Text Processing on the Web

Week 1
Orientation
Intro to Web Search

The material for these slides are borrowed heavily from the precursor of this course by Tat-Seng Chua as well as slides from the accompanying recommended texts Baldi et al. and Manning et al.
Web phenomenon

Pre 2000

• Exponential Growth
• Static HTML, primarily text
• Pull technology
• Placement of web interfaces to DBs
• High value E-Commerce systems

• Here, only talking about text
Web phenomenon

Post 2000

- The fat pipe
- Trend towards other media
 - Flickr, Youtube, Myspace
- Social Media
 - Del.icio.us, Digg,
 - Blogs, wikis, folksonomies
- Push technology
 - RSS, alerting
- Catering for mobile devices
- Web as application
 - Google Spreadsheets, PIM
- (The long tail)

What’s next?

- What do you think?
 Speak out on the forum!!

Min-Yen Kan / National University of Singapore
Orientation

• Teaching Staff

• Course Overview
 – Course website review

• Continuous Assessment
Teaching staff

- Lecturer:
 Min-Yen Kan ("Min")
 kanmy@comp.nus.edu.sg
 Office: AS6 05-12
 6516-1885
 Hours: before class
 Hobbies:
 rock climbing,
 ballroom dancing,
 and inline skating…

Lost in Hakodate, Japan
• Go over website now
• Remember to cover Academic Honesty
Continuous Assessment

- **Possible Assignments (55%)**
 - Both need to be demo’ed
 1. Passage Retrieval System
 - Working system to retrieve passages in scientific articles
 2. Summarization System
 - Query summarization of individual scientific articles

- **Exam (40%)**
 - Essay and algorithm development
 - Open book

- **Late Policy**
 - Intentionally set very harsh

- **Academic Honesty**
 - I trust you, so please reciprocate
 - Punishment will be harsh
Web Basics

Baldi et al. (Chapter 2)
Everyone knows the web...

- Assume you know basic HTML
- Assume you know its relation to SGML and XML
- Assume you know DTDs

Let’s quickly go over some other aspects of the web
- HTTP specifics
- Log files
Components of the Web

The Internet and WWW are distinct

What is the web? Three components:

1. Resources:
 - Conceptual mappings to concrete or abstract entities, which do not change in the short term
 - ex: comp website (web pages and other kinds of files)

2. Resource identifiers (hyperlinks):
 - Strings of characters represent generalized addresses that may contain instructions for accessing the identified resource
 - http://www.comp.nus.edu.sg/ is used to identify the comp homepage

3. Transfer protocols:
 - Conventions that regulate the communication between a browser (web user agent) and a server
Methods in HTTP

GET Retrieve an entity identified by a request URI (fetch a web page or file)

HEAD Identical to GET but just return header

POST Append enclosed entity. The supplied URI will handle the entity (e.g., used to post a message to a newsgroup)

PUT Store an enclosed entity under the supplied URI (e.g., store a Web page or file with the server)
Server Log Files

- **Server Transfer Log**: transactions between a browser and server are logged
 - IP address, the time of the request
 - Method of the request (GET, HEAD, POST…)
 - Status code, a response from the server
 - Size in byte of the transaction
- **Referrer Log**: where the request originated
- **Agent Log**: browser software making the request (spider)
- **Error Log**: request resulted in errors (404)

- **Success 2xx**
 - 200 OK
 - 201 Created
 - 202 Accepted
 - 203 Partial Info
 - …

- **Redirection 3xx**
 - 301 Moved
 - …

- **Error 4xx**
 - 400 Bad request, syntax
 - 401 Unauthorized
 - 402 Payment required
 - 403 Forbidden
 - 404 Not Found

- **Internal Error 5xx**
 - 500 Internal Error
 - 501 Not Implemented
 - 502 Service temporarily overloaded
 - 503 Gateway timeout

Why do you see more 403s than 401s?
Server Log Analysis

- Most and least visited web pages
- Entry and exit pages
- Referrals from other sites or search engines
- What are the searched keywords
- How many clicks/page views a page received
- Error reports, like broken links
Search Engines

- According to Pew Internet Project Report (2002), search engines are the most popular way to locate information online.
- About 33 million U.S. Internet users query on search engines on a typical day.
- More than 80% have used search engines.
- Search Engines are measured by coverage and recency.
Search engines are critical to the web

- No incentive in creating content unless it can be found
- SE make aggregation of niche interests possible
- Topological argument, to be discussed today
The anatomy of a search engine

Quick check: Can you draw the links and label them yourself?

