Reinforcement Learning for NLP

Caiming Xiong

Salesforce Research
CS224N/Ling284

Outline

e Introduction to Reinforcement Learning
e Policy-based Deep RL

e Value-based

e DeepRL

e Examples of RL for NLP

Many Faces of RL

Computer Science

Engineering Neuroscience

Psychology

By David Silver

What is RL?

e RL is a general-purpose framework for sequential decision-making
e Usually describe as agent interacting with unknown environment

e (Goal: select action to maximize a future cumulative reward

m

& , Reward r, '
- Observation o Agent
Environment

Environment

e Agent learns mapping from situations to actions.
o By trial-and-error interactions with dynamic environment
e Environment must be at least partially observable by RL system.

e Observations may be low level, high level or “mental”.

Voltage Accept job offer Shift in attention

Voltage generated e [V]
1.0

08/ /
' d

06- /

0.4+ '/
| d

02~ //

0

1t 2 8 4 5 6 7 8 9
Rotational speed w [100 rad/s]

Motor Control

e (bservations: images from camera, joint angle
e Actions: joint torques
e Rewards: navigate to target location, serve and protect humans

Business Management

e (Observations: current inventory levels and sales history
e Actions: number of units of each product to purchase

e Rewards: future profit
Similarly, there also are resource allocation and routing problems

ALPHAGO

«++00:00:49

LEE SEDOL

« 00:01:00

Two Minute Papers

ima.. — B

http://www.youtube.com/watch?v=V1eYniJ0Rnk

Reinforcement Function

e “Goal’ of RL system
e Function of future reinforcements(rewards) agent seeks to maximise.
e i.e. Exists mapping from state-action pairs to reinforcements.

o After performing an action given a state, agent receives a scalar value.

Pure Delayed Reward Reinforcement Function

Example: Cart-pole problem
e (Goal: Balance pendulum

e State: Dynamic state of pole system
e Actions: Left or right

e Reinforcement function:

o -1if pole falls

M | F
o 0 everywhere else
77777777777 7777777777 777777777 e Agent will learn sequence of actions to

balance pole and avoid -1 reinforcement.

State

e Experience is a sequence of observations, actions,
rewards

e The state is a summary of experience

Sy = F(O154T 5 @5 5555 Tp—15 Ofs TE)

RL Agent

Major components:

e Policy: agent’s behavior function
o Mapping of states to actions
e Value function: how good would each state and/or action be
o Sum of reinforcements received from that state and following a fixed
policy to a terminal state.

e Model: agent’s prediction/representation of the environment

Policy

A function that maps from state to action:
e Deterministic policy:

a=m(s)

e Stochastic policy:
m(als) =P [als]

Example of Value Function

Simple Markov Decision Process with 16 States

State space

X

Each square represents a state
Reinforcement function is -1 everywhere
o -1 reinforcement per transition

4 Actions: Left, right, up, down

Goal states: Upper left & Bottom right

Example of Value Function
Value function of random policy

e For each state randomly choose 1 action

0 -14 -20 -22
e Numbers in states represent expected
-14 -18 -22 -20 values of states

20 -22 -18 -14 e Following a random policy, when starting

from lower left corner, on average 22

22 -20 -14 0O

transitions before reaching terminal state

Value function of optimal policy

e Value of state at lower left corner is -3
o -1 -2 -3 -« <« = L = |
e Takes only 3 transitions to reach terminal

1023 2 & A4l e

2 3 2 -1 f 4»;’ * e Given optimal value function, trivial to

extract optimal policy
f —> | —>

Optimal value function Optimal policy

Q-Learning

Finds mapping of state-action pairs to “Q-values”
o Vs. mapping from states to state values (Value iteration)
In each state, each action is associated with a Q-value, Q(s,, a,)
Q-value - Expected future total reward
o Sum of the reinforcements (possibly discounted) received when
performing the associated action and following the given policy
thereafter
Optimal Q-value, Q" (s, a), is the sum of reinforcements received when
performing associated action and following optimal policy thereafter.

