

Recall: Citation in scientific literature = hyperlink on the web
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Link-based ranking for web search

Simple version of using links for ranking on the web

First retrieve all pages satisfying the query (say venture capital)
Order these by the number of in-links

Simple link popularity (= number of in-links) is easy to spam.
Why?
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Basis for PageRank: Random walk

Imagine a web surfer doing a random walk on the web

Start at a random page
At each step, go out of the current page along one of the links
on that page, equiprobably

In the steady state, each page has a long-term visit rate.

This long-term visit rate is the page’s PageRank.

PageRank = steady state probability = long-term visit rate

Concept of long-term visit rate clear?
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Markov chains

A Markov chain consists of N states, plus an N ×N transition
probability matrix P.

state = page

At each step, we are on exactly one of the pages.

For 1 ≤ i , j ≤ N, the matrix entry Pij tells us the probability
of j being the next page, given we are currently on page i .

di dj

Pij
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Markov chains

Clearly, for all i,
∑N

j=1 Pij = 1

Markov chains are abstractions of random walks.
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Example web graph
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Link matrix for example

d0 d1 d2 d3 d4 d5 d6

d0 0 0 1 0 0 0 0
d1 0 1 1 0 0 0 0
d2 1 0 1 1 0 0 0
d3 0 0 0 1 1 0 0
d4 0 0 0 0 0 0 1
d5 0 0 0 0 0 1 1
d6 0 0 0 1 1 0 1
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Transition probability matrix P for example

d0 d1 d2 d3 d4 d5 d6

d0 0.00 0.00 1.00 0.00 0.00 0.00 0.00
d1 0.00 0.50 0.50 0.00 0.00 0.00 0.00
d2 0.33 0.00 0.33 0.33 0.00 0.00 0.00
d3 0.00 0.00 0.00 0.50 0.50 0.00 0.00
d4 0.00 0.00 0.00 0.00 0.00 0.00 1.00
d5 0.00 0.00 0.00 0.00 0.00 0.50 0.50
d6 0.00 0.00 0.00 0.33 0.33 0.00 0.33
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Long-term visit rate

Recall: PageRank = long-term visit rate

Long-term visit rate of page d is the probability that a web
surfer is at page d at a given point in time.

Next: what properties must hold of the web graph for the
long-term visit rate to be well defined?

The web graph must correspond to an ergodic Markov chain.

First a special case: The web graph must not contain dead
ends.
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Dead ends

??

The web is full of dead ends.

Random walk can get stuck in dead ends.

If there are dead ends, long-term visit rates are not
well-defined (or non-sensical).
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Teleporting

At a dead end, jump to a random web page

At any non-dead end, with probability 10%, jump to a random
web page

With remaining probability (90%), go out on a random
hyperlink (e.g., randomly choose with probability
(1-0.1)/4=0.225 one of the four hyperlinks of the page)

10% is a parameter.
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With teleporting, we cannot get stuck in a dead end.
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Result of teleporting

With teleporting, we cannot get stuck in a dead end.

Concept of teleporting clear?

Even without dead-ends, a graph may not have well-defined
long-term visit rates.

More generally, we require that the Markov chain be ergodic.
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Ergodic Markov chains

A Markov chain is ergodic iff it is irreducible and aperiodic.

Irreducibility. Roughly: there is a path from any page to any
other page.

Aperiodicity. Roughly: The pages cannot be partitioned such
that the random walker visits the partitions sequentially.

A non-ergodic Markov chain:

1.0

1.0
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Ergodic Markov chains

Theorem: For any ergodic Markov chain, there is a unique
long-term visit rate for each state.
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Ergodic Markov chains

Theorem: For any ergodic Markov chain, there is a unique
long-term visit rate for each state.

This is the steady-state probability distribution.

Over a long time period, we visit each state in proportion to
this rate.

It doesn’t matter where we start.
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( 0 0 0 . . . 1 . . . 0 0 0 )

1 2 3 . . . i . . . N-2 N-1 N

More generally: the random walk is on page i with probability
xi .

Example:
( 0.05 0.01 0.0 . . . 0.2 . . . 0.01 0.05 0.03 )

1 2 3 . . . i . . . N-2 N-1 N
∑

xi = 1
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Change in probability vector

If the probability vector is ~x = (x1, . . . , xN) at this step, what
is it at the next step?

