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Tree LSTMs and QRNNs



Tree LSTMSs
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Figure 1: Top: A chain-structured LSTM net-
work. Bottom: A tree-structured LSTM network
with arbitrary branching factor.

Compared to a normal LSTM (essentially a linear chain),
where each unit only takes in the hidden state from the
time period before, the Tree LSTM is able to take
hidden states from arbitrarily many child units

The Tree LSTM can be thought of as a more generalized
version of the standard LSTM structure. The standard
LSTM will just be a special case of the Tree LSTM where
each internal node has only one child

Difference: Takingin the hidden states from more than
one node



Tree LSTMSs

Child-Sum Tree-LSTM
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Tree LSTMSs

N-ary Tree LSTM
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* Finer control over how much information propagates




Q-RNNs

RNNs: Slow and cannot be run in parallel, as each time step depends on the previous time step’s computation

LSTM CNN QRNN
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Figure 1: Block diagrams showing the computation structure of the QRNN compared with typical
LSTM and CNN architectures. Red signifies convolutions or matrix multiplications; a continuous
block means that those computations can proceed in parallel. Blue signifies parameterless functions
that operate in parallel along the channel/feature dimension. LSTMs can be factored into (red) linear
blocks and (blue) elementwise blocks, but computation at each timestep still depends on the results
from the previous timestep.



Q-RNNs

Convolutional layer (filter width 2)
QRNN
z, = tanh(W'!x,_, + W3x,)
Convotsion N . (W) .+ Wix)
- _ 1 2
convousion N
, . Only takes in inputs at or before time step t
fo-Pool —_—— — — — — Eachz,, f, or o, only depends on input vectors from time
' ] ' steps before it

Does not require any outputs from previous time step
Easily parallelizable




Q-RNNs

Convotsion I

fo-Pool = — — — — — >

convoiution |

fo-Pool [P
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Pooling Layer

hy=ffoh;_y +(1-1£)©®z, fPooling
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fo-Pooling
hg = 0y ® Cg.
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ifo-Pooling

hg = 0y @ Ct.

3 different poolingoptions
Must be calculated for each time step in sequence

But simple to calculate and can be parallelized over
feature dimensions




Q-RNNs: Language Modeling

Better

Faster

Model | Parameters Validation  Test
LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
Variational LSTM (medium) (Gal & Ghahramani, 2016) 20M 81.9 79.7
LSTM with CharCNN embeddings (Kim et al., 2016) 19M - 78.9
Zoneout + Variational LSTM (medium) (Merity et al., 2016) 20M 84.4 80.6
Qur models
LSTM (medium) 20M 85.7 82.0
QRNN (medium) 18M 82.9 79.9
QRNN + zoneout (p = 0.1) (medium) 18M 82.1 78.3
500 - : =
=== RNN Sequence length
= 400+ m=s Softmax : 32 64 128 256 512
% opt'm'za“" sEeat:| 8 | 5.5x 88x 110x 124x 169x
g § 16 | 5.5x  6.7x 7.8x 83x 10.8x
; 200 - . -: 32 | 4.2x 4.5x 4.9x 4.9x 6.4x
£ o = 64 | 3.0x 3.0x 3.0x 3.0x 3.7x
F 100- - . & 128 | 2Ix 19x 20x 20x 24x
- 256 | 1.4x 1l.4x 1.3x 1.3x 1.3x

T LSTM LSTM (CuDNN) QRNN




Q—RN Ns: Sentiment Analvsis

Often better and faster Model | Time/Epoch (s) Test Acc (%)
BSVM-bi (Wang & Manning, 2012) - 91.2
21 E tial BoW CNN (Johnson & Zhang, 2014) - 92.3
than LSTMs B A DS B 0 |
2-layer LSTM (Longpre ct al., 2016) - 87.6
Residual 2-layer bi-LSTM (Longpre et al., 2016) - 90.1
Our models
Deeply connected 4-layer LSTM (cuDNN optimized) 480 90.9
Deeply connected 4-layer QRNN 150 914
D.C. 4-layer QRNN with k = 4 160 91.1
* More interpretable , ‘
P AW T ll!"lll al YT TERRRY IR I'IIII a HETTN
oo IICVRRILY AHEPRRINARRE ) WL RN AT | O
ALY T AU | AT 1 LI TR T RO
examp EIH R
* Example: 8 | | A | |
d SRR IR |i||.1 T AR 1 Hl Il
* Initial positive review !.'}N L I!! i !!!”! R AR I
‘ i = Hidden units = o =

* Review starts out positive
At 117: “not exactly a bad story”
At 158: “I recommend this movie to everyone, even if you’ve
never played the game”



Neural Architecture Search



Neural Architecture Search!