Value of state: Maximum Q-value in given state

Q(St, at) =r (St’ at) +)/rgtilx Q(St+1 ; at+1) Bellman equation for Q-learning

BQ™(s,a) =

Value Function

e (Q-value function gives expected future total reward
o from state and action (s, a)
o under policy
o with discount factor v € (0.1)

Qw(s, a) =K [rt+1 + Ylsia-9 72rt+3 4+ ... | S, a]

o Show how good current policy
e Value functions can be defined using Bellman equation
Q7(s,a) = Eg o [r + '7Q7r(5,va,) E a]

e Bellman backup operator
B™Q(s,a) = E¢ y/[r+yQ™(s",a)|s,a] Q, B™Q, (B")*Q, (B")’°Q, - = Q~

Bellman Backup Operator

B™Q(s,a) = E¢ y[r +YQ"(s",a’)|s,a] Q, B"Q, (B")*Q, (B")*Q, --- = Q"

(5 °
Q(s, .a\U(s, ,a)

S CHPIE I Q(s,, »a

1)

Lookup table to represent Q-function
To update prediction Q(s, ,a,):

o Perform a, causing transition to

S.., and return r(s, ,a).

Only need to find max Q-value in
new state to update Q-value for
action just performed.
After many updates, Q-value for a,
converges to expected sum of all
reinforcements received when
performing a, and following optimal

policy thereafter.

Value Function

e For optimal Q-value function Q*(s,a) = max Q™ (s, a), then policy function is
T
deterministic, the Bellman equation becomes:

Q*(s,a) =Eg |r+v max Q*(s',d) | s,a
a/

B"Q(s,a) =Eyg[r+vy max Q™ (s',a)|s,a]
a

Q. BQ, B*Q, --- = Q"

NEXT - We will discuss about Deep Reinforcement Learning

What is Deep RL?

e Use deep neural network to
approximate

o Policy
o Value function
o Model

e Optimized by SGD

Approaches

e Value-based Deep RL

e Policy-based Deep RL

Value-based Deep RL

e Deep Q Learning - DQN
e Categorical DQN
e epsilon - Rainbow
o Double DQN
o Dueling Networks
o Prioritized Replay
o n-step learning
o NoisyNets

Deep Q-Learning

e \Wait before getting into Deep Q Learning
e Let's discuss Q-Learning

Q Learning Recap

A={1,...,K} setof actions

rt = reward received at time step t

st =x1, al, x2, ..., at—1, xt

st is the state at time step t

don’t be confused with xt, st

Y = discount factor per time-step [0<y < 1]

Future discounted return at time t
_ T t'—t

optimal action-value function Q* (s, a)
Q*(s,a) = max, E |[R;|s; = s,a; = a, 7|

The optimal action-value function Q* (s, a) as the
maximum expected return achievable by following any
strategy, after seeing some sequence s and then taking
some action a.

where 1T is a policy mapping sequences to actions

(or distributions over actions)

Bellman Equation

The optimal action-value function obeys an important identity known as the Bellman equation

s,a]

The basic idea behind many reinforcement learning algorithms is to estimate the action-value
function, by using the Bellman equation as an iterative update

Q*(s,a) > % ES'NE [T +A/ma,'XQ*(8,’a,)

Qit1(s,a) = E[r+ ymax, Q;(s’,a’)|s,al.

Such value iteration algorithms converge to the optimal action-value function,
Qi— Qkasi— »

NewQ(s,a) = Q(s,a)+a[R(s,a) + ymazx Q'(s',a") —Q(s,a)]
- — — —

New Q value for that state and -
fhatactioh CurrentQ Reward for taking .
value that action at that Maximum expected future reward given the
state new s’ and all possible actions at that new
state

Learning Rate Discount
rate

You can use different algorithm like
- Monte Carlo
- TD,TD(0), TD (lambda)

Deep Q-Learning

e Represent value function by
Q-network

Q(s,a,w) = Q*(s, a)

Q(s,a,w) s,a.,W)

RN
~ Y)

o

S

Deep Q-Learning

e Optimal Q-values should obey Bellman
equation

QR*(s,a) = Es {r + v max Q(s',a)* | s, a]
a/

e Treat right-hand side as target network, given (s, a, r,)s~ , optimize MSE
loss via SGD:

2
= (r+7 max Q(s', ', w) - Q(s,2,w))