Recall that row i of the transition probability matrix P tells us
where we go next from state i .

Equivalently: column j of P tells us “where we came from”
(and with which probability).

So from ~x , our next state is distributed as ~xP.

Schütze: Link analysis 27 / 60



Anchor text PageRank HITS

Steady state in vector notation

The steady state in vector notation is simply a vector
~π = (π1, π2, . . . , πN) of probabilities.

Schütze: Link analysis 28 / 60



Anchor text PageRank HITS

Steady state in vector notation

The steady state in vector notation is simply a vector
~π = (π1, π2, . . . , πN) of probabilities.

(We use ~π to distinguish it from the generic notation ~x for a
probability vector.)

Schütze: Link analysis 28 / 60



Anchor text PageRank HITS

Steady state in vector notation

The steady state in vector notation is simply a vector
~π = (π1, π2, . . . , πN) of probabilities.

(We use ~π to distinguish it from the generic notation ~x for a
probability vector.)

πi is the long-term visit rate (or PageRank) of page i .

Schütze: Link analysis 28 / 60



Anchor text PageRank HITS

Steady state in vector notation

The steady state in vector notation is simply a vector
~π = (π1, π2, . . . , πN) of probabilities.

(We use ~π to distinguish it from the generic notation ~x for a
probability vector.)

πi is the long-term visit rate (or PageRank) of page i .

So we can think of PageRank as a very long vector – one
entry per page.
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Steady state example

What is the steady state in this example?

d1 d2

0.75

0.25

0.25 0.
75
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Steady state example

What is the steady state in this example?

d1 d2

0.75

0.25

0.25 0.
75

Solution: ~π = (π1 π2) = (0.25 0.75)
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How do we compute the steady state vector?

In other words: how do we compute PageRank?

Recall: ~π = (π1, π2, . . . , πN) is the PageRank vector, the
vector of steady-state probabilities . . .

. . . and if the distribution in this step is described by ~x , then
the distribution in the next step is distributed as ~xP.

But ~π is the steady state! So: ~π = ~πP

Solving this matrix equation gives us ~π.

~π is the principal left eigenvector for P . . .

. . . that is, ~π is the left eigenvector with the largest eigenvalue.

Transition probability matrices always have largest eigenvalue
1.
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Recall: regardless of where we start (except for pathological
cases), we eventually reach the steady state ~π.
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One way of computing the PageRank ~π

Recall: regardless of where we start (except for pathological
cases), we eventually reach the steady state ~π.

Start with (almost) any distribution ~x , e.g., uniform
distribution

After one step, we’re at ~xP.

After two steps, we’re at ~xP2.

After k steps, we’re at ~xPk .

Algorithm: multiply ~x by increasing powers of P until the
product looks stable.

This is called the power method.

Schütze: Link analysis 31 / 60



Anchor text PageRank HITS

Power method: Example

Two-node example: ~x = (0.5, 0.5), P =

(

0.25 0.75
0.25 0.75

)
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Power method: Example

Two-node example: ~x = (0.5, 0.5), P =

(

0.25 0.75
0.25 0.75

)

~xP = (0.25, 0.75)

~xP2 = (0.25, 0.75)

Convergence in one iteration!
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PageRank summary

Preprocessing

Given graph of links, build matrix P

Apply teleportation
From modified matrix, compute ~π

~πi is the PageRank of page i .

Query processing

Retrieve pages satisfying the query
Rank them by their PageRank
Return reranked list to the user

Schütze: Link analysis 33 / 60
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PageRank issues

Real surfers are not random surfers – Markov model is not a
good model of surfing.
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PageRank issues

Real surfers are not random surfers – Markov model is not a
good model of surfing.

Issues: back button, short vs. long paths, bookmarks,
directories – and search!

Simple PageRank ranking (as described on previous slide)
produces bad results for many pages.

