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Many Faces of RL

By David Silver



What is RL?
● RL is a general-purpose framework for sequential decision-making

● Usually describe as agent interacting with unknown environment

● Goal: select action to maximize a future cumulative reward

Agent
Environment

Action 𝑎

Reward 𝑟,  
Observation 𝑜



Environment

● Agent learns mapping from situations to actions.

○ By trial-and-error interactions with dynamic environment

● Environment must be at least partially observable by RL system.

● Observations may be low level, high level or “mental”.

Voltage Accept job offer Shift in attention



Motor Control

● Observations: images from camera, joint angle
● Actions: joint torques
● Rewards: navigate to target location, serve and protect humans



Business Management

● Observations: current inventory levels and sales history
● Actions: number of units of each product to purchase
● Rewards: future profit
Similarly, there also are resource allocation and routing problems ….



Games



Two Minute Papers

http://www.youtube.com/watch?v=V1eYniJ0Rnk


Reinforcement Function

● “Goal” of RL system

● Function of future reinforcements(rewards) agent seeks to maximise.

● i.e. Exists mapping from state-action pairs to reinforcements.

○ After performing an action given a state, agent receives a scalar value.

Pure Delayed Reward Reinforcement Function

● Goal: Balance pendulum

● State: Dynamic state of pole system

● Actions: Left or right

● Reinforcement function:

○ -1 if pole falls

○ 0 everywhere else

● Agent will learn sequence of actions to 

balance pole and avoid -1 reinforcement.

Example: Cart-pole problem



State
● Experience is a sequence of observations, actions, 

rewards

● The state is a summary of experience



RL Agent
Major components:

● Policy: agent’s behavior function

○ Mapping of states to actions

● Value function: how good would each state and/or action be

○ Sum of reinforcements received from that state and following a fixed 

policy to a terminal state.

● Model: agent’s prediction/representation of the environment



Policy

A function that maps from state to action:

● Deterministic policy:

● Stochastic policy:



Example of Value Function

Simple Markov Decision Process with 16 States

X

X

State space

● Each square represents a state

● Reinforcement function is -1 everywhere

○ -1 reinforcement per transition

● 4 Actions: Left, right, up, down

● Goal states: Upper left & Bottom right



Example of Value Function
Value function of random policy

● For each state randomly choose 1 action

● Numbers in states represent expected 

values of states

● Following a random policy, when starting 

from lower left corner, on average 22 

transitions before reaching terminal state

0 -14 -20 -22

-14 -18 -22 -20

-20 -22 -18 -14

-22 -20 -14 0

0 -1 -2 -3

-1 -2 -3 -2

-2 -3 -2 -1

-3 -2 -1 0

● Value of state at lower left corner is -3

● Takes only 3 transitions to reach terminal 

state

● Given optimal value function, trivial to 

extract optimal policy

Value function of optimal policy

Optimal value function Optimal policy



Q-Learning

● Finds mapping of state-action pairs to “Q-values”

○ Vs. mapping from states to state values (Value iteration)

● In each state, each action is associated with a Q-value, Q(st , at)

● Q-value - Expected future total reward

○ Sum of the reinforcements (possibly discounted) received when 

performing the associated action and following the given policy 

thereafter

● Optimal Q-value,                , is the sum of reinforcements received when 

performing associated action and following optimal policy thereafter.

● Value of state: Maximum Q-value in given state

● Q(st , at) = r (st , at) + Ɣ max Q(st+1 , at+1) Bellman equation for Q-learning
ut+1



Value Function
● Q-value function gives expected future total reward

○ from state and action (𝑠, 𝑎)
○ under policy 𝜋
○ with discount factor 𝛾 ∈   (0,1)

○ Show how good current policy

● Value functions can be defined using Bellman 
equation

𝐵𝑄/  𝑠, 𝑎
=

● Bellman backup operator



Bellman Backup Operator

● Lookup table to represent Q-function

● To update prediction Q(st ,at):

○ Perform at, causing transition to 

st+1 and return r(st ,at).

● Only need to find max Q-value in 

new state to update Q-value for 

action just performed.

