4

N

Dependency Parsing

Praveen
Joo Gek
Kay Pong
Roy

Su Wei
ZiKun
Junbin

Objectives

a) Syntactic Structure
b) Dependency Grammar

c) Transition-based dependency parsing

d) Neural dependency parsing

1. Syntactic structure - Constituency

Constituency = phrase structure grammar = context-free grammars (CFGs)

Definition of CFG:
G=(V,Z,R,S)

. set of nonterminals

. set of terminals

. relation from Vto (VU X)*
: the start symbol

0w oM <

1. Syntactic structure - Constituency

An example for CFG:
S — AA

A - «
A— B

start symbol: S

nonterminal symbol: S A

terminal symbol: a 5

Context-free:terminal symbols never appear on the left

1. Syntactic structure - Constituency

Basic unit: words

the, cat, cuddly, by, door
Det N Adj P N

Words combine into phrases

the cuddly cat, by the door
NP -> Det Adj N PP ->P NP

Phrases can combine into bigger phrases

the cuddly cat by the door
. NP -> NP PP

1. Syntactic structure - Constituency

Constituency Trees:

S
/\
NP VP
PéP
H|c VBZ NP PP
cLs NLS IN NP
spuglhclti with DT NN

a spoon

VP—VBZ NP PP or VP—VBZ NP

/S\

NP VP
I
PRP
VBZ NP
He | /\
eats NP PP
|
NNS IN
|
spaghetti ~ with

NP
|
NN
|

meat

1. Syntactic Structure — Dependency Grammar

 Differences compared to constituency parsing (CFG)
Lacks phrasal categories, although acknowledges phrases
Linguistic units, eg words, are connected by directed links

Verb is taken to be the structural center

Other syntactic units (words) directly or indirectly connected to verb

1. Syntactic Structure — Dependency Parsing

 Differences compared to constituency parsing (CFG)

Lacks phrasal categories

Might be simpler than CFG based parse-tree (less layers)

Two views of linguistic structure:
Dependency structure

e Dependency structure shows which words depend on (modify or
are arguments of) which other words.
e Determiners, adjectives, and (sometimes) verbs modify nouns

e We will also treat prepositions as modifying nouns
e The prepositional phrases are modifying the main noun phrase

e The main noun phrase is an argument of “look”

oW

Look for the large barking dog by the door in a crate

11 1/30/18

PP attachment ambiguities in dependency
P/ structure

s

Scientists study whales from space

AN O\

Scientists study whales from space

1/30/18

Attachment ambiguities

e Akey parsing decision is how we ‘attach’ various constituents
e PPs, adverbial or participial phrases. infinitives, coordinations.

The board approved [its acquisition] [by Royal Trustco Ltd.]
fof Toronto]

[for $27 a share]

[at its monthly meeting].

e Catalan numbers: C,= 2n)!/[(n+1)!n!]
« An exponentially growing series, which arises in many tree-like contexts
45 But normally, we assume nesting. 1/30/18

Dependency Grammar and
Dependency Structure

Dependency syntax postulates that syntactic structure consists of

relations between lexical items, normally binary asymmetric
relations (“arrows”) called dependencies

subTitted
Bills were Brownback

by Senator Republican

S AN
AT\

on and immigration 1
Kansas

18 1/30/18 oOf

Dependency Grammar and
Dependency Structure

Dependency syntax postulates that syntactic structure consists of
relations between lexical items, normally binary asymmetric
relations (“arrows”) called dependencies

submitted

nsubj:@/ l aux \C‘?b/
The arrows are Bills were Brownback
commonly typed hmo
: Yy typ odllts case appos
with the name of P flat
grammatical case,” /cc \ conj by Senator Republican
relations (subject, < 4. Soirdiion nmodl

prepositional object, ey
apposition, etc.) casel
19 1/30/18 of

Dependency Grammar and
Dependency Structure

Dependency syntax postulates that syntactic structure consists of
relations between lexical items, normally binary asymmetric
relations (“arrows”) called dependencies

submitted
The arrow connects a nsubj:@/ l e \o‘bl
h
ead (governor, Bills were Brownback

superior, regent) with a nmodl
dependent (modifier, case appos
inferior, subordinate) poZts flat

case,” /cc conj by Senator Republican

Usually, dependencies = .. 4 immigration nmodl
form a tree (connected, Kansas
acyclic, single-head) casel

20 1/30/18 oOf

21

Dependency Relations

Clausal Argument Relations Description

NSUBIJ Nominal subject

DOBJ Direct object

IOBJ Indirect object

CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description

NMOD Nominal modifier

AMOD Adjectival modifier
NUMMOD Numeric modifier

APPOS Appositional modifier
DET Determiner

CASE Prepositions, postpositions and other case markers
Other Notable Relations Description