Consider the query video service

The Yahoo home page (i) has a very high PageRank and (ii)
contains both words.
If we rank all Boolean hits according to PageRank, then the
Yahoo home page would be top-ranked.
Clearly not desirable

In practice: rank according to weighted combination of many
factors, including raw text match, anchor text match,
PageRank and many other factors

Schütze: Link analysis 34 / 60



Anchor text PageRank HITS

Web graph example

d0

d2 d1

d5

d3 d6

d4

car benz

ford

gm

honda

jaguar

jag

cat

leopard

tiger

jaguar

lion

cheetah

speed
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Transition (probability) matrix

d0 d1 d2 d3 d4 d5 d6

d0 0.00 0.00 1.00 0.00 0.00 0.00 0.00
d1 0.00 0.50 0.50 0.00 0.00 0.00 0.00
d2 0.33 0.00 0.33 0.33 0.00 0.00 0.00
d3 0.00 0.00 0.00 0.50 0.50 0.00 0.00
d4 0.00 0.00 0.00 0.00 0.00 0.00 1.00
d5 0.00 0.00 0.00 0.00 0.00 0.50 0.50
d6 0.00 0.00 0.00 0.33 0.33 0.00 0.33
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Transition matrix with teleporting

d0 d1 d2 d3 d4 d5 d6

d0 0.02 0.02 0.88 0.02 0.02 0.02 0.02
d1 0.02 0.45 0.45 0.02 0.02 0.02 0.02
d2 0.31 0.02 0.31 0.31 0.02 0.02 0.02
d3 0.02 0.02 0.02 0.45 0.45 0.02 0.02
d4 0.02 0.02 0.02 0.02 0.02 0.02 0.88
d5 0.02 0.02 0.02 0.02 0.02 0.45 0.45
d6 0.02 0.02 0.02 0.31 0.31 0.02 0.31
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Power method vectors ~xP
k

~x ~xP1 ~xP2 ~xP3 ~xP4 ~xP5 ~xP6 ~xP7 ~xP8 ~xP9 ~xP10 ~xP11 ~xP12 ~xP13

d0 0.14 0.06 0.09 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05
d1 0.14 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
d2 0.14 0.25 0.18 0.17 0.15 0.14 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11
d3 0.14 0.16 0.23 0.24 0.24 0.24 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25
d4 0.14 0.12 0.16 0.19 0.19 0.20 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
d5 0.14 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
d6 0.14 0.25 0.23 0.25 0.27 0.28 0.29 0.29 0.30 0.30 0.30 0.30 0.31 0.31
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How important is PageRank?

Frequent claim: PageRank is the most important component
of web ranking.

The reality:

There are several components that are at least as important:
e.g., anchor text, phrases, proximity, tiered indexes . . .
Rumor has it that PageRank in its original form (as presented
here) has a negligible impact on ranking!
However, variants of a page’s PageRank are still an essential
part of ranking.
Adressing link spam is difficult and crucial.
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Outline

1 Anchor text

2 PageRank

3 HITS
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HITS – Hyperlink-Induced Topic Search

Premise: there are two different types of relevance on the web.

Relevance type 1: Hubs. A hub page is a good list of links to
pages answering the information need.

Bob’s list of recommended hotels in London

Relevance type 2: Authorities. An authority page is a direct
answer to the information need. Authority pages occur
repeatedly on hub pages.

Home page of Four Seasons Hotel London

Most approaches to search (including PageRank ranking)
don’t make the distinction between these two very different
types of relevance.
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Hubs and authorities

A good hub page for a topic points to many authority pages
for that topic.
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Hubs and authorities

A good hub page for a topic points to many authority pages
for that topic.

A good authority page for a topic is pointed to by many hub
pages for that topic.

Circular definition – we will turn this into an iterative
computation.
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Example for hubs and authorities

hubs authorities

www.bestfares.com

www.airlinesquality.com

blogs.usatoday.com/sky

aviationblog.dallasnews.com

www.aa.com

www.delta.com

www.united.com
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Example for hubs and authorities

hubs authorities

www.bestfares.com

www.airlinesquality.com

blogs.usatoday.com/sky

aviationblog.dallasnews.com

www.aa.com

www.delta.com

www.united.com

Definition
clear?
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Root set and base set (1)

Do a regular web search first

Call the search result the root set

Find all pages that are linked to or link to pages in the root set

Call this larger set the base set

Finally, compute hubs and authorities for this (small) web
graph
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Root set and base set (2)

root set
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Root set and base set (3)

Root set typically has 200–1000 nodes.

Base set may have up to 5000 nodes.