● After many updates, Q-value for at 

converges to expected sum of all 

reinforcements received when 

performing at and following optimal 

policy thereafter.

st

st+1

r(st ,at)Q(st ,at)

Q(st+1 ,at+1)Q(st+1 ,at+1)



Value Function
● For optimal Q-value function 𝑄∗ 𝑠, 𝑎

/
= max 𝑄/(𝑠, 𝑎) , then policy 
function isdeterministic, the Bellman equation 

becomes:

B
7

B/Q s, a = E67[r + 𝛾 max 𝑄/(𝑠<, 
𝑎<)|𝑠, 𝑎]



NEXT - We will discuss about Deep Reinforcement Learning



What is Deep RL?
● Use deep neural network to 

approximate
○ Policy
○ Value function
○ Model

● Optimized by SGD



Approaches

● Value-based Deep RL

● Policy-based Deep RL



Value-based Deep RL

● Deep Q Learning - DQN
● Categorical DQN 
● epsilon - Rainbow

○ Double DQN
○ Dueling Networks
○ Prioritized Replay
○ n-step learning
○ NoisyNets



Deep Q-Learning
● Wait before getting into Deep Q Learning
● Let’s discuss Q-Learning



A = {1, . . . , K}  set of actions
rt = reward received at time step t
st = x1, a1, x2, ..., at−1, xt
st is the state at time step t
don’t be confused with xt, st
γ = discount factor per time-step [ 0 < γ < 1 ]

 Future discounted return at time t

optimal action-value function Q∗ (s, a)

The optimal action-value function Q∗ (s, a) as the 
maximum expected return achievable by following any 
strategy, after seeing some sequence s and then taking 
some action a.
where π is a policy mapping sequences to actions 
(or distributions over actions)

Q Learning Recap



Bellman Equation

The optimal action-value function obeys an important identity known as the Bellman equation

The basic idea behind many reinforcement learning algorithms is to estimate the action-value 
function, by using the Bellman equation as an iterative update

 Such value iteration algorithms converge to the optimal action-value function,
 Qi → Q∗ as i → ∞

You can use different algorithm like 
- Monte Carlo
- TD , TD (0), TD ( lambda ) 



Deep Q-Learning
● Represent value function by 

Q-network



Deep Q-Learning
● Optimal Q-values should obey Bellman 

equation

● Treat right-hand side as target network, given 𝑠, 𝑎, 𝑟, 𝑠< , optimize MSE 
loss  via SGD:



Loss function

Loss: (target - predicted) , yi is target here

Gradient:

Target Y Predicted 
Y_hatnotice the 

weights

notice the 
weights



What are some problems here ?
But diverges using neural networks due 
to:

● Correlations between samples
● Non-stationary targets



Deep Q-Learning
Experience Replay: remove correlations, build data-set from agent's 
own  experience

● Sample experiences from data-set and apply 
update

● To deal with non-stationarity, 
○ target parameters is fixed, 
○ or use a seperate Q_network for target and 

predicted which is called Double DQN



Deep Q-learning with Experience Replay



Double DQNs
● To handle the problem of over estimation of Q-Values
● how are we sure that the best action of the next state is the action with 

highest Q-Value
● The solution is

○ use our DQN network to select what is the best action to take for the 
next state
■ (action with the highest Q-Value)

○ use our target network to calculate the target  the target Q value of 
taking that action at the next state.



Dueling DQN (aka DDQN) 
● Remember that Q-values correspond to how good it is to be at that state and 

taking an action at that state Q(s,a).

● So we can decompose Q(s,a) as the sum of:

○ V(s): the value of being at that state

○ A(s,a): the advantage of taking that action at that state (how much better is to 

take this action versus all other possible actions at that state).



Prioritized Experience Replay
● Prioritized Experience Replay (PER) was introduced in 2015 by Tom 

Schaul. The idea is that some experiences may be more important than 
others for our training, but might occur less frequently.

● We want to take in priority experience where there is a big difference 

between our prediction and the TD target, since it means that we have a 

lot to learn about it.

● We use the absolute value of the magnitude of our TD error:

https://arxiv.org/search?searchtype=author&query=Schaul%2C+T
https://arxiv.org/search?searchtype=author&query=Schaul%2C+T


Prioritized Experience Replay cont..

But how are we going to sample from the ReplayMemory Dataset

we can’t just do greedy prioritization, 
because it will lead to always training the same experiences (that have big priority), 
and thus over-fitting.



Stochastic prioritization



Bias Correction - during weight updates

As consequence, during each time step, we will get a batch of samples with this probability 

distribution and train our network on it.

But, we still have a problem here. Remember that with normal Experience Replay, we use a 

stochastic update rule. As a consequence, the way we sample the experiences must match 

the underlying distribution they came from.

When we do have normal experience, we select our experiences in a normal distribution  — simply 

put, we select our experiences randomly. There is no bias, because each experience has the same 

chance to be taken, so we can update our weights normally.

But, because we use priority sampling, purely random sampling is abandoned. As a consequence, 

we introduce bias toward high-priority samples (more chances to be selected).