Loss function

Loss: (target - predicted), yi is target here

L; (9'&) — IEs,arvp(-) [(yz =~ Q (Sa a, 92))2]
where y; = Eg~¢ [r + ymax, Q(s',a’;0;,-1)|s, a

Gradient:

Vo, Li (01) = IEs,a,rvp(-);s’r\«‘,' [(7’ 2 ’Yn}f,l‘x Q(Sla CL,; 971—1) e Q(S, a, 92)) VGiQ(Sa a, 92)]

Target Y Predicted not.icre]tthe
weights
notice the Y_hat d ‘
ight
weignts Q(s, a;0;)

Q(S’, a’; 9z‘-1)

What are some problems here ?

But diverges using neural networks due
to:

e Correlations between samples
e Non-stationary targets

Deep Q-Learning

Experience Replay: remove correlations, build data-set from agent's
own experience

51,41, 12,52

/
52,d2,13,53 —> SzdyF;8
S3,d3, 14, 54

St, dt, rt+17 5t+1

e Sample experiences from data-set and apply
update

2
f= (r +7 max Q(s’,a’,w™) — Q(s, a,w))

e To deal with non-stationarity,
o target parameters is fixed,
o or use a seperate Q_network for target and
predicted which is called Double DQN

Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function) with random weights
for episode = 1, M do
Initialise sequence s; = {z,} and preprocessed sequenced ¢, = ¢(s1)
fort =1,7 do
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s;), a; 0)
Execute action a; in emulator and observe reward r; and image x;41
Set s;4+1 = St, at, T441 and preprocess @1 = O(S¢41)
Store transition (¢;, a;, 7¢, ¢z41) in D
Sample random minibatch of transitions (¢, a;, 7, ¢;41) from D

Sety. — 4 T for terminal ¢;
Y5 = r; + ymaxy Q(Pj+1,a’;60) for non-terminal ¢; 41
Perform a gradient descent step on (y; — Q(¢;, a;; 0))* according to equation 3
end for

end for

Double DQNs

e To handle the problem of over estimation of Q-Values

e how are we sure that the best action of the next state is the action with
highest Q-Value

e The solution is

o use our DQN network to select what is the best action to take for the
next state

m (action with the highest Q-Value)

o use our target network to calculate the target the target Q value of
taking that action at the next state.

Q(s,a) =1(s,a) +yQ(s', argmaz,Q(s’,a))
DQN Network choose
action for next state

1D target

Target network calculates the Q
value of taking that action at that
state

Dueling DQN (aka DDQN)

e Remember that Q-values correspond to how good it is to be at that state and
taking an action at that state Q(s,a).
e S0 we can decompose Q(s,a) as the sum of:
o V(s): the value of being at that state
o A(s,a): the advantage of taking that action at that state (how much better is to

take this action versus all other possible actions at that state).

Q(s,a) = A(s,a) + V(s)

CNN CNN CNN

I/~

A(s,al)

A< - O3~~~ UC0D A0 D>

c —_— A(s,a2)

NS

e A(s,a3)

Q(s,al1)

Q(s,a2)

Q(s,a3)

Q values

Prioritized Experience Replay

e Prioritized Experience Replay (PER) was introduced in 2015 by Tom
Schaul. The idea is that some experiences may be more important than
others for our training, but might occur less frequently.

e We want to take in priority experience where there is a big difference

between our prediction and the TD target, since it means that we have a
lot to learn about it.

e \We use the absolute value of the magnitude of our TD error:

pt = |0t| +e

» : Constant assures
Magnitude of our T g
T i that no experience
[D erron : P
has 0 probability to
be taken.

https://arxiv.org/search?searchtype=author&query=Schaul%2C+T
https://arxiv.org/search?searchtype=author&query=Schaul%2C+T

Prioritized Experience Replay cont..

stl Atl Rt+ll st+ll

St+ll A(+1: Rt+2: st+2v
St+2: At+2: Rt+3r St+3:

V

%

Sample

sl‘+3l At+31 Rt+4r st+4'

Batch of experiences

Experience Replay Buffer
aka Memory

But how are we going to sample from the ReplayMemory Dataset

we can’t just do greedy prioritization,
because it will lead to always training the same experiences (that have big priority),
and thus over-fitting.