Computation of base set:

Follow out-links by parsing the pages in the root set
Find d ’s in-links by searching for all pages containing a link to
d

This assumes that our inverted index supports search for links
(in addition to terms).
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Hub and authority scores

Compute for each page d in the base set a hub score h(d) and
an authority score a(d)

Initialization: for all d : h(d) = 1, a(d) = 1

Iteratively update all h(d), a(d)

After convergence:

Output pages with highest h scores as top hubs
Output pages with highest a scores as top authorities
So we output two ranked lists
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For all d : h(d) =
∑

d 7→y a(y)

d

y1

y2

y3

For all d : a(d) =
∑

y 7→d h(y)

d

y1

y2

y3

Iterate these two steps until convergence
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Details

Scaling

To prevent the a() and h() values from getting too big, can
scale down after each iteration
Scaling factor doesn’t really matter.
We care about the relative (as opposed to absolute) values of
the scores.

In most cases, the algorithm converges after a few iterations.
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Japan elementary schools

The query was “Japan elementary schools”.
HITS pulled together good pages regardless of page content.
An English query was able to retrieve Japanese-language pages!
Once the base set is assembled, we only do link analysis, no text matching.
Danger: topic drift – the pages found by following links may not be related to the original
query.
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Proof of convergence

We define an N × N adjacency matrix A.

For 1 ≤ i , j ≤ N, the matrix entry Aij tells us whether there is
a link from page i to page j (Aij = 1) or not (Aij = 0).

Example:

d1

d2 d3

d1 d2 d3

d1 0 1 0
d2 1 1 1
d3 1 0 0

Schütze: Link analysis 51 / 60



Anchor text PageRank HITS

Write update rules as matrix operations

Define the hub vector ~h = (h1, . . . , hN) as the vector of hub
scores. hi is the hub score of page di .

Schütze: Link analysis 52 / 60



Anchor text PageRank HITS

Write update rules as matrix operations

Define the hub vector ~h = (h1, . . . , hN) as the vector of hub
scores. hi is the hub score of page di .

Similarly for ~a, the vector of authority scores

Schütze: Link analysis 52 / 60



Anchor text PageRank HITS

Write update rules as matrix operations

Define the hub vector ~h = (h1, . . . , hN) as the vector of hub
scores. hi is the hub score of page di .

Similarly for ~a, the vector of authority scores

Now we can write h(d) =
∑

d 7→y a(y) as a matrix operation:
~h = A~a . . .

Schütze: Link analysis 52 / 60



Anchor text PageRank HITS

Write update rules as matrix operations

Define the hub vector ~h = (h1, . . . , hN) as the vector of hub
scores. hi is the hub score of page di .

Similarly for ~a, the vector of authority scores

Now we can write h(d) =
∑

d 7→y a(y) as a matrix operation:
~h = A~a . . .

. . . and we can write a(d) =
∑

y 7→d h(y) as ~a = AT~h

Schütze: Link analysis 52 / 60



Anchor text PageRank HITS

Write update rules as matrix operations

Define the hub vector ~h = (h1, . . . , hN) as the vector of hub
scores. hi is the hub score of page di .

Similarly for ~a, the vector of authority scores

Now we can write h(d) =
∑

d 7→y a(y) as a matrix operation:
~h = A~a . . .

. . . and we can write a(d) =
∑

y 7→d h(y) as ~a = AT~h

HITS algorithm in matrix notation:

Schütze: Link analysis 52 / 60



Anchor text PageRank HITS

Write update rules as matrix operations

Define the hub vector ~h = (h1, . . . , hN) as the vector of hub
scores. hi is the hub score of page di .

Similarly for ~a, the vector of authority scores

Now we can write h(d) =
∑

d 7→y a(y) as a matrix operation:
~h = A~a . . .

. . . and we can write a(d) =
∑

y 7→d h(y) as ~a = AT~h

HITS algorithm in matrix notation:

Compute ~h = A~a

Schütze: Link analysis 52 / 60



Anchor text PageRank HITS

Write update rules as matrix operations

Define the hub vector ~h = (h1, . . . , hN) as the vector of hub
scores. hi is the hub score of page di .

Similarly for ~a, the vector of authority scores

Now we can write h(d) =
∑

d 7→y a(y) as a matrix operation:
~h = A~a . . .