CONJ Conjunct

CC Coordinating conjunction

Selected dependency relations from the Universal Dependency set. (de Marneffe et al_, 2014)
https://web_stanford.edu/~jurafsky/slp3/14.pdf 1/30/18

Dependency Grammar and
Dependency Structure

N, A

ROOQOT Discussion of the outstanding issues was completed .

e Some people draw the arrows one way; some the other way!
e Tesniere had them point from head to dependent...
e Ours will point from head to dependent

e Usually add a fake ROOT so every word is a dependent of

precisely 1 other node
24 1/30/18

Dependency Conditioning Preferences

What are the sources of information for dependency parsing?
1. Bilexical affinities [discussion = issues] is plausible

2. Dependency distance mostly with nearby words

3. Intervening material

Dependencies rarely span intervening verbs or punctuation

4. Valency of heads

How many dependents on which side are usual for a head?

N, A

,ROQT Discussion of the outstanding issues was completed .

Dependency Parsing

* Asentence is parsed by choosing for each word what other
word (including ROOT) it is a dependent of

e i.e., find the right outgoing arrow from each word

e Usually some constraints:

¢ Only one word is a dependent of ROOT
e Don’t wantcyclesA—->B,B—>A

* This makes the dependencies a tree
e Finalissue is whether arrows can cross (non-projective) or not

NN N N

ROOT Il ’ll give a talk tomorrow on bootstrapping
26 1/30/18

; &
2.

27

Methods of Dependency Parsing

Dynamic programming
Graph algorithms

You create a Minimum Spanning Tree for a sentence

McDonald et al.’s (2005) MSTParser scores dependencies independently
using an ML classifier (he uses MIRA, for online learning, but it can be
something else)

Constraint Satisfaction
Edges are eliminated that don’t satisfy hard constraints. Karlsson (1990), etc.

“Transition-based parsing” or “deterministic dependency
parsing”
Greedy choice of attachments guided by good machine learning classifiers
MaltParser (Nivre et al. 2008). Has proven highly effective.

1/30/18

1. Transition-based dependency parsing

How to extract the word dependencies

The Parser :
e 3 components : Stack , Buffer and Dependency Arc Stack

e Parse actions (Transitions) : Shift ,Left- Arc, Right- Arc
e Operations

1. Start: Stack-root, Buffer — Input sentence (all words), empty
Arc Stack

2. A series of actions

3. End : Stack-root, empty Buffer, Arc Stack- extracted

dependencies

1. Transition-based dependency parsing
Examples

Arc-standard transition-based parser
(there are other transition schemes ...)
Analysis of “l ate fish”

Start Start: ¢ = [ROOTL,B=w;, ..., w,,A=2
1. Shift o, wilB, A = olw, B, A
) ~ . . | 2. Left-Arc, olwilw, B, A >
[root] || | ate fish ’ olw,, B, AU{rw,w)}
= j J 3. Right-Arc, oclwilw, B, A >

lw;, B, AU{rn(w,w)}
Shlft Finish: p=2 o B ey

[[root] | |]%ate | fish]

Shift

[[root] I | ate][fish]

1. Transition-based dependency parsing
Examples

Arc-standard transition-based parser
Analysis of “I ate fish”

Left Arc
& e— r : A +=

[root] I ate !] == [root] | ate] nsubj(ate > 1)
Shift |

[root] ate] fish \\ [[root] | ate | fish]
>] o) 8] |
Right Arc

'a

: N , K ~) A +=
[root] ate | fish ﬂ —) [root] ate] obj(ate = fish)

.

Right Arc
r~ — N M) r M A +=
[root] ate]\ ‘ ‘ [root]] ’ ‘ root([root] = ate)
Bl : J UJ \ J | Firiigqss

1. Transition-based dependency parsing
Algorithm

Basic transition-based dependency parser

Start: o0 =[ROOT],B=w,, ..., w,,A=0

1. Shift o, w;|B,A=>0o|w,B,A

2. Left-Arc, o|w;|w, B, A=> c|w, B, AU{r(w,w,)}
3. Right-Arc, o|w;|w, B, A=> o|w, B, AU{r(w,w))}
Finish:o=[w],B =92

Transition-based dependency parsing
How to choose actions

-Classifier predicts next actions based on the word features

Example:
Support Vector Machine (SVM)

* Find the hyperplane that separate 2 different
classes.

