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Text Processing on the 
Web

Week 5
Link Analysis Ranking

The material for these slides are borrowed heavily from the precursor of this course by Tat-Seng 
Chua 
as well as slides from the accompanying recommended texts Baldi et al. and Manning et al.
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Recap

•

 
Synonymy and Polysemy

 
affect all standard IR models —

 not just limited to VSM

•

 
We want to instead model latent topics
—

 

SVD factors the term-document matrix into orthogonal 
eigenvectors (“topics”), automatically ranked by salience 
(“eigenvalue

 

magnitude”).  
—

 

LSA does SVD and then drops low order topics to create 
approximation

—

 

pLSA

 

does this by taking the unigram LM and injecting a latent 
variable, k (for k topics)
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Outline

• The classics:
– Page Rank
– Hubs and Authorities

• Adaptations to the Models
– Topic Sensitive PageRank
– SALSA
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Citation Networks

• Pioneered by Garfield 1972 to answer questions 
on impact

• Introduced Impact Factor
– C = citations to articles in a journal
– N = total number of articles in a journal

– Impact Factor = C/N 
(Normalized in-degree of a journal)
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Query-independent ordering

• How does this translate to the web?
– Have a graph, not a DAG

• Using link counts as simple measures of 
prestige
– number of inlinks (3)
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Algorithm

1. Retrieve all pages meeting the text query (say 
venture capital), perhaps by using Boolean 
model

2. Order these by link popularity 

Exercise: How do you spam each of the following heuristics 
so your page gets a high score? 

• score = # in-links

Exercise: How do you spam each of the following heuristics 
so your page gets a high score?

• score = # in-links
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Link Counts

Linked by 2 
Important Pages

Linked by 2 
Unimportant pages

LKY’s

 

Home PageMin’s Home Page

Queen of 
England’s Page

www.sgFamily home page Min’s sister’s Page
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Definition of PageRank

• The importance of a page is given by the 
importance of the pages that link to it.

j
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x
i

∑
∈

=
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importance of page i

pages j that link to page i
number of outlinks

 

from  page j

importance of page j
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Pagerank scoring

• Imagine a browser doing a random walk on web 
pages:
– Start at a random page
– At each step, follow one of the n links on that page, 

each with 1/n probability
• Do this repeatedly.  Use the “long-term visit rate” 

as the page’s score

1/3
1/3
1/3
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Markov chains

A Markov chain consists of n states, plus an n×n transition 
probability matrix A.
– At each step, we are in exactly one of the states.
– For 1 ≤

 

i,k ≤

 

n, the matrix entry Aik tells us the probability of k 
being the next state, given we are currently in state i. 

– Memorylessness property: The next state depends only at the 
current state (first order MC)

i kAik
Aik > 0
is OK.
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• Clearly, for all i,
• Markov chains are abstractions of random 

walks

.1
1

=∑
=

ik

n

k

A

Markov chains

A

B

C
A B C

A
B
C

Aik:

Try this: Calculate the matrix Aik using 
1/n possibility 

Try this: Calculate the matrix Aik using 
1/n possibility
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Not quite enough

• The web is full of dead ends.
– What sites have dead ends?
– Our random walk can get stuck.

Dead End

Spider Trap
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Teleporting

• At each step, with probability 10%, teleport to a 
random web page

• With remaining probability (90%), follow a 
random link on the page
– If a dead-end, stay put in this case Teleport!
Follow!

11)1( ×⎥⎦
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Ergodic Markov chains

• A Markov chain is ergodic if
– you have a path from any state to any other
– you can be in any state at every time step, with non- 

zero probability

– With teleportation, our Markov chain is ergodic

Not
ergodic
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Markov chains (2nd Try)

A

B

C
A B C

A
B
C

Aik:

Try this: Calculate the matrix Aik using 
a 10% chance of teleportation 

Try this: Calculate the matrix Aik using 
a 10% chance of teleportation
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Probability vectors

• A probability (row) vector x = (x1 , … xn ) tells 
us where the walk is at any point

• E.g., (000…1…000) means we’re in state i.
i n1

More generally, the vector x = (x1 , … xn ) means the
walk is in state i with probability xi .

.1
1

=∑
=

n

i
ix
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Change in probability vector

• If the probability vector is  x = (x1 , … xn ) at this 
step, what is it at the next step?

• Recall that row i of the transition prob. Matrix A 
tells us where we go next from state i.

• So from x, our next state is distributed as xA.
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Pagerank algorithm

• Regardless of where we start, we eventually 
reach the steady state a
– Start with any distribution (say x=(10…0))
– After one step, we’re at xA
– After two steps at xA2 , then xA3 and so on.
– “Eventually” means for “large” k, xAk = a

• Algorithm: multiply x by increasing powers of A 
until the product looks stable
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Steady State

• For any ergodic Markov chain, there is a unique 
long-term visit rate for each state
– Over a long period, we’ll visit each state in proportion 

to this rate
– It doesn’t matter where we start
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Eigenvector formulation

• The flow equations can be written 
r = Ar

• So the rank vector is an eigenvector of the 
adjacency matrix
– In fact, it’s the first or principal eigenvector, with 

corresponding eigenvalue 1
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Pagerank summary

• Pre-processing:
– Given graph of links, build matrix A
– From it compute a
– The pagerank ai is a scaled number between 0 and 1

• Query processing:
– Retrieve pages meeting query
– Rank them by their pagerank
– Order is query-independent
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Hubs and Authorities

• Authority is not necessarily 
transferred directly between 
authorities

• Pages have double identity
– hub identity
– authority identity

• Good hubs point to good 
authorities

• Good authorities are pointed 
by good hubs

hubs authorities
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High-level scheme

• Extract from the web a base set of pages that 
could be good hubs or authorities.