Importance sampling weights (IS)

1. The weights corresponding to high-priority samples have very little adjustment (because 
the network will see these experiences many times), whereas those corresponding to 
low-priority samples will have a full update

2. The role of b is to control how much these importance sampling weights affect learning. In 
practice, the b parameter is annealed up to 1 over the duration of training, because these 
weights are more important in the end of learning when our q values begin to 
converge.



Deep Q-Learning in Atari

Network architecture and hyperparameters fixed across all 
games

By David Silver



By David Silver



If you want to know more about RL, suggest to read:

Reinforcement Learning: An Introduction.  
Richard S. Sutton and Andrew G. Barto  
Second Edition, in progress
MIT Press, Cambridge, MA, 2017



Policy based - Deep RL
● Policy Gradient



Policy Gradient in a Nutshell

● In policy-based methods, instead of learning a value function that tells us 
what is the expected sum of rewards given a state and an action, we learn 
directly the policy function that maps state to action.

● It means that we directly try to optimize our policy function π without 

worrying about a value function. We’ll directly parameterize π (select an 

action without a value function).

Two types of policy
A policy can be either deterministic or stochastic.

We will explore stochastic policy



Main Advantages of Policy Gradient

●  Convergence

● Policy gradients are more effective in high dimensional action spaces
○ For Deep Q-Learning, what if we have an infinite possibility of actions?



Differences

1. Naturally, Policy gradients have one big disadvantage. 

a. A lot of the time, they converge on a local maximum rather than on the global 

optimum.

2. Instead of Deep Q-Learning, which always tries to reach the maximum, policy gradients 

converge slower, step by step. 

a. They can take longer to train.





















Deep Policy Network

C

● Represent policy by deep neural network 
that

max 𝐸B~G(B|C,H)[𝑟(𝑎)|𝜃, 𝑠]
● Ideas: given a bunch of trajectories,

○ Make the good trajectories/action more probable
○ Push the actions towards good actions





NEXT - RL in NLP



RL in NLP
● Article summarization
● Question answering
● Dialogue generation
● Dialogue System
● Knowledge-based QA
● Machine Translation
● Text generation



RL in NLP
● Article summarization
● Question answering
● Dialogue generation
● Dialogue System
● Knowledge-based QA
● Machine Translation
● Text generation



Article Summarization
Text summarization is the process of automatically generating natural 
language  summaries from an input document while retaining the important 
points.

• extractive summarization

• abstractive summarization



A Deep Reinforced Model for Abstractive Summarization

Paulus et. al.

Given x = {𝑥L, 𝑥M, ⋯ , 𝑥O} represents the sequence of input (article) tokens, 
𝑦 =
{𝑦L, 𝑦M, ⋯ , 𝑦R}, the sequence of output (summary) tokens

Coping word Generating word



The maximum-likelihood training 
objective:

Training with teacher forcing 
algorithm.

A Deep Reinforced Model for Abstractive Summarization

Paulus et. al.



Paulus et. al.

There is discrepancy between training and test performance, 
because

• exposure bias

• potentially valid summaries

• metric difference

A Deep Reinforced Model for Abstractive Summarization



Using reinforcement learning framework, learn a policy that maximizes 
a  specific discrete metric.

TAction: 𝑢T ∈ 𝑐𝑜𝑝𝑦, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 and word 𝑦H

State: hidden states of encoder and previous outputs

Reward: ROUGE score

A Deep Reinforced Model for Abstractive Summarization

Where 𝑝 𝑦H 𝑦H, ⋯ , 𝑦HT L T[L T L T[L, 𝑥 = 𝑝 𝑢T = 𝑐𝑜𝑝𝑦 𝑝 𝑦H 𝑦H, ⋯ , 𝑦H , 𝑥, 𝑢T = 
𝑐𝑜𝑝𝑦 T

L Paulus et. al.

T[L+𝑝 𝑢T = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑝(𝑦H|𝑦H, ⋯ , 𝑦H , 𝑥, 𝑢T = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒)



A Deep Reinforced Model for Abstractive Summarization

Paulus et. al.



Human readability scores on a random subset of the CNN/Daily Mail test 
dataset

Paulus et. al.

A Deep Reinforced Model for Abstractive Summarization



RL in NLP
● Article summarization
● Question answering
● Dialogue generation
● Dialogue System
● Knowledge-based QA
● Machine Translation
● Text generation



Text Question Answering

Example from SQuaD dataset



Text Question Answering

Encoder Layer

Attention Layer

Decoder Pointer

Encoder Layer

Loss function layer

P Q

LSTM,  
GRU

LSTM + MLP  
GRU + MLP

Self-attention  
biAttention  
Coattention

Cross Entropy



Xiong et. al.