e Manual process of finding best units requires a lot of expertise

e What if we could use Al to find the right architecture for any
problem?

e Neural architecture search with reinforcement learning by Zoph
and Le, 2016



Neural Architecture Search

Sample architecture A
with probability p

The controller (RNN)

t

3

Trains a child network
with architecture
A to get accuracy R

J

Compute gradient of p and
scale it by R to update
the controller




But R isn't differentiable



Neural Architecture Search

Sample architecture A
with probability p

r )

Trains a child network
The controller (RNN) with architecture
. A to get accuracy R
HOE Validation Accuracy R = Reward

I J

Compute gradient of p and
scale it by R to update
the controller




The trick : Reinforce

function REINFORCE
Initialise 6 arbitrarily
for each episode {s1,a1,r,....,sT_1,3a7-1,r7} ~ 79 dO
fort=1to T —1do
0 « 0 + aVglog mo(st, ar)ve
end for
end for
return ¢
end function



Example: CNN Controller
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Used Reinforcement Learning to train the RNN Controller




LSTM Cell vs NAS Cell

identity ()
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Generating RNN units
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Nice Perplexity Reduction for Language Modeling

Model | Parameters Test Perplexity
Mikolov & Zweig (2012) - KN-5 2M* 141.2
Mikolov & Zweig (2012) - KNS + cache 2M* 125.7
Mikolov & Zweig (2012) - RNN 6M* 124.7
Mikolov & Zweig (2012) - RNN-LDA T™M* 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache oM+ 92.0
Pascanu et al. (2013) - Deep RNN 6M 107.5
Cheng et al. (2014) - Sum-Prod Net sMm* 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 82.7
Zaremba et al. (2014) - LSTM (large) 66M 78.4
Gal (2015) - Variational LSTM (medium, untied) 20M 79.7
Gal (2015) - Variational LSTM (medium, untied, MC) 20M 78.6
Gal (2015) - Variational LSTM (large, untied) 66M 75.2
Gal (2015) - Variational LSTM (large, untied, MC) 66M 73.4
Kim et al. (2015) - CharCNN 19M 78.9
Press & Wolf (2016) - Variational LSTM, shared embeddings 51IM 732
Merity et al. (2016) - Zoneout + Variational LSTM (medium) 20M 80.6
Merity et al. (2016) - Pointer Sentinel-LSTM (medium) 21M 70.9
Inan et al. (2016) - VD-LSTM + REAL (large) 51IM 68.5
Zilly et al. (2016) - Variational RHN, shared embeddings 24M 66.0
Neural Architecture Search with base 8 32M 67.9
Neural Architecture Search with base 8 and shared embeddings 25M 64.0
Neural Architecture Search with base 8 and shared embeddings 54M 62.4




But it takes 800 GPUs



Comparing NAS to random grid search
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Soruce : Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le.
"Learning Transferable Architectures for Scalable Image Recognition." arXiv preprint
arXiv:1707.07012 (2017).



A better trick : PPO

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters 6y, clipping threshold ¢
for k=0,1,2,... do
Collect set of partial trajectories D on policy mx = m(6k)
Estimate advantages Af“ using any advantage estimation algorithm
Compute policy update
Ok+1 = arg mgxx[,gf”’(ﬁ)

by taking K steps of minibatch SGD (via Adam), where

TAYT
t=0

£5.70) = E lZ [min(re(6)AT*, clip ((6),1 — €1 +¢) A?k)]]

end for




Sharing parameters

tanh @ RelU
i (g

P Sl
“stanh| * “sRelU| * “sRelU| *
Node 1 Node 2 Node 3 Node 4

Soruce : Pham, Hieu, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean.
"Efficient Neural Architecture Search via Parameter Sharing." arXiv preprint

arXiv:1802.03268 (2018).

“Importantly, in all of
our experiments, for
which we use a single
Nvidia GTX 1080Ti
GPU, the search for
architectures takes less
than 16 hours”



ADANET(S = ((zi, ¥i)™4)

1 fo 0

2 fort<+ 1toT do

3 h,h’ <~ WEAKLEARNER (S, f;_1)
W < MINIMIZE (F}(w, h))
w’ < MINIMIZE (Fy(w, b))
if F,(w,h’) < F,(w’, h’) then

ht <h

else h; « h’

9 if F(w;_1 +w*) < F(w;_1) then
10 fie1+ fi+wW* - hy
11 else return f;_;
12 return fr

AdaNet
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Figure 3. Pseudocode of the AdaNet algorithm. On line 3 two
candidate subnetworks are generated (e.g. randomly or by solving
(6)). On lines 3 and 4, (5) is solved for each of these candidates.
Let z — ®(—x) be a non-increasing convex function On lines 5-7 the best subnetwork is selected and on lines 9-11
upper-bounding the zero-one loss, z — 1;<o, such that @ termination condition is checked.

is differentiable over R and ®'(z) # 0 for all .

miny, Fi(w,h) < miny, F;(w,h’), then

w* = argmin Fy(w,h), h;=h
weRE

Repo : https://github.com/tensorflow/adanet andigftherise

w* = argmin Fy(w,h’), h;=h’
weRB


https://github.com/tensorflow/adanet

Dynamic Memory Network



Dynamic Memory Network

Motivation:

o S Bl B

Jane went to the hallway.