• From these, identify a small set of top hub and 
authority pages
→ iterative algorithm
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Base set

1. Given text query (say university), use a text 
index to get all pages containing university.

– Call this the root set of pages 
2. Add in any page that either:

– points to a page in the root set, or
– is pointed to by a page in the root set

3. Call this the base set
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Root
set

Base set
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Assembling the base set

• Root set typically 200-1000 nodes.
• Base set may have up to 5000 nodes.
• How do you find the base set nodes?

– Follow out-links by parsing root set pages.

– Get in-links (and out-links) from a connectivity server.
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Distilling hubs and authorities

1. Compute, for each page x in the base set, a 
hub score h(x) and an authority score a(x).

2. Initialize: for all x, h(x)←1; a(x) ←1;
3. Iteratively update all h(x), a(x);
4. After iterations:

– highest h() scores are hubs
– highest a() scores are authorities

Key
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Iterative update

• Repeat the following 
updates, for all x:

∑←
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yaxh

a
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HITS and eigenvectors

• The HITS algorithm is a power-method 
eigenvector computation
– in vector terms at = ATht-1 and ht = Aat-1

– so at = ATAat-1 and ht = AATht-1

– The authority weight vector a is the eigenvector of 
ATA and the hub weight vector h is the eigenvector of 
AAT

– Why do we need normalization?
• The vectors a and h are singular vectors of the 

matrix A
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Singular Value Decomposition

• r : rank of matrix A

•

 

σ1≥ σ2

 

≥

 

… ≥σr

 

: singular values (square roots of eigenvalues AAT, ATA)

•

 

: left singular vectors (eigenvectors of AAT)

•

 

: right singular vectors (eigenvectors of ATA)

•
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Singular Value Decomposition
• Linear trend v in matrix A:

– the tendency of the row vectors 
of A to align with vector v

– strength of the linear trend: Av
• SVD discovers the linear trends in 

the data
•

 

ui , vi : the i-th strongest linear 
trends

•

 

σi : the strength of the i-th strongest 
linear trend

σ1

σ2
v1

v2

HITS discovers the strongest linear trend in the 
authority space
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How many iterations?

• Relative values of scores will converge after a 
few iterations

• We only require the relative order of the h() and 
a() scores - not their absolute values

• In practice, ~5 iterations needed
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Things to think about

• Use only link analysis after base set assembled
– iterative scoring is query-independent

• Iterative computation after text index retrieval - 
significant overhead
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Things to think about

• A pagerank score is a global score.  Can there be a 
fusion between H&A (which are query sensitive) and 
pagerank?  

• How does the selection of the base set influence 
computation of H & As?

• Can we embed the computation of H & A during the 
standard VS retrieval algorithm?

• How can you update PageRank without recomputing the 
whole thing from scratch?

• What’s the eigenvector relationship between HITS’ 
authority and PageRank?
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Advanced link structure 
methods
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Topic-Sensitive PageRank

• Basic idea: 
1. Identify topic that might be interesting for the user 
(e.g. via classification of the query, eval. of context, ...) 
2. Use pre-calculated, topic-sensitive PageRank

• Topic specific PageRank rankjd :
• Now: Topics c1 , ..., cn , 

– They used 16 top-level categories from the ODP

• Topic dependent weighting (1/|Ti |)
• Advantage: Can be calculated in advance
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• Play around with Teleportation Rate

• Don’t jump to a random page; jump to a topic 
page!

11)1( ×⎥⎦
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Offline PageRank Vector Computation
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Tj =set of pages relevant 
to a topic
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Run-time TSPageRank (cont.)
• Question: Which one to select during run time?
• Idea: Classification of query q given by the user
• Extension: Consider context q' of query q

– e.g. surrounding text if query was entered via highlighting

• Calculation using a unigram language model:
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Topic-Sensitive PageRank

• Weighted summation of all topic specific PageRanks 
for one document 

- Weights: Dependent on probability of a particular 
topic being relevant given the query q 

- Definition: Query-Sensitive Importance Score sqd

• Disadvantages: 
- Fixed set of topics 
- Depends on training set
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SALSA

• Similarities
– uses authority and hub score
– creates a neighborhood graph using authority and 

hub pages and links

• Differences
– creates bipartite graph of the authority and hub pages 

in the neighborhood graph.
– Each page may be located in both sets
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Neighborhood Graph N
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Bipartite Graph G of 
Neighborhood Graph N
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Markov Chains

• Two matrices formed from bipartite graph G
• A hub Markov chain with matrix H’

– Follow forward link, then backward

• An authority Markov chain with matrix A’
– Follow backward link, then forward

• Steps end up on same side of the bipartite graph

∑
∈∈
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uv wu
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),,(),(: )deg(
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)deg(
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Completing SALSA

• Use same power method 
as in previous methods to 
compute principal 
eigenvector
– Caveat: have to deal with 

disconnected components!

{1},{2}

{1,3,6,10},{3,5,6}

– Link them together in some 
way
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Where does SALSA fit in?

• Matrices H’ and A’ can be derived from the 
adjacency matrix used in both methods

• HITS used unweighted matrix 
• PageRank uses a row weighted version of 

matrix A
• SALSA uses both row and column weighting 

Why do we 
say this?
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Strengths and Weaknesses

• Not affected as much by topic drift like HITS
• Handles Tightly knit communities better 

(spammers)
• It gives authority and hub scores.
• Query dependence
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Summary

• Ranking needs to account for the graph structure
• Directed structure of the web leads to dichotomy in 

treatment (giving/receiving ends)
• Global models (propagation) and local models (at run 

time)
• Linear Algebra strikes again: SVD and Eigenvectors

Still more work to do here:
• Not yet convincingly coupled with standard retrieval 

models; “content” not really factored in
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