
Dependency Parsing

Praveen
Joo Gek
Kay Pong
Roy
Su Wei
ZiKun
Junbin

Objectives

a) Syntactic Structure

b) Dependency Grammar

c) Transition-based dependency parsing

d) Neural dependency parsing

1. Syntactic structure - Constituency

Constituency = phrase structure grammar = context-free grammars (CFGs)
Definition of CFG:

V : set of nonterminals
∑ : set of terminals
R : relation from V to
S : the start symbol

1. Syntactic structure - Constituency

An example for CFG:

start symbol: S
nonterminal symbol: S A
terminal symbol:
Context-free:terminal symbols never appear on the left

1. Syntactic structure - Constituency

S→NP

1. Syntactic structure - Constituency

Constituency Trees:

VP→VBZ NP PP or VP→VBZ NP

1. Syntactic Structure – Dependency Grammar
 • Differences compared to constituency parsing (CFG)

Lacks phrasal categories, although acknowledges phrases

Linguistic units, eg words, are connected by directed links

Verb is taken to be the structural center

Other syntactic units (words) directly or indirectly connected to verb

1. Syntactic Structure – Dependency Parsing
 • Differences compared to constituency parsing (CFG)

Lacks phrasal categories

Might be simpler than CFG based parse-tree (less layers)

The Parser :
● 3 components : Stack , Buffer and Dependency Arc Stack
● Parse actions (Transitions) : Shift ,Left- Arc, Right- Arc
● Operations

1. Start: Stack-root, Buffer – Input sentence (all words), empty
Arc Stack
2. A series of actions
3. End : Stack-root, empty Buffer, Arc Stack- extracted
dependencies

1. Transition-based dependency parsing

 How to extract the word dependencies

1. Transition-based dependency parsing
Examples

1. Transition-based dependency parsing
Examples

1. Transition-based dependency parsing
Algorithm

Transition-based dependency parsing

How to choose actions

-Classifier predicts next actions based on the word features

Example:
Support Vector Machine (SVM)

• Find the hyperplane that separate 2 different
classes.

• Maximize gap between classes and decision
boundary

Ref: https://en.wikipedia.org/wiki/Support_vector_machine

Transition-based dependency parsing

Examples of features or parse configuration

• POS of word in Stack, POS of word in buffer;

• Length of the dependency Arc;

• Meaning and distance between the parsed words etc

• Examples : The head is a verb, the dependent is a noun

 then predict Right-Arc, to go from left to right

Transition-based dependency parsing

Transition-based dependency parsing

 ● Basic and deterministic parsing
○ No Searching and predict actions based on words in

buffer and Stack
○ - Simple , Fast and efficient
○ - Good accuracy

● Challenges
○ Ambiguities
○ - Part of speech labelling ; Multiple sentence attachments

or words order

Projectivity

Projectivity is a principle of tree structures.
A tree structure is said to be projective if there are NO crossing of dependency

edges. Any occurrence of such crossing (a.k.a. discontinuity or projectivity
violation), the structure will be considered as non-projective.

But non-projective structures are commonly seen in natural languages,
especially non-English.

• You can’t easily get the semantics of certain constructions right without these nonprojective
dependencies

Handling non-projectivity
Many parsing algorithms are restricted to projective dependency graphs.

Two Main Approaches to Handle This Problem

1. Algorithms for non-projective dependency parsing:
• Constraint satisfaction methods (Foth et al., 2004)
• McDonald’s spanning tree algorithm (McDonald et al., 2005)
• Covington’s algorithm (Nivre, 2006)

2. Post-processing of projective dependency graphs:
• Pseudo-projective parsing (Nivre and Nilsson, 2005)
• Corrective modeling (Hall and Nov´ak, 2005)
• Approximate non-projective parsing (McDonald and Pereira, 2006)

Neural Dependency Parser

Problems
● Sparsity - too many features contributing too little
● Incompleteness - arc from s1 to s2???
● Expensive feature computation - millions of features -> slow lookup

[Chen and Manning. 2014]

Sparse Feature representation
Combination of 1~3 elements from the
configuration

Words, word-pair, three-word conjunctions

Dimension - 10^6 - 10^7 - sparse !!

This is because words are represented as
discrete symbols and not dense vectors.

[Chen and Manning. 2014]

Incomplete Feature representation
Eg conjunction of s1, b2 is omitted

You don’t have features for some combination of the configurations.