Mary walked to the bathroom.
Sandra went to the garden.
Daniel went back to the garden.
Sandra took the milk there.
Where is the milk?

garden



Dynamic Memory Network

Jane went to the hallway.

Mary walked to the bathroom.
Sandra went to the garden.
Daniel went back to the garden.
Sandra took the milk there.
Where is the milk?

garden

e Motivation:
o lterative attention
process

>O‘-—1-—nu—1.—n‘-—1
. .. .. . .
.. .

Initially we don’t pay attention on the sentence
which contains the answers...

Since this iterative attention is good, need an architecture
to strengthen that ability



Dynamic Memory Network

Answer module
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Standard GRU. The last hidden state of each sentence is accessible.

For one sentence input, keep hidden states of each words.

Optional: Having <End of Sentence> token and consider the hidden state of it as a representation of
the sentence.



Further Improvement: BiGRU

Input fusion

Position Encoding:

o KON i
Ji = Dom ljowj

lia = (1—j/M) - (d/D)(1 - 2j/M)

D: representation dimension
j: jth word in sentence
M: num word in sentence




The Modules: Question

dt — GRU(/Ut, C]t—l)f

I
Question Module g




Episodic Memory
Module

e;

0.0

2 2 2 3 > 5 e Answer module
e e e. e; e e, e.

) 57
3 S
L4

Question Module g

m_Q0 is initialized as q

At episode iteration t:
1. Using previous memory m_(t-1) and g to compute attention score:

similarity measure: z =[some features]-> .. -> softmax -> gi for each sentence,

1.  Using a modified GRU with input ( s1,s2 ,...) and (g1,92,...) => last hidden state = m_t




Episodic Memorye; Answer module

Module 0.0

) <7
4

Question Module ¢

=[sieq;siom™™%s; —ql;ls; —m'™Y]
hi = g{GRU(s;, hiy) + (1= gD)hi_y  Z!=W tanh (WDt 4+ 5D) + @

Last hidden state: mt b ];XP(ZE)
> k=1 €xp(Zy)




The Modules: Answer

At

GRU([yt—l ’ Q] ’ a’t—l)v

Upgrade: using pointer to point to the input

y: = softmax(W at)
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Related work

e Sequence to Sequence (Sutskever et al. 2014)

* Neural Turing Machines (Graves et al. 2014)

* Teaching Machines to Read and Comprehend (Hermann et al. 2015)
e Learning to Transduce with Unbounded Memory (Grefenstette 2015)
e Structured Memory for Neural Turing Machines (Wei Zhang 2015)

e Memory Networks (Weston et al. 2015)
* Endto end memory networks (Sukhbaatar et al. 2015)

>



Memory networks

Array of memory m

I: (input feature map) — converts the incoming input to the internal feature representation.

Using features (embedding, POS,coreference,position encoding,...)

G: (generalization) — updates old memories given the new input. We call this generalization

as there 1s an opportunity for the network to compress and generalize its memories at this
stage for some intended future use. Could be simple as putting new element to m

O: (output feature map) — produces a new output (in the feature representation space), given
the new input and the current memory state.

The O component is typically responsible for reading from memory and
performing inference. Have some function for scoring attention.

Similar with DMN, produce output 1 and condition on it and memory to find output 2 and so
on... -> final output

R: (response) — converts the output into the response format desired. For example, a textual
response or an action.

Memory Networks (Weston et al. 2015)



Comparison to MemNets

Similarities:

* MemNets and DMNs have input, scoring, attention and response
mechanisms

Differences:

* For input representations MemNets use bag of word, nonlinear or
linear embeddings that explicitly encode position

e MemNets iteratively run functions for attention and response

* DMNs show that neural sequence models can be used for
input representation, attention and response mechanisms
- naturally captures position and temporality

* Enables broader range of applications



babl 1k, with gate supervision

Task 2,3 have long input sequence, DMN do poor while MemNN because it views each sentence separately.
Taks 7,8 requires iteratively retrieve facts and slowly incorporate, DNN shows better result.