Stochastic prioritization

Hyperparameter used to
reintroduce some
randomness in the
experience selection
for the replay buffer

Priority
value

If a = 0 purc uniform
randomness

If a =1 only select the
experiences with the
highest priorities

Normalized by all
priority values in
Replay Buffer

Bias Correction - during weight updates

As consequence, during each time step, we will get a batch of samples with this probability

distribution and train our network on it.

But, we still have a problem here. Remember that with normal Experience Replay, we use a
stochastic update rule. As a consequence, the way we sample the experiences must match

the underlying distribution they came from.

When we do have normal experience, we select our experiences in a normal distribution —simply
put, we select our experiences randomly. There is no bias, because each experience has the same

chance to be taken, so we can update our weights normally.

But, because we use priority sampling, purely random sampling is abandoned. As a consequence,

we introduce bias toward high-priority samples (more chances to be selected).

Importance sampling weights (IS)

Controls how much the
[S w affect learning.
Close to 0 at the
1 1 beginning of learning and
b annealed up to 1 over the
e duration of training
N P 7/ because these weights
are more important in
: . the end of learning
g Sampling
Replay Buffer ., when our q values
X4 . probability i
Size begin to converge

1. The weights corresponding to high-priority samples have very little adjustment (because
the network will see these experiences many times), whereas those corresponding to
low-priority samples will have a full update

2. The role of b is to control how much these importance sampling weights affect learning. In
practice, the b parameter is annealed up to 1 over the duration of training, because these
weights are more important in the end of learning when our q values begin to
converge.

Deep Q-Learning in Atari

32 4x4 filters 95E Fadden: il Fully-connected linear
output layer
16 8x8 filters
4x84x84
=
b—
Stack of 4 previous) Fully-connected layer
framan Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Network architecture and hyperparameters fixed across all
games

By David Silver

By David Silver

%000€ %000L %009 %00S %00¥ %00€ %002 %001 %0

1) L1 | | 1 | | |

[
abuanay s ewnzajuoy

ak3 ajeaud
JeyARID
ayqisouy
SploJaISY
uewoed ‘s
Buiimog
%zl suna signog
1sanbeag
ainjuap
%zy | uaiy
wer | sepruy
% [| prey sonry
%25 | 1s19H yueg
%29 | epadiusn
%vo | puewwo) saddoyn
%29 | Jom jo piezipy
%29 || suoz smeg

JoweaT Jeoul ysog

19A0-uWNY Mojoq %69 I || xusisy
BA0QE 10 [aAs}-uRWNY J8 %oL A | ow3aH

%es S| vea.0
%6L i 1| AexooH o)
%ze JE /[umog puedn
%es L) | Aaseq Buysiy
%26 17| osnpu3
%004 Y | 1011d BwiL
%zoL | Aemaaiy
%zor | Y| seisew ng-Buny
w2zt | weyueny
%6t L | sepry weag
%z Y | ssopeau| soeds
wee LT | 6uod
%svl | puog sawer
wovs [T | el
%2z [N oosebuen
weez] | souuny peoy
%ovz I | wnessy
ez [iy
wosz T | oweo s sweN
wvez [T | oeny uowsq
oo I 5[seudoo

JaquuQ Azesd
snuepy
yuejoqoy
Jauung Jeys
noyeaig
Buixog
Ilequid O3pIA

If you want to know more about RL, suggest to read:

Reinforcement Learning: An Introduction.
Richard S. Sutton and Andrew G. Barto
Second Edition, in progress

MIT Press, Cambridge, MA, 2017

Policy based - Deep RL

e Policy Gradient

Policy Gradient in a Nutshell

e In policy-based methods, instead of learning a value function that tells us
what is the expected sum of rewards given a state and an action, we learn
directly the policy function that maps state to action.

e |t means that we directly try to optimize our policy function 1T without
worrying about a value function. We'll directly parameterize 11 (select an

action without a value function).

Two types of policy

A policy can be either deterministic or stochastic.

We will explore stochastic policy

Main Advantages of Policy Gradient

Local maximum Best parameters

e Convergence

The policy F—

foo)

e Policy gradients are more effective in high dimensional action spaces

O For Deep Q-Learning, what if we have an infinite possibility of actions?