[Chen and Manning. 2014]

Expensive Computation
95% time spent computing feature and looking up either weights.

Lookups are slow because there are too many features.

[Chen and Manning. 2014]

Neural Network Based Parser - Model

[Chen and Manning. 2014]

Distributed Representation
● Instead of using discrete representation for word we use word vectors
● Reduced dimensionality.
● We are using the semantics of the words instead of treating them as

unrelated symbols.
● POS and dependency labels(from the partially generated graph) can also be

represented as dense vectors. (to preserve their similarities)
● Can train word vectores while training Model weights.

[Chen and Manning. 2014]

Features - Input Layer

● Top 3 words from stack and buffer. s1, s2, s3, b1, b2, b3.
● The first and second leftmost / rightmost children of the top two words on the

stack: lc1(si), rc1(si), lc2(si), rc2(si), i = 1, 2.
● The leftmost of leftmost / rightmost of rightmost children of the top two words

on the stack: lc1(lc1(si)), rc1(rc1(si)), i = 1, 2.
● POS tags for all those words.
● Arc labels for all those words (except for 6 words of stack/buffer).

[Chen and Manning. 2014]

Output
The last layer of the network is a softmax layer to convert the value of the inner
layers to probability.

The nodes are LEFT-ARC, RIGHT-ARG along with the label and SHIFT.

The value with the max probability is chosen to the next action for the
configuration.

[Chen and Manning. 2014]

Training
Cost Function : Cross Entropy error with L2 regularization.

Parameters : {Ww 1 , Wt 1 , Wl 1 , b1, W2, Ew, Et , El}

Initialization : Ew - word vectors; Et , El - radom (-0.01.0.01)

Optimization Algorithm : mini-batch AdaGrad with drop out

Hyperparameters: h, ɑ , λ, d

[Chen and Manning. 2014]

Activation function
Why does the activation function needs to be non-linear?

Which one to choose from? Sigmoid, tanh, hard tanh, ReLU

https://medium.com/the-theory-of-everything/understanding-activation-functions-in
-neural-networks-9491262884e0

Should be part-wise differentiable

[Chen and Manning. 2014]

https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0

What works - Model Analysis
Cube Activation Function

Better captures higher order
interactions of selected features

[Chen and Manning. 2014]

What works - Model Analysis
POS tags and arc labels dense representations

Captures semantic similarities between POS tags (”apple” should be close to
“apples”）

Automatically finds out dominant features instead of hand made features

– Feature 1: s1.t, s2.t, lc(s1).t.

– Feature 2: rc(s1).t, s1.t, b1.t.

– Feature 3: s1.t, s1.w, lc(s1).t, lc(s1).l.

[Chen and Manning. 2014]

(Part of Speech,POS) is a category of words which play similar roles within the
grammatical structure of sentences.

Commonly listed English parts of speech are noun, verb, adjective, adverb, pronoun,
preposition, conjunction, interjection, determiner and etc.

Simple example: He (pronoun) eats (verb) apples (noun)

About POS tags

https://en.wikipedia.org/wiki/Part-of-speech_tagging

SyntaxNet (For discussion)
https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

“it is very important to use beam search in the model. Instead of simply taking the first-best decision at each point, multiple
partial hypotheses are kept at each step, with hypotheses only being discarded when there are several other higher-ranked

hypotheses under consideration. ”

● Bigger, deeper networks with better tuned hyperparameters.

● Beam search.

● CRF-style inference on the decision sequence.

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Conclusions
a) Syntactic Structure (Constituency)

b) Dependency Grammar

Introduction of dependency grammar & structure

c) Transition-based dependency parsing

 Arc-standards: parser action & arc-label (dependency label)

d) Neural dependency parsing

Motivation+3 features+neural network model with cubic activation function.

Reference
Deep Learning for NLP Lecture 7.

http://web.stanford.edu/class/cs224n/lectures/lecture7.pdf

A Fast and Accurate Dependency Parser using Neural Networks

[Chen and Manning 2014]

https://cs.stanford.edu/~danqi/papers/emnlp2014.pdf

http://www.wolframalpha.com/

Wikipedia article on dependency grammar and Context free grammar

http://web.stanford.edu/class/cs224n/lectures/lecture7.pdf
https://cs.stanford.edu/~danqi/papers/emnlp2014.pdf

Thank you

