Text Processing on the
Web

Week 13
Learning to Rank / Revision

(source of LeToR slides from Tie-Yan Liu @ MSRA)
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Conventional Ranking Models

e Content relevance

— Boolean model, vector space model, probabilistic
BM25 model, language model

e Page importance
— Link analysis: HITS, PageRank, etc.
— And by log mining
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Machine Learning Can Help

e Machine learning is an effective tool
— To automatically tune parameters
— To combine multiple evidence
— To avoid over-fitting (by means of regularization, etc.)

 Learning to Rank

— Use machine learning technologies
to train the ranking model

— A hot research topic these years
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Learning to Rank

Labels refer to the judgments in IR evaluation
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The general idea

« Training examples in the form of <Q,d {relrel}>

» Simple: replace <Q,d> with features:x ={x,, x,,...x. }
— Similarity of Q,d
— Density of Q within d
— Other factors PageRank, etc.

 Train a simple learner on this data to get a
probabilistic belief of

« Rank by belief on rel torel
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Least Squares Retrieval Function

(N. Fuhr, TOIS 1989)

* Relevance judgment for a query-document pair
IS represented by a vector:

— For binary judgment: y= (1, 0) or (0, 1)
e Use a polynomial function as the ranking
function f(x).

e Use least square error (LSE) method to learn the
regression function
M
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Discriminative Model for IR

(R. Nallapati, SIGIR 2004)

e |dea: Use discriminative modeling instead of
generative model

* Generative models (i.e. via P(d|R)-P(R)) include
BIR and language model (in their interpretation)

e Discriminative learning algorithms (i.e. model
P(R|d) directly) used:
— Maximum Entropy
— Support Vector Machines
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Conventional ML Approach

 These are examples of a direct ML approach
* Apply regression or classification methods to

solve the problem of ranking

— Regard binary judgments or multi-valued discrete as
“non-ordered” categories, or real values.

— Although ground truths are neither “non-ordered”
categories nor real values.

Serious shortcomings. What's the problem?
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Ordinal Regression

e Confusion between relevance with ranking

— Absolute and independent relevance assumed

« But relevance is relative and defined only among documents
for the same query: a non-rel doc for a popular query may
have higher TF than a rel doc for a rare query

— Also we don’t necessary care about relevance

« Care about ranking w.r.t other possible candidate d,,
especially at top ranks

« Relative order is important: don’t need to predict accurate
category, or value of f(x).
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Bridging the Gap

 Go beyond conventional ML methods

1.

Ordinal regression (a pointwise approach)
e Target the ground truth of multi-valued discrete.

Preference learning (a pairwise approach)
e Target the ground truth of pairwise preference.
e Also compatible with that of multi-valued discrete.

Listwise ranking (a listwise approach)
e Target the ground truth of partial / total order.
« Also compatible with other types of ground truths.
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1. Ordinal Regression:
A Pointwise Approach

e Input space
— Features of a single document (w.r.t. a query): X & R

e QOutput space
— Ordered categories: Y €{c, <C, <...<C,}
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Ordinal Regression vs.
Regression/Classification

Regression: Real values
Classification: Non-ordered categories

Ordinal regression: Discrete values /
Ordered categories

Ordinal regression can be regarded as
something between regression and
classification.
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2. Preference Learning:
A Pairwise Approach

« Input space: two documents
— Document pairs: (X,,X,)eR' xR’
e Qutput space

— Preference: Y e{+1,-1}
— Use pairs of features or differences between the two vectors

O
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Learning to Order Things

(W. Cohen, R. Schapire, et al. NIPS 1998)

e Pairwise ranking function
= F00 %) =D W (%, %)

* Important: pairwise loss function
N

“L(N=Y T/ Y

i=1 x{V=x{V i=1 () x()
« A weighted majority algorithm is used to learn the
parameters w from the pairwise ground truth.
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Learning to Order Things

* Go from pairwise preferences to a total order:
- maxAGREE(p, f)= > f(x,,x,)
% IR ICHEICS

— Con: the optimal total order construction is proven NP
hard.