SVM Non Linear Classifier

b MaXimize gap between Classes and deCiSion Ref: https://en.wikipedia.org/wiki/Support_vector_machine
boundary

Transition-based dependency parsing

Examples of features or parse configuration

 POS of word in Stack, POS of word in buffer;
* Length of the dependency Arc;
* Meaning and distance between the parsed words etc

« Examples : The head is a verb, the dependent is a noun

then predict Right-Arc, to go from left to right

Transition-based dependency parsing

Evaluation of Dependency Parsing:
(labeled) dependency accuracy

Acc = # correct deps

of deps
/R, &

ROOT She saw the video Ilecture i s ol

o 1 > 3 4 c LAS — 2 /5 = 405%
Gold Parsed

1 2 She nsubj 1 2 She nsubj
2 0 saw root 2 0 saw root

3 5 the det 3 4 the det

4 5 video nn 4 5 video nsubj
5 2 lecture obj 5 2 lecture ccomp

Transition-based dependency parsing

e Basic and deterministic parsing
o No Searching and predict actions based on words in
buffer and Stack
o =-Simple, Fast and efficient
o = Good accuracy

e Challenges
o Ambiguities
o - Part of speech labelling ; Multiple sentence attachments
or words order

Projectivity

Projectivity is a principle of tree structures.

A tree structure is said to be projective if there are NO crossing of dependency
edges. Any occurrence of such crossing (a.k.a. discontinuity or projectivity
violation), the structure will be considered as non-projective.

But non-projective structures are commonly seen in natural languages,
especially non-English.

* You can't easily get the semantics of certain constructions right without these nonprojective
dependencies

Who did Bill buy the coffee from yesterday ?

Handling non-projectivity
Many parsing algorithms are restricted to projective dependency graphs.

Two Main Approaches to Handle This Problem

1. Algorithms for non-projective dependency parsing:
« Constraint satisfaction methods (Foth et al., 2004)
« McDonald’s spanning tree algorithm (McDonald et al., 2005)
« Covington’s algorithm (Nivre, 2006)

2. Post-processing of projective dependency graphs:

« Pseudo-projective parsing (Nivre and Nilsson, 2005)

« Corrective modeling (Hall and Nov’ak, 2005)
« Approximate non-projective parsing (McDonald and Pereira, 2006)

Neural Dependency Parser

Problems

e Sparsity - too many features contributing too little
e Incompleteness - arc from s1 to s27?7
e Expensive feature computation - millions of features -> slow lookup

[Chen and Manning. 2014]

Sparse Feature representation

Combination of 1~3 elements from the
configuration

Words, word-pair, three-word conjunctions
Dimension - 1076 - 1077 - sparse !!

This is because words are represented as
discrete symbols and not dense vectors.

. slw=goodAslt=JJ %
: s2.w = has A s2.t = VBZ A sl.w = good :
t lc(s3)t =PRPAsyt=VBZAs;t=J] :

: le(sp).w = He A le(sz).l = nsubj A s;.w = has

Single-word features (9)

S81.w; 81.t1; s1.wt; S9.w; So.t;

so.wt; by.w; by.t; by.wt

Word-pair features (8)

s1.wt o sg.wt; s1.wt o s9.w; s1.Wtsa.t;
S1.w o Sp.wt; s1.t 0 so.wt; S1.w © Sg.W

s1.t o sg.t; s1.toby.t

Three-word feaures (8)

Sz.t o Sl.t o bl.t; 82.t o Sl.t o lCl(Sl).t;

Sz.t o Sl.t o TCl(Sl).t; Sg.t o Sl.t o lCl(SQ).t;
sp.t 0 s1.t orci(s2).t; sa.t o s;.w o rey(s2).t;
sg.tosy.woleci(sy).t; sa.t o s1.woby.t

Table 1: The feature templates used for analysis.
lc1(s;) and rcy(s;) denote the leftmost and right-
most children of s;, w denotes word, ¢ denotes
POS tag.

[Chen and Manning. 2014]

Incomplete Feature representation

Eg conjunction of s1, b2 is omitted

You don’t have features for some combination of the configurations.

[Chen and Manning. 2014]

Expensive Computation

95% time spent computing feature and looking up either weights.

Lookups are slow because there are too many features.

[Chen and Manning. 2014]

Neural Network Based Parser - Model

Softmax layer:
p = softmax(Wsh) [“..}
Hidden layer: (= J
h = (WPa® + Wizt + Wizt + b)? D e
Input layer: [o%,2%,o] (@O0 {O8D] /// W/ SN
words POS tags arc labels
Stack Buffer
Configuration ROOT has_VBZ good JJ | | control NN ...
" nsubj
He PRP

[Chen and Manning. 2014]

Distributed Representation

e Instead of using discrete representation for word we use word vectors

e Reduced dimensionality.

e \We are using the semantics of the words instead of treating them as
unrelated symbols.

e POS and dependency labels(from the partially generated graph) can also be
represented as dense vectors. (to preserve their similarities)

e Can train word vectores while training Model weights.