Please wait I've
still 20 890 actions to
calculate their
Q values before
giving you the best
action to take

//"/-/? .
AN o oo
2\ &
. ~Z,
Policy Gradient 4

Deep Q-learning

Differences

1. Naturally, Policy gradients have one big disadvantage.
a. Alot of the time, they converge on a local maximum rather than on the global
optimum.
2. Instead of Deep Q-Learning, which always tries to reach the maximum, policy gradients
converge slower, step by step.

a. They can take longer to train.

Policy Gradients

Formally, let's define a class of parametrized policies: [T = {my, 8§ € R™}

For each policy, define its value:

JO)=E | Y ~'ri|m

>0

We want to find the optimal policy 6* = arg max J(0)

How can we do this?
Gradient ascent on policy parameters!

REINFORCE algorithm

Mathematically, we can write:
J(0) = Ernp(r;0) r(7)]

= /TT(T)p('r; 0)dr

Where r(z) is the reward of a trajectory 7 = (8¢, ag, 7o, 1, - -)

REINFORCE algorithm

Expected reward:] (6) = E,p(r0) [7(7)]
— /r('r)p('r; 0)dr

expectation is problematic when p

Now let’s differentiate this: V,.J(0) = / r(7)Vep(r; 0)dT Intractable! Gradient of an
T depends on 6

However, we can use a nice trick: v ,4(7; §) = p(; 6) Vop(7;6)
If we inject this back: p(7;0)

Vo (0) = / (r(7)V log p(r; 6)) p(r; 6)dr

T

= p(7;0)Vglogp(T; 6)

Can estimate with
= Errp(r0) [T(T) Vg logp(T; 0)] Monte Carlo sampling

Vo (0) = / (r(r)Vs log p(r;8)) p(r; 0)dr

REINFORCE algorithm B o PV le el

Can we compute those quantities without knowing the transition probabilities?

We have: p(’r; 9) — Hp(st+1|st,at)7r9(at|st)
t>0

Thus: logp(7;0) = Zlogp(st+1|st, at) + log mg(a|st)

4220 Doesn’t depend on
And when differentiating: Valogp(r;0) = Y Voelogmo(ar|st) transition probabilities!
t>0

Therefore when sampling a trajectory z, we can estimate J(0) with

VoJ(0) = Z r(7)Velog mg(at|st)

t>0

Intuition

Gradient estimator: ~ VyJ(0) ~ Z r(7)Vglog mo(a|st)
t>0
Interpretation:
- If r(z) is high, push up the probabilities of the actions seen
- If r(z) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is
really hard. Can we help the estimator?

Variance reduction
Gradient estimator: Vg J(8) & ZT(T)V@ log mg(a|st)

t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

VoJ(0) ~ Z (Z rtr) Vo log g (at|st)

t>0 \t'>t
Second idea: Use discount factor y to ignore delayed effects

VoJ(6 Z (Z 7t —tp,) Vo log mg(a|st)

20 \t'>t

Variance reduction: Baseline

Problem: The raw value of a trajectory isn’t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now:

VoJ (6 Z (Z fyt “try — b(sy)) Vo log mg(a|st)

t>0 \t'>t

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from

that state.
Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a, in a state s, if Q7 (ss,a:) — V7 (s4)
is large. On the contrary, we are unhappy with an action if it's small.

Actor-Critic Algorithm

Initialize policy parameters 0, critic parameters ¢
For iteration=1, 2 ... do
Sample m trajectories under the current policy

AfO 0
Fori=1, ..., mdo
Fort=1,..., T do

Z’Yt _t"'z St)

t' >t
Af <+ A0+ AVglog(al|s?t)

Ag D) VollAll?
t

0 aA
¢ < BAY

End for

Deep Policy Network

e Represent policy by deep neural network
that

C
- MaxEg g cmlrla)]0) s]
e |deas: given a bunch of trajectories,

o Make the good trajectories/action more probable
o Push the actions towards good actions

Hidden Hidden
Layer 1 Layer 2

Inputs

Softmax
Output ——
layer

Probability of
taking an action
Main Engine

Right Engine

Left Engine

Do Nothing

Dims: (8,1) (10,8) (10,10) (4,10)