. . . and we can write a(d) =
∑

y 7→d h(y) as ~a = AT~h

HITS algorithm in matrix notation:

Compute ~h = A~a

Compute ~a = AT~h

Schütze: Link analysis 52 / 60



Anchor text PageRank HITS

Write update rules as matrix operations

Define the hub vector ~h = (h1, . . . , hN) as the vector of hub
scores. hi is the hub score of page di .

Similarly for ~a, the vector of authority scores

Now we can write h(d) =
∑

d 7→y a(y) as a matrix operation:
~h = A~a . . .

. . . and we can write a(d) =
∑

y 7→d h(y) as ~a = AT~h

HITS algorithm in matrix notation:

Compute ~h = A~a

Compute ~a = AT~h

Iterate until convergence
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HITS as eigenvector problem

HITS algorithm in matrix notation. Iterate:

Compute ~h = A~a

Compute ~a = AT~h

By substitution we get: ~h = AAT~h and ~a = ATA~a

Thus, ~h is an eigenvector of AAT and ~a is an eigenvector of
ATA.

So the HITS algorithm is actually a special case of the power
method and hub and authority scores are eigenvector values.

HITS and PageRank both formalize link analysis as
eigenvector problems.
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Example web graph

d0

d2 d1

d5

d3 d6

d4

car benz

ford

gm

honda

jaguar

jag

cat

leopard

tiger

jaguar

lion

cheetah

speed
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Raw matrix H for HITS

d0 d1 d2 d3 d4 d5 d6

d0 0 0 1 0 0 0 0
d1 0 1 1 0 0 0 0
d2 1 0 1 2 0 0 0
d3 0 0 0 1 1 0 0
d4 0 0 0 0 0 0 1
d5 0 0 0 0 0 1 1
d6 0 0 0 2 1 0 1
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Hub vectors h0,~hi = 1
di
H ·~ai , i ≥ 1

~h0
~h1

~h2
~h3

~h4
~h5

d0 0.14 0.06 0.04 0.04 0.03 0.03
d1 0.14 0.08 0.05 0.04 0.04 0.04
d2 0.14 0.28 0.32 0.33 0.33 0.33
d3 0.14 0.14 0.17 0.18 0.18 0.18
d4 0.14 0.06 0.04 0.04 0.04 0.04
d5 0.14 0.08 0.05 0.04 0.04 0.04
d6 0.14 0.30 0.33 0.34 0.35 0.35
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Authority vectors ~ai = 1
ci
H

T · ~hi−1, i ≥ 1

~a1 ~a2 ~a3 ~a4 ~a5 ~a6 ~a7

d0 0.06 0.09 0.10 0.10 0.10 0.10 0.10
d1 0.06 0.03 0.01 0.01 0.01 0.01 0.01
d2 0.19 0.14 0.13 0.12 0.12 0.12 0.12
d3 0.31 0.43 0.46 0.46 0.46 0.47 0.47
d4 0.13 0.14 0.16 0.16 0.16 0.16 0.16
d5 0.06 0.03 0.02 0.01 0.01 0.01 0.01
d6 0.19 0.14 0.13 0.13 0.13 0.13 0.13
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Top-ranked pages

Pages with highest in-degree: d2, d3, d6

Pages with highest out-degree: d2, d6

Pages with highest PageRank: d6

Pages with highest hub score: d6 (close: d2)

Pages with highest authority score: d3
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PageRank vs. HITS: Discussion

PageRank can be precomputed, HITS has to be computed at
query time.
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PageRank vs. HITS: Discussion

PageRank can be precomputed, HITS has to be computed at
query time.

HITS is too expensive in most application scenarios.

The PageRank and HITS make two different design choices
concerning (i) the eigenproblem formalization (ii) the set of
pages to apply the formalization to.

These two are orthogonal.

We could also apply HITS to the entire web and PageRank to
a small base set.

On the web, a good hub almost always is also a good
authority.

Why?

The actual difference between PageRank ranking and HITS
ranking is therefore not as large as one might expect.
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Resources

Chapter 21 of IIR

Resources at http://ifnlp.org/ir

American Mathematical Society article on PageRank (popular
science style)

Jon Kleinberg’s home page (main person behind HITS)

Google’s official description of PageRank: PageRank reflects

our view of the importance of web pages by considering more

than 500 million variables and 2 billion terms. Pages that we

believe are important pages receive a higher PageRank and

are more likely to appear at the top of the search results.
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