[Chen and Manning. 2014]

Features - Input Layer éféé_'é{f;}'évfé%ff}éééﬁii P e
He_PRP et
word POS dep
S good J @
Y has VBZ @
b1 control NN z
lc(s1) =—p @ + @ 4+ o
rc(si)] > 2
lc(s2) He PRP nsubj
rc(sz) 2] %)

Top 3 words from stack and buffer. s1, s2, s3, b1, b2, b3.

The first and second leftmost / rightmost children of the top two words on the
stack: Ic1(si), rc1(si), Ic2(si), rc2(si), i =1, 2.

The leftmost of leftmost / rightmost of rightmost children of the top two words
on the stack: Ic1(Ic1(si)), rc1(rc1(si)), i =1, 2.

POS tags for all those words.

Arc labels for all those words (except for 6 words of stack/buffer).
[Chen and Manning. 2014]

Output

The last layer of the network is a softmax layer to convert the value of the inner
layers to probability.

The nodes are LEFT-ARC, RIGHT-ARG along with the label and SHIFT.

The value with the max probability is chosen to the next action for the
configuration.

[Chen and Manning. 2014]

Training

Cost Function : Cross Entropy error with L2 regularization.
Parameters : {(Ww 1, Wt1,WI 1, b1, W2, Ew, Et, El}
Initialization : Ew - word vectors; Et , El - radom (-0.01.0.01)

Optimization Algorithm : mini-batch AdaGrad with drop out

Hyperparameters: h,a, A, d

[Chen and Manning. 2014]

Activation function

Why does the activation function needs to be non-linear?
Which one to choose from? Sigmoid, tanh, hard tanh, ReLU

https://medium.com/the-theory-of-everything/understanding-activation-functions-in
-neural-networks-9491262884e0

Should be part-wise differentiable

06 08 1
— cube
== sigmoid
== tanh
---- identity

[Chen and Manning. 2014]

https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0

What works - Model Analysis

Input interpretation:

Cube Activation Function

expand (@+b+c)’

Better captures higher order
interactions of selected features o

a®+3a’b+3a’c+3ab®*+6abc+3ac®+b®+3b%c+3bc?+c3

g
]

UAS score
o
o

g(wizy + ... + WnTy +b) =

s HHL Z (wiwjwg)zizjzk + Z b(wjwj)zix;. ..

L'Jsk 1,J

PTB:CD PTB:SD CTB

||]ﬂcube[|ﬂtanh[][]sigmoidllidenlity | [Chen and Manning. 2014]

What works - Model Analysis

POS tags and arc labels dense representations

Captures semantic similarities between POS tags ("apple” should be close to

“apples”)

Automatically finds out dominant features instead of hand made features

— Feature 1: s1.t, s2.t, Ic(s1).t.
— Feature 2: rc(s1).t, s1.t, b1.t.

— Feature 3: s1.t, s1.w, Ic(s1).t, lc(s1).l.

95 |-

& 8

UAS score

70

®
=]
T

e —

.

PTB:CD

PTB:SD

CTB

| 18 word+POS+label [l 1 word+POS [l 1§ word+label 18 word |

[Chen and Manning. 2014]

About POS tags

(Part of Speech,POS) is a category of words which play similar roles within the
grammatical structure of sentences.

Commonly listed English parts of speech are noun, verb, adjective, adverb, pronoun,
preposition, conjunction, interjection, determiner and etc.

NSUBJ DOBIJ
Simple example: He (pronoun) eats (verb) apples (noun) j[)\ /(]\‘
Alice saw Bob

NOUN VERB NOUN

https://en.wikipedia.org/wiki/Part-of-speech_tagging

SyntaxNet (For discussion)

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

“itis very important to use beam search in the model. Instead of simply taking the first-best decision at each point, multiple

partial hypotheses are kept at each step, with hypotheses only being discarded when there are several other higher-ranked

hypotheses under consideration. 7
e Bigger, deeper networks with better tuned hyperparameters.
e Beam search.

e CREF-style inference on the decision sequence.

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Conclusions

a) Syntactic Structure (Constituency)
b) Dependency Grammar
Introduction of dependency grammar & structure
c) Transition-based dependency parsing
Arc-standards: parser action & arc-label (dependency label)
d) Neural dependency parsing

Motivation+3 features+neural network model with cubic activation function.

Reference

Deep Learning for NLP Lecture 7.

http://web.stanford.edu/class/cs224n/lectures/lecture?.pdf

A Fast and Accurate Dependency Parser using Neural Networks
[Chen and Manning 2014]

https://cs.stanford.edu/~danqi/papers/emnlp2014.pdf

http://www.wolframalpha.com/

Wikipedia article on dependency grammar and Context free grammar

http://web.stanford.edu/class/cs224n/lectures/lecture7.pdf
https://cs.stanford.edu/~danqi/papers/emnlp2014.pdf

Thank you