NEXT - RL in NLP

RL in NLP

Article summarization
Question answering
Dialogue generation
Dialogue System
Knowledge-based QA
Machine Translation
Text generation

RL in NLP

Article summarization
Question answering
Dialogue generation
Dialogue System
Knowledge-based QA
Machine Translation
Text generation

Article Summarization

Text summarization is the process of automatically generating natural
language summaries from an input document while retaining the important
points.

o extractive summarization

» abstractive summarization

A Deep Reinforced Model for Abstractive Summarization

Given X = {xL, Xpr 1 xo} represents the sequence of input (article) tokens,
y —_
{0 ywr 1 Vgt the sequence of output (summary) tokens

Coping word Generating word

expanded (0.8)

0.
& B e ;ec:::'sig «1)).05)

&
7N\ /L

B .-
Tle UniTted StaTtes beche ttIe Iar;est tetch ' UIS te'ch

Paulus et. al.

Encoder Decoder

A Deep Reinforced Model for Abstractive Summarization

The maximume-likelihood training
objective:

n/
Lt =—) _logp(ylyt, ... ¥i1, %)
t=1

Training with teacher forcing
algorithm.

Paulus et. al.

A Deep Reinforced Model for Abstractive Summarization

There is discrepancy between training and test performance,
because

* exposure bias
« potentially valid summaries

 metric difference

Paulus et. al.

A Deep Reinforced Model for Abstractive Summarization

Using reinforcement learning framework, learn a policy that maximizes
a specific discrete metric.

Action: u.. €[copy, generate dnd word y 1

T

State: hidden states of encoder and previous outputs

Reward: ROUGE score

/

Ly = (r(@) —r(¥") D logp(y; 193, - - ¥i_1,)
=1

Wherep(y y,L,y T[LX)T (pll/t _I-Fp)/&yl_‘y, ,y r Xy T_)
+p(u.|c9p)generate O, -,y T{LX, up = generate)

- Paulus et. al.

A Deep Reinforced Model for Abstractive Summarization

Model ROUGE-1 | ROUGE-2 | ROUGE-L
words-lvt2k-temp-att (Nallapati et al., 2016) | 35.46 13.30 32.65
ML, no intra-attention 37.86 14.69 34.99
ML, with intra-attention 38.30 14.81 35.49
RL, with intra-attention 41.16 15.75 39.08
ML+RL, with intra-attention 39.87 15.82 36.90

Table 1: Quantitative results for various models on the CNN/Daily Mail test dataset

Model ROUGE-1 | ROUGE-2 | ROUGE-L
ML, no intra-attention 44.26 27.43 40.41
ML, with intra-attention 43.86 27.10 40.11
RL, no intra-attention 47.22 30.51 43.27
ML+RL, no intra-attention | 47.03 30.72 43.10

Table 2: Quantitative results for various models on the New York Times test dataset

Paulus et. al.

A Deep Reinforced Model for Abstractive Summarization

Human readability scores on a random subset of the CNN/Daily Mail test

dataset

Model Readability | Relevance
ML 6.76 7.14
RL 4.18 6.32
MLA+RL | 7.04 7.45

Paulus et. al.

RL in NLP

Article summarization
Question answering
Dialogue generation
Dialogue System
Knowledge-based QA
Machine Translation
Text generation

Text Question Answering

Passage: Tesla later approached Morgan to ask for more funds to build a more powerful transmitter.
all the money had gone, Tesla responded by saying that he was affected by
tthanic of 1901| which he (Morgan) had caused. Morgan was shocked by the reminder of his part
in the stock market crash and by Tesla’s breach of contract by asking for more funds. Tesla wrote
another plea to Morgan, but it was also fruitless. Morgan still owed Tesla money on the original
agreement, and Tesla had been facing foreclosure even before construction of the tower began.

Question: On what did Tesla blame for the loss of the initial money?