Task MemNN DMN | Task MemNN DMN
I: Single Supporting Fact 100 100 I 1: Basic Coreference 100 99.9
2: Two Supporting Facts 100 98.2 | 12: Conjunction 100 100
3: Three Supporting facts 100 95.2 | 13: Compound Coreference 100 99.8
4: Two Argument Relations 100 100 14: Time Reasoning 99 100
5: Three Argument Relations 98 99.3 | 15: Basic Deduction 100 100
6: Yes/No Questions 100 100 16: Basic Induction 100 994
7: Counting 85 96.9 | 17: Positional Reasoning 65 59.6
8: Lists/Sets 91 96.5 | 18: Size Reasoning 95 95.3
9: Simple Negation 100 100 19: Path Finding 36 34.5
10: Indefinite Knowledge 98 97.5 | 20: Agent’s Motivations 100 100
Mean Accuracy (%) 93.3 93.6




Experiments: Sentiment Analysis

Stanford Sentiment Treebank Task Bimory | Flos-prained
. MV-RNN 82.9 44 4
Test accuracies: RNTN 35 4 457
e MV-RNN and RNTN: DCNN 86.8 48 5
Socher et al. (2013) PVec 87.8 48.7
e DCNN: CNN-MC  88.1 47.4
DRNN 86.6 49.8

Kalchbrenner et al. (2014) CT.LSTM  88.0 51.0

e PVec: Le & Mikolov. (2014)

e CNN-MC: Kim (2014) il 886 521

e DRNN: Irsoy & Cardie (2015)
e CT-LSTM: Tai et al. (2015)



Analysis of Number of Episodes

e How many attention + memory passes are
needed in the episodic memory?

Max task 3 task 7 task 8 sentiment

passes three-facts count lists/sets (fine grain)

0 P 0 48.8 33.6 50.0 Should consider the number
| pass 0 48.8 54.0 315 of passes as

2 pass 16.7 49.1 55.6 52.1 hyperparameter.

3 pass 64.7 83.4 83.4 50.1

5 pass 95.2 96.9 96.5 N/A




Analysis of Attention for Sentiment

e Sharper attention when 2 passes are allowed.
e Examples that are wrong with just one pass

1-iter DMN (pred: negative, ans: positive)
1 . h -

$ {K(? sz ' Q:OQ @Qb g \(\Q $rg\ ' {S\Q’ 04'\6 0&(9
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2-iter DMN (pred: positive, ans: positive)
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Analysis of Attention for Sentiment

1-iter DMN (pred: very positive, ans: negative)

1
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2-iter DMN (pred: negative, ans: negative)
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Experiments: POS Tagging

e PTB WSJ, standard splits
e Episodic memory does not require multiple
passes, single pass enough

Model SVMTool Sogaard Suzukietal. Spoustovaetal. SCNN | DMN

Acc (%) 9115 97.27 97.40 97.44 97.50 | 97.56




Modularization Allows for Different Inputs

Answer Answer

Episodic Memory | Kitchen Episodic Memory Palm
Question Input Module Question

John moved to the Where is :
Haren the What kl_nd
John got the apple there. apple” of tree is
John moved to the | in the
kitchen.
Sandra picked up the backgrou
milk there. nd?
John dropped the apple.

John moved to the
office.




Input Module for Images

Feature
embedding

Visual feature
extraction

Input Module
.t : '
.9 ] [ L >
5 e -
2% |[erur{erul— oo GRU

Representation of a
feature

— Linear layer with tanh activation

Project to Visual feature
embedding

Local region
feature extraction
( feature blocks)

Dynamic Memory Networks for Visual and Textual Question Answering,

Caiming Xiong, Stephen Merity, Richard Socher



Accuracy: Visual Question Answering

VQA test-dev and

test-standard:

e Antol et al. (2015)

e ACK Wu et al. (2015);

e iBOWIMG - Zhou et al.
(2015);

e DPPnet - Noh et al.
(2015); D-NMN - Andreas
et al. (2016);

e SAN - Yang et al. (2015)

test-dev test-std
Method All  Y/N Other Num All
VQA
Image 28.1 64.0 38 04 -
Question 48.1 73.7 211 36.7 -
Q+I a2 156 Fld4 357 -
LSTM Q+I 53.7 789 364 35.2 54.1
ACK 551 7192 401 36.1 56.0
iIBOWIMG 55.7 76.5 42.6 35.0 559
DPPnet 572 8049 417 31.2 57.4
D-NMN 579 80.5 43.1 374 58.0
SAN 58.7 79.3 46.1 36.6 58.9
DMN+ 60.3 80.5 483 36.8 60.4



Attention Visualization

What is this sculpture Answer: metal
made out of ? the bananas ?

“What color él_rev

(AR S

What is the pattern on the Answer: stripes Did the player hit
cat 's fur on its tail ? the ball ?

Answer: yes