Web

Indexer

Inverted Index

Doc Repository

Link Repository

Ranker

Query Engine

Crawler

Crawler

Crawler

Crawler

Min-Yen Kan / National University of Singapore
Web Crawler

- A crawler is a program that picks up a page and follows all the links on that page
- Crawler = Spider
- Types of crawler:
 - Breadth First
 - Depth First
- Focused Crawlers
 - Look for specific type of documents

Simple-Crawler (S_0, D, E)

\[
Q = S_0
\]

while Q not empty

\[
u = \text{Dequeue}(Q)
\]

\[
D(u) = \text{Fetch}(u)
\]

\[
\text{Store}(D, (d(u), u))
\]

\[
L = \text{Parse}(d(u))
\]

for each v in L

\[
\text{Store}(E, (u, v))
\]

\if not $(v \text{ in } D \text{ or } v \text{ in } Q)$

\[
\text{Enqueue}(Q, v)
\]
Problems

- Document downloading is problematic
- Crawlers should respect robots.txt
- Crawling as (D)DoS attacks
- Spider traps: alias hostnames, or server redirection with dynamically generated pages
 - Up to 40% are duplicates
- Dynamic nature of the web: static versus dynamic sites

“Like taking a picture of a living scene with some objects at rest and others moving”
The Web Graph

Baldi et al. (Chapter 3)
Outline

• Computing the size of the Web
• Adversarial IR / SEO
• Actual topology of the Web
• Models of Web structure evolution
Coverage

Overlap analysis used for estimating the size of the indexable web

- Caveat: Indexed = in doc database, first n words

- W: set of webpages
- W_a, W_b: pages crawled by two independent engines a and b
- $P(W_a), P(W_b)$: probabilities that a page was crawled by a or b
 - $P(W_a) = |W_a| / |W|$
 - $P(W_b) = |W_b| / |W|$
Overlap Analysis

\[P(W_a \cap W_b \mid W_b) = \frac{P(W_a \cap W_b)}{P(W_b)} \]
\[= \frac{|W_a \cap W_b|}{|W_b|} \]

If \(a \) and \(b \) are independent:

\[P(W_a \cap W_b) = P(W_a) \times P(W_b) \]
\[P(W_a \cap W_b \mid W_b) = \frac{P(W_a) \times P(W_b)}{P(W_b)} \]
\[= \frac{|W_a| \times |W_b|}{|W_b|} \]
\[= \frac{|W_a|}{|W|} \]
\[= P(W_a) \]
Overlap Analysis

Using $|W| = |Wa|/ P(Wa)$, researchers found:

• Web had at least 320 million pages in 1997
• 60% of web was covered by six major engines
• Maximum coverage of a single engine was 1/3 of the web

Problems

• Doesn’t explicitly account for popularity of pages
• Which queries to use for estimation? Best to be random, but this is hard.
 – Use random local query logs
 – Other alternatives?
Adversarial IR

Rise of Spam
– E-commerce on the web
– Search Engine Optimization
– Cost per Impression (CPI/CPM), Cost per Click (CPC)

• Cloaking
– Different info depending on browser-agent

User Agent
a known spider?

Y

Spam

N

Real Doc

Min-Yen Kan / National University of Singapore
More Adversarial IR

Other methods
• Doorway / bridge pages
 – Pages optimized for a single keyword that re-directs to the real target page
 – No actual content. E.g., “Click here for widgets”
• Click spam – targeting user logs
 – Putting a competitor out of business

• How to combat?
 – Link analysis (few weeks down the road)
 – An arms race; Web 2.0 exacerbated
 – Try it yourself. Contests abound
Web Graph

http://www.touchgraph.com/TGGoogleBrowser.html
Properties of Web Graphs

- Connectivity follows a power law distribution
- The graph is sparse
 - $|E| = O(n)$ or at least $o(n^2)$
 - Average number of hyperlinks per page roughly a constant
- A small world graph
Power Law Connectivity

• Distribution of number of connections per node follows a power law distribution
• Study at Notre Dame University reported
 \(\gamma = 2.45 \) for outdegree distribution
 \(\gamma = 2.1 \) for indegree distribution

Note: in contrast, random graphs have a Poisson distribution if \(p \) is large.
 – Decays exponentially fast to 0 as \(k \) increases towards its maximum value \(n-1 \)
Examples of networks with Power Law Distribution

- Internet at the router and interdomain level
- Citation network
- Collaboration network of actors
- Networks associated with metabolic pathways
- Networks formed by interacting genes and proteins
- Network of nervous system connection in C. elegans
Small World Networks

• It is a ‘small world’
 – Millions of people. Yet, separated by “six degrees” of acquaintance relationships
 – Popularized by Milgram’s famous experiment

• Mathematically
 – Diameter of graph is small (log N) as compared to overall size
 • 3. Property seems interesting given ‘sparse’ nature of graph but …
 • This property is ‘natural’ in ‘pure’ random graphs
The small world of WWW