 Then must approximate:
— Use a greedy ordering

— Proven: the agreement for the approximation algorithm
IS at least half the optimal agreement
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Ranking SVM

(R. Herbrich, T. Graepel, et al. , Advances in Large Margin

Classifiers, 2000; T. Joachims, KDD 2002)

 Formally discussed that ordinal regression can
be solved by pairwise preference learning
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Use SVM to perform binary
classification on these instances,
to learn model parameter w

Use w for testing

Use SVM to perform pairwise classification
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Results look ... poor

 Itis not clear how pairwise loss correlates with query-level

IR evaluation measures. TREC Dataset
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Possible Explanation?
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A case for guery-specific loss

 Consider two queries with 40 and 5 document
results. Say a system gets 780 of the 790
possible pairs correct
— Sys 1: gets all of the 5*4/2 = 10 pairs from Q2 wrong

— Sys 2: gets a random 10 of the 40*39/2 = 780 pairs
wrong

o Clearly, we prefer Sys 2. How to cater for this?
e Change the loss function (evaluation function)
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A Possible Solution

* Introduce a per-query normalization to the

pairwise loss function.

Query-level normalizer

max # {instance pairs associated with ¢. }
[

#{instance pairs associated with ¢, }

Loss function desiderata:

1)Insensitive to number
of document pairs.
2)Top ranks should be
more important
3)Upper bound on loss.
Difficult

gueries shouldn’t have
more importance.
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Pairwise Summary

Pros: cons

* No longer assume e Minimizing document
absolute relevance pairs classification

error and not errors In

* Use pairwise ranking of documents.
relationship to . # of generated
represent relative document pairs can
ranking. vary

— Need to fix loss,
otherwise model can
be biased
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3. A Listwise Approach

Input space
— Document collection w.r.t. a query

M (@)
(X9, X9 ) e(R)

Output space

— Permutation of these documents; Y € HMW

By treating the list of documents associated with the same
guery as a learning instance, one can naturally obtain

— The rank (position) information,
— The query-level information.

Opportunity to model more of the unigue properties of IR
ranking in the learning process.
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Direct Optimization of IR
Measures

e Let’s try to directly optimize the ranking results.

e But this is difficult:

— Evaluation functions such as NDCG are non-smooth
and non-differentiable, since they depend on ranks

— Most optimization was developed to handle smooth
and differentiable functions

 Two methods:
1.Smooth out the evaluation function with a surrogate;

2.Use other optimization routines (e.g., genetic
algorithms).
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ListNet

(Z. Cao, T. Qin, T. Liu, et al. ICML 2007)

e Loss function = KL-divergence between two
permutation probability distributions

VA L A L

L(f) o« PPz [e"™)|[P(z] e(f(x))‘) )

\

Probability distribution defined Probability distribution
by the ground truth defined by the model output

 Model = Neural Network
e Algorithm = Gradient Descent
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Experimental Results
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Announcements

| will be away right before the exam (17-22 Nov),
so please come ask questions earlier

« Send me anonymous mail (via IVLE) about what
you liked about the course, what you disliked

— Criticisms always more helpful
— You can also save it for the “official feedback” if you'd

like

Min-Yen Kan / National University of Singapore
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Final Exam

2 hours, 26 Nov, in the evening
Open book

3 multi-part questions, no calculation needed
— But that doesn’t mean there’s no math

Similar to other past year exams and more
open-ended tutorial questions
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Course In a nutshell

WO: Math W7: Question Answering

W1: Web basics and models W8: Summarization

W2: Basic IR WO: Intro to Machine Learning

Wa3: Probabillistic IR WO9: Text Categorization

W4: Dimensionality W11: Sequence Labeling
Reduction W12: CRF + Info. Extraction

WS5: Link Structure W13: Learning to Rank

W6: Passage Retrieval
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SINGAPORE FLYER

e |nformation Units

Text Analysis Example

Singapore Flyer

Singapore Flyer Pte Ltd 30 Raffles Avenue, #01-07
Singapore 039803

Telephone: (65) 6854 5200 Fax: (65) 6339 9167

Singapore Flyer is the world's largest observation wheel.