Answeri Panic of 1901|

Example from SQuaD dataset

Text Question Answering

Loss function layer
Decoder Pointer
Attention Layer

Encoder Layer Encoder Layer

P Q

Cross Entropy

LSTM + MLP
GRU + MLP

Self-attention
biAttention
Coattention

LSTM,
GRU

DCN+: MIXED OBJECTIVE AND DEEP RESIDUAL COATTENTION FOR
QUESTION ANSWERING

Constraints of Cross-Entropy loss:

P: “Some believe that the Golden State Warriors team of 2017 is one
of the greatest teams in NBA history,...”

Q: “which team is considered to be one of the greatest teams in NBA
history”

GT: “the Golden State Warriors team of 2017”

Ans1: “Warriors” Ans2: “history”

Xiong et. al.

DCN+: MIXED OBJECTIVE AND DEEP RESIDUAL COATTENTION FOR
QUESTION ANSWERING

To address this, we introduce F1 score as extra objective combining
with traditional cross entropy loss:

L1 (©) —Eznp, [R (s, €37, ér;0)]

—Ei-Np., [F1 (ans (éT, éT) , ans (S, e)) — By (ans (ST,eT) , ans (S’e))]

Q

Vel (6) —Ve (Etnp, [R])

—Ez~p, [RVe logp; (7;0)]

Not necessary for variable
length. Xiong et. al.

RL in NLP

Article summarization
Question answering
Dialogue generation
Dialogue System
Knowledge-based QA
Machine Translation
Text generation

Dialogue generation
What is it?

- Generating responses for conversational agents.

A: Where are you going? (1)
B: I’'m going to the restroom. (2)

A: how old are you? (1)
B:I'm 16. (2)

Dialogue generation
Training data

- OpenSubtitles dataset -- https://www.opensubtitles.orqg/

- A dialogue with 2 agents, p and q, will look as such:
- p1’q1’p2’q2,"'=pi’qi

- InpUt: [pi’ q,]
- Output: p,,

https://www.opensubtitles.org/

Dialogue generation
Baseline model

- LSTM sequence-to-sequence (SEQ2SEQ)

ENCODER DECODER

| — m— good

PN F 8 F 8

<GO>
(Embedding)
how are you ?
| Il I I | | Il I |
time step | 2 3 4 5 6 /

Image credits: https://towardsdatascience.com/sequence-to-sequence-model-introduction-and-concepts-44d9b41cd42d

Dialogue generation
Baseline model limitations

1) SEQ2SEQ models tend to generate highly generic responses, e.g. | don't
Know

2) Getting stuck in an infinite loop of repetitive responses

Baseline mutual information model (Li et al. 2015)
A: Where are you going? (1)

B: I’'m going to the restroom. (2)

A: See you later. (3)

B: See you later. (4)

A: See you later. (5)

B: See you later. (6)

A: how old are you? (1)

B:I'm 16. (2)

A: 167 (3)

B: I don’t know what you are talking about. (4)
A: You don’t know what you are saying. (5)

B: I don’t know what you are talking about . (6)
A: You don’t know what you are saying. (7)

Dialogue generation
Baseline model limitations

1) SEQ2SEQ models tend to generate highly generic responses, e.g. | don’t
know

2) Getting stuck in an infinite loop of repetitive responses

To solve these, the model needs:

 Integrate developer-defined rewards that better mimic the true goal of chatbot
development
« Model the long term influence of a generated response in an ongoing dialogue

Dialogue generation
RL model

- State: [p., q]
- Action: Sequence to be generated. The action space is infinite.
- Reward: Ease of answering, Information Flow, Semantic Coherence

- SEQ2SEQ model is similar to a policy gradients model -- it generates actions
based on the state

- SEQ2SEQ optimizes parameters based on MLE

- RL further optimizes the parameters based on rewards

Dialogue generation
RL reward - Ease of answering

- A response generated by the model should be easy to respond to
- Responses which are hard to answer to -> more likely to be responded to
with a ‘dull response’

- ‘Dull response’?
- E.g. 'l have no idea’

1 1

= FS ﬁs log Pseq2seq (3 I a’)
SES

K =

- Higher likelihood of a dull response -> lower reward

Dialogue generation
RL reward - Information Flow

- New information should be contributed at each turn
- Penalize semantic similarity between consecutive turns from the same agent

h.. -

1 Di+1

[Fp: [P

ry = —logcos(hy,, hy,.,) = —logcos]
1+1

handh_ ., are the hidden representations obtained from the
encoder for 2 consecutive turns of agent p