DCN+: MIXED OBJECTIVE AND DEEP RESIDUAL COATTENTION FOR  
QUESTION ANSWERING

Constraints of Cross-Entropy  loss:

P: “Some believe that the Golden State Warriors team of 2017 is one  
of the greatest teams in NBA history,…”

Q: “which team is considered to be one of the greatest teams in NBA  
history”

GT: “the Golden State Warriors team of 2017”

Ans1: “Warriors”  Ans2: “history”



Not necessary for variable 
length. Xiong et. al.

DCN+: MIXED OBJECTIVE AND DEEP RESIDUAL COATTENTION FOR  
QUESTION ANSWERING

To address this, we introduce F1 score as extra objective combining 
with  traditional cross entropy loss:



RL in NLP
● Article summarization
● Question answering
● Dialogue generation
● Dialogue System
● Knowledge-based QA
● Machine Translation
● Text generation



Dialogue generation
What is it?

- Generating responses for conversational agents.



Dialogue generation
Training data

- OpenSubtitles dataset -- https://www.opensubtitles.org/

- A dialogue with 2 agents, p and q, will look as such:
- p1 , q1 , p2 , q2 , … , pi , qi
- Input: [pi , qi]
- Output: pi+1

https://www.opensubtitles.org/


Dialogue generation
Baseline model

- LSTM sequence-to-sequence (SEQ2SEQ)

Image credits: https://towardsdatascience.com/sequence-to-sequence-model-introduction-and-concepts-44d9b41cd42d



Dialogue generation
Baseline model limitations

1) SEQ2SEQ models tend to generate highly generic responses, e.g. I don’t 
know

2) Getting stuck in an infinite loop of repetitive responses



Dialogue generation
Baseline model limitations

1) SEQ2SEQ models tend to generate highly generic responses, e.g. I don’t 
know

2) Getting stuck in an infinite loop of repetitive responses

To solve these, the model needs:

• Integrate developer-defined rewards that better mimic the true goal of chatbot 
development

• Model the long term influence of a generated response in an ongoing dialogue



Dialogue generation
RL model

- State: [pi , qi]
- Action: Sequence to be generated. The action space is infinite.
- Reward: Ease of answering, Information Flow, Semantic Coherence

- SEQ2SEQ model is similar to a policy gradients model -- it generates actions 
based on the state

- SEQ2SEQ optimizes parameters based on MLE
- RL further optimizes the parameters based on rewards



Dialogue generation
RL reward - Ease of answering

- A response generated by the model should be easy to respond to
- Responses which are hard to answer to -> more likely to be responded to 

with a ‘dull response’

- ‘Dull response’?
- E.g. ‘I have no idea’

- Higher likelihood of a dull response -> lower reward



Dialogue generation
RL reward - Information Flow

- New information should be contributed at each turn
- Penalize semantic similarity between consecutive turns from the same agent

- Higher cosine similarity -> lower reward

hpi and hpi+1 are the hidden representations obtained from the 
encoder for 2 consecutive turns of agent p



Dialogue generation
RL reward - Semantic coherence (Mutual Information)

- Avoid situations in which the generated replies are highly rewarded but are 
ungrammatical or not coherent

- Uses Mutual Information

- Lower Mutual Information score -> lower reward

Probability of generating 
action a, given state [pi , qi]

Backward probability of generating 
the previous dialogue qi given action a



Dialogue generation
RL reward - Combining 3 rewards

- Final reward is weighted sum of the 3 rewards



Dialogue generation
Putting everything together

1) Supervised learning, training SEQ2SEQ model
a) Not good for initializing policy model, due to generic responses

2) Mutual Information for pre-training policy model
a) Initialize with model from (1)
b) For each data point, there’s a MLE loss, and a Mutual Information Score 

(reward)
c) Use Curriculum Learning strategy, which optimizes for both

3) Dialogue Simulation between 2 agents



Dialogue generation
Dialogue Simulation between 2 agents

- Using the simulated turns and reward, maximize the expected future reward.



Dialogue generation
Results



Dialogue generation
Annex 1a - Mutual Information reward derivation (part 1) 

● MMI objective

● Mutual Information for previous sequence 𝑆 andresponse 𝑇

𝜆 ∶ controls the penalization for generic response

Li et. al.



Dialogue generation
Annex 1b - Mutual Information reward derivation (part 2) 

Consider 𝑆 as (𝒒𝒊, 𝒑𝒊), 𝑇 as 𝑎, we can have

Li et. al.



Summary
● The introduction of Reinforcement 

Learning
● Deep Policy Learning
● Deep Q-Learning
● Applications on NLP

○ Article summarization

○ Question answering

○ Dialogue generation