Ct nrllnn At A ctimnninag 166Em from the ﬂrnllnrl tho El\lor
u‘.ul TUTH |H CAL A \JLUIIIIIIIIH A \JJTT1] ITVUITn1 Irre u \WAW ]| u’ e ] y

offers you breathtaking, panoramic views of the Marina
Bay, our island city and beyond. There's also a wide range
of shops, restaurants, actlvmes and facilities. READ

— IR: terms: rafflesmcj) ggpore X3, ptex 1.
— |E: info units: Singapore Flyer, Raffles Avenue, Marina Bay, (65) 6854-5200 ...
and their relations

— QA: Which is the nearest MRT to Singapore Flyer?
Answer: City Hall MRT

— NLP: understanding the contents

Min-Yen Kan / National University
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WO0O-W1: Math and Web basics

e Size and growth of the web
— Size: an instance of Bayesian estimation

— Growth: instances of temporal graph modeling
new nodes and edges added/changed over timesteps

 Compare these to other instances in the course

e Math:

— Prior and posterior probabilities
— Parameter estimation: EM (the chicken and egg problem)
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W2-W3: Models of IR

e Heuristic systems
— TF.IDF (compare IDF to RF In text classification)

e Prob IR

— Model how a query is an representation of a document
— A mathematical basis for IDF

 Language Modeling
— Putting word order dependencies in the retrieval model
— First look at Hidden Markov Models and n-grams
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W4: Dimensionality Reduction

Link to machine learning and text classification

« Upwards of 30K dimensions, sparse vectors

* Reduce to save space, and help both recall and
precision

» LSI: apply singular value decomposition to find best
orthogonal axes to represent doc-term matrix

* pLSI: view this from a probabilistic interpretation, using a
unigram LM and using a latent topic variable in modeling

* Both have problems determining k, # of
topics/dimensions, similar to text clustering
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W5: Link structure

e Dealing with hyperlinks. Can be generalized to
recommendation frameworks.

 PageRank: Random Walk + Teleportation
— Topic sensitive teleportation

e HITS: Hubs and authorities
— Salsa: SVD

Still needs work integrating within standard IR
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W6-W7: Passage retrieval and QA

Information

Query

Documents

System

Document Retriever

Min-Yen Kan / National University of Singapore
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W6-W7: Passage retrieval and QA

e From document to exact answer retrieval

 Need heavier duty processing for smaller
fragments

— Query Expansion (from external websites, from
lexicons, from logs)

— Density based retrieval towards syntactic analysis
o Carefully targeted NLP analysis helps
— Question Typing

 When questions are in NL form or when we can infer more
about the user’s context

Min-Yen Kan / National University of Singapore 38



W8-W12: Applying machine
learning to NLP/IR tasks

Many NLP/IR tasks can be framed as learning problems

Supervised: have labeled training data; learn a function

Unsupervised: have training data, no label; learn a
clustering/pattern

Semi supervised:

— Small amounts of labeled data, lots of unlabeled data:
text classification, named entity recognition

— Labeled data but not at the fine-grained answer level.
IE, summarization

Min-Yen Kan / National University of Singapore
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Feature Engineering

 Domain independent  Domain dependent

e Task independent e Task dependent

e Order independent o Context sensitive

e Language independent e Language dependent

e Shallow NLP « Deep NLP

e Local context statistics e Corpus wide statistics
(TF, position) (IDF, RF)

e Orthographic

Text problems: Dealing with 10K+ features, skewed datasets,
finding an appropriate learning algorithm (not just SVMSs)
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W8-W12: Application areas

e Summarization
— Selecting sentences or text units

« Text Classification
— Selecting one or more categories for a text unit

e Seqguence Labeling / Information Extraction
— ldentifying a chunk
— Selecting a chunk tag
— Managing co-reference

Min-Yen Kan / National University of Singapore
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W13: Learning to Rank

Min-Yen Kan / National University of Singapore
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Three lessons learned

Probabilistic analyses of text processing
— Bayesian Analysis

Feature/vector creation

— Latent variables

— Aspects of the problem and setting
Dealing with aspects of text processing
— Size of number of features

Still very much open ended research topics
— Heuristic IR still scales better
— Adversarial IR is a real issue

— Integration of better knowledge sources and scalability continues
to be a problem
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That'’s It!

Thanks for learning about
Text processing!
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