- Empirical study of Web-graph reveals small-world property
 - Average distance (d) in simulated web:
 \[d = 0.35 + 2.06 \log (n) \]
 e.g. \(n = 10^9 \), \(d \approx 19 \)
 - Graph generated using power-law model
 - Diameter properties inferred from sampling
 - Calculation of max. diameter computationally demanding for large values of \(n \)
Implications for Web

- Logarithmic scaling of diameter makes future growth of web manageable
 - 10-fold increase of web pages results in only 2 more additional ‘clicks’, but …
 - Users may not take shortest path, may use bookmarks or just get distracted on the way
 - Therefore search engines play a crucial role
Pagerank

- In-degree as first approximation
- Random surfer model
- Teleportation to get to and out of traps / isolated structures
- Return to this later in Week 5
Web Topology (ca. 2000)

Max Diameter (in SCC, 16; IN-to-OUT, up to 500)

Probability of connection of random 2 pages: 24%, if connected, average path length of 16
Models for the Web Graph

• Stochastic models that can explain or at least partially reproduce properties of the web graph
 – The model should follow the power law distribution properties
 – Represent the connectivity of the web
 – Maintain the small world property
Web Page Growth

• Empirical studies observe a power law distribution of site sizes
 – Size includes size of the Web, number of IP addresses, number of servers, average size of a page etc

• A generative model is being proposed to account for this distribution
Components of the model

• Proportional size changes (β)
 – “sites have short-term size fluctuations up or down that are proportional to the size of the site “
 – A site with 100,000 pages may gain or lose a few hundred pages in a day whereas the effect is rare for a site with only 100 pages

• There is an overall growth rate α
 – so that the size $S(t)$ satisfies $S(t+1) = \alpha(1+\eta_t\beta)S(t)$ where
 • η_t is the realization of a +/-1 Bernoulli random variable at time t with probability 0.5
 • β is the absolute rate of the daily fluctuations
After T steps

$$S(T) = \alpha^T S(0) \prod_{t=0}^{T-1} (1 + \eta_t \beta)$$

so that

$$\log S(T) = T \log \alpha + \log S(0) + \sum_{t=0}^{T-1} \log(1 + \eta_t \beta)$$
Theoretical Considerations

- Log $S(T)$ can also be associated with a binomial distribution counting the number of times $ht = +1$
- Hence $S(T)$ has a log-normal distribution

- The probability density and cumulative distribution functions for the log normal distribution
Modified Model

- Can be modified to obey power law distribution
- Model is modified to include the following inorder to obey power law distribution
 - A wide distribution of growth rates across different sites and/or
 - The fact that sites have different ages
Capturing Power Law Property

• In order to capture Power Law property it is sufficient to consider that
 – Web sites are being continuously created
 – Web sites grow at a constant rate α during a growth period after which their size remains approximately constant
 – The periods of growth follow an exponential distribution

• This will give a relation $\lambda = 0.8\alpha$ between the rate of exponential distribution λ and α the growth rate when power law exponent $\gamma = 1.08$
Lattice Perturbation (LP)

• Step 1:
 – Take a regular network (e.g. lattice)

• Step 2:
 – Shake it up (perturbation)

• Step 2 in detail:
 – For each vertex, pick a local edge
 – ‘Rewire’ the edge into a long-range edge with a probability (p)
 – p=0: organized, p=1: disorganized
Lattice Perturbation (LP)

- Start with a regular network, and perturb
- End up with a Semi-Organized (SO) Network

\[L(p) = \text{Average Path Length} \]
\[C(p) = \text{Clustering coefficient (ratio of possible local edges); local property} \]
Effect of ‘Shaking it up’

- Small shake (p close to zero)
 - High cliquishness AND short path lengths
- Larger shake (p increased further from 0)
 - d drops rapidly (increased small world phenomena)
 - c remains constant (transition to small world almost undetectable at local level)

- Effect of long-range link:
 - Addition: non-linear decrease of d
 - Removal: small linear decrease of c
Terms (Cont’d)

• Organized Networks
 – Are ‘cliquish’ (Subgraph that is fully connected) in local neighborhood
 – Probability of edges across neighborhoods is almost nonexistent \((p=0) \) for fully organized

• “Disorganized” Networks
 – ‘Long-range’ edges exist
 – Completely Disorganized \(\iff \) Fully Random (Erdos Model) \(: p=1 \)
Scalable Random Networks

• Evolutionary Model (grows as the first model does over timesteps)
 – Start with M_0 vertices at $T = 0$
 – At each step, add a new node v and $m \leq M_0$ edges where edges connect new node to old vertices

• Vertices attach preferentially (instead of randomly); “rich get richer”

$$P(v, w) = \frac{k_w}{\sum_r k_r}$$
Summary

- Web basics
- Adversarial IR
- Web graph topology
 … and models for simulating them

Next Week
- How do search engines work?