- Higher cosine similarity -> lower reward

Dialogue generation
RL reward - Semantic coherence (Mutual Information)

- Avoid situations in which the generated replies are highly rewarded but are
ungrammatical or not coherent
- Uses Mutual Information

1 1
1S N. log psquSeq(al(Iiapi) i N log pts)gggwsezrd(%‘a)
(A) i |\)

| |
Probability of generating Backward probability of generating
action a, given state [p., q] the previous dialogue g. given action a

- Lower Mutual Information score -> lower reward

Dialogue generation
RL reward - Combining 3 rewards

- Final reward is weighted sum of the 3 rewards

r (G, [pz’, Ch]) = A171 + AgTgy + A373

Dialogue generation
Putting everything together

1) Supervised learning, training SEQ2SEQ model
a) Not good for initializing policy model, due to generic responses

2) Mutual Information for pre-training policy model
a) Initialize with model from (1)

b) For each data point, there’s a MLE loss, and a Mutual Information Score
(reward)

c) Use Curriculum Learning strategy, which optimizes for both

1 1
r3 = E logpsquSeq(GIQiapz’) | N,

backward (g ‘ 0,)

log p seq2seq

(!

Dialogue generation
Dialogue Simulation between 2 agents

- Using the simulated turns and reward, maximize the expected future reward.

Input Message CCdj\f Turn 1 iﬁ A Turn 2 — Turn n
W \% W
2l L)) vl
encode decode encode —y decode 1 encode ° decode 1
m ——— > > |®| — Q1 —— o ... —_— D
P11 @ . ® n,1
How old are B "] .
you? \—/ . —/ :
) 2) 2
nNe—— (g —— 961 — --. : ——— Dni
@ 2 2
E \ q1,2 — s e e E \ pTL,2
U : 9
) 3
p1,3—— : s B — ... : — 3,
I'm 16, why are =) | thought you : pn,2
you asking? / & z were 12, &

Dialogue generation
Results

Model # of simulated turns
SEQ2SEQ 2.68
mutual information 3.40
RL 448
Setting RL-win RL-lose Tie
single-turn general quality 0.40 0.36 0.24
single-turn ease to answer 0.52 0.23 0.25
multi-turn general quality 0.72 0.12 0.16
Input Message Mutual Information Model RL
How old are you? I'm 16. I’'m 16, why are you asking?
What’s your full name? I have no idea. What’s yours?
I don’t want to go home tonight. Really? Why?

Do you have any feelings for me?
How much time do you have here?

Shall we get started? Of course!
Do you play football? No, i don’t
We’d have to talk to him. I mean, he’s a good guy

How come you never say it?

I don’t know what you are talking about.
Not long enough. Sorry, sir.

Because I don’t want to hurt you.

I don’t want to hurt your feelings.

Ten seconds.

Yes. We’ve got a lot of work to do here.
Yes. I love football!

About what ?

I don’t think it’s a good idea to say it.

Dialogue generation
Annex 1a - Mutual Information reward derivation (part 1)

e Mutual Information for previous sequence S andresponse T

p(S,T)
p(S)p(T)

log

e MMI objective

T = arg max {logp(T|S) — logp(T)}
;i

T = arg max {log p(T'|S) — Alogp(T)}
g

A : controls the penalization for generic response

Liet. al.

Dialogue generation
Annex 1b - Mutual Information reward derivation (part 2)

~

T = argmax { log p(T'|S) — Alog p(T)}
T

log p(T') = log p(T'|S) + log p(S) — log p(S|T')
T = argmax { (1 — \) log p(T|S)
i %

+ Alog p(S|T) — /\logp(S)}

= arg;nax {(1—X)logp(T|S) + Alogp(S|T)}

Consider S as (q,, p,), T as a, we can have

1 1
r3 = ~ 108 Pecqseq(algi» pi)+ 1 log Pieczseg (¢ila) |
a a; Liet. al.

Summary

The introduction of Reinforcement
Learning

Deep Policy Learning
Deep Q-Learning
Applications on NLP

o Article summarization
o Question answering

o Dialogue generation

