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CS6101 - Deep Learning for NLP

Week 5: Recurrent Neural Networks & Language Models
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Overview

Today we will:

e Introduce a new NLP task
* Language Modeling

motivates

v
 Introduce a new family of neural networks
» Recurrent Neural Networks (RNNs) _

\

THE most important
idea for the rest of
the class!



Language Modeling

* Language Modeling is the task of predicting what word

/‘ / laptops

\ exams

the students opened their

minds

 More formally: given a sequence of words =V, 2 ... z®)
compute the probability distribution of the next word ") :

Pz =, | 2O, . . M)
where wj; is a word in the vocabulary V = {w;, ..., wyy}

« A system that does this is called a Language Model.



You use Language Models every day!

e I'll meet you at the © >

airport




what is the |

what is the weather

what is the meaning of life
what is the dark web

what is the xfl

what is the doomsday clock
what is the weather today
what is the keto diet

what is the american dream
what is the speed of light
what is the bill of rights

Google Search

gle

I'm Feeling Lucky

You use Language Models every day!

Go



n-gram Language Models

the students opened their

e Question: How to learn a Language Model?

 Answer (pre- Deep Learning): learn a n-gram Language
Model!

« Definition: A n-gram is a chunk of n consecutive words.
- unigrams: “the”, “students”, “opened”, "their”
- bigrams: “the students”, “students opened”, “opened their”
- trigrams: “the students opened”, “students opened their”
- 4-grams: “the students opened their”

 ldea: Collect statistics about how frequent different
n-grams are, and use these to predict next word.



n-gram Language Models

- First we make a simplifying assumption: z**1 depends only on the
preceding (n-1) words

n-1 words
A
'4 \
Pzt D)e® . aW)) = p(ettD|x®  glt-nt2) (assumption)

b of a n-

_ (definition of
prob of a (n-1)-gram o Pz, ... xl-n+2) conditional prob)

e Question: How do we get these n-gram and (n-1)-gram
probabilities?
e Answer: By counting them in some large corpus of text!

count(:c(tﬂ), ™, ..., w(t_n+2)) (statistical

count(x®, ... ¢lt—"+2)) approximation)

Yy




Why is it an approximation?

Pzt 20

“Out of sequence of length n, how many of them is the sequence of interest?”

. x(t—n—l—Q) ) is the joint probability of the words sequence

Recall conditional probability of 2 random variables, x and a known vy is
P(Y =y;)
Rearranging P(X, Y) — P(X|Y — @/i)P(Y — ’!/z) aka chain rule

P(X]Y =y;) =

Generalising  P(X;...X,) = HP(Xk|Xf_1)
k=1

P(“book”, “their”, “opened”, “students”)
—P

(“book”|“their”, “opened”, “students”) P(“their”|“opened”, “students”) P(“opened”|“students” ) P(“students”)

https://lagunita.stanford.edu/c4x/Engineering/CS-224N/asset/slp4.pdf



n-gram Language Models: Example

Suppose we are learning a 4-gram Language

condition on this

P(w,|students opened their) =

count(students opened their w,)

count(students opened their)

In the corpus:
« “students opened their” occurred 1000 times

“students opened their books” occurred 400 times
* - P(books | students opened their) = 0.4

“students opened their exams” occurred 100 times
* - P(exams | students opened their) = 0.1

\

Should we have
>discarded the
“proctor”

7

context?



Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students Partial) Solution: Add small &

opened their w; ” never iy
occurred in data? Then w; to count for every w; € V..

has probability 0! This is called smoothing.

\ 4

count(students opened their w,)
count(students opened their)

P(w,|students opened their) =

Sparsity Problem 2

Problem: What if “students . — —
opened their” never occurred in (Partial) Solution: Just condition on

data? Then we can’t calculate “opened their” instead.
probability for any w; ! This is called backoff.

Note: Increasing n makes sparsity problems worse.
Typically we can’t have n bigger than 5.




Problems with n-gram Language Models

Storage: Need to store count
for all possible n-grams. So
model size is O(exp(n)).

count(students opened their wﬂ

P(w,|students opened their) =
(w] P ) count(students opened their)

Increasing n makes model size huge!




n-gram Language Models in practice

* You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop*

N

today the Business and financial news
get
probability
distribution
company ©9.153 |  Sparsity problem: not
bank 0.153 much granularity in the
price 0.077 probability distribution

italian ©.039
emirate 0.039

* Try for yourself:
https://nlpforhackers.io/language-models/

Otherwise, seems reasonable!



Generating text with a n-gram Language Model

* You can also use a Language Model to generate text.

today the

Y .
condition on this

get probability
distribution

company 0.153
bank price 0.153
| italian 0.077 |

emirate 0.039
0.039

|sample




Generating text with a n-gram Language Model

* You can also use a Language Model to generate text.

today €he prin

. . Y .
condition on this

get probability distribution

of 0.308 Isample

for 0.050
it 0.046
to 0.046

is 0.031




Generating text with a n-gram Language Model

« You can also use a Language Model to generate text.

today the price of
H_J

condition jon this

get probability distribution

the 0.072
18 0.043
oil 0.043
its 0.036
|gold 0.018 | sample




Generating text with a n-gram Language Model

« You can also use a Language Model to generate text.

today the price of gold




Generating text with a n-gram Language Model

* You can also use a Language Model to generate text.

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild
depleted european stocks , sept 30 end primary 76 cts a

share .

Incoherent! We need to consider more than 3
words at a time if we want to generate good
text.

But increasing n worsens sparsity problem, and
exponentially increases model size...



How to build a neural Language Model?

« Recall the Language Modeling task:
- Input: sequence of words (1), (2 ... z®
- Output: prob dist of the next word P(z""™") = w; | z®,... z")

« How about a window-based neural model?

- We saw this applied to Named Entity Recognition in
Lecture 4



A fixed-window neural Language Model

@S=—iipe=proctor—startee—the—etoel=—  the students opened their

\. J

) Y
discard fixed window




Softmax

A.K.A normalized exponential function

is a generalization of the logistic function
AKA Sigmoid function

Used to provide a probabilistic
interpretation of classification prediction
More appropriate for mutually-exclusive
classes because during training, values of
correct classes pushed towards +ive inf,
values of wrong classes pushed towards -ive
inf = Only one correct class, all other
classes are wrong!



Softmax

Say we have 4 classes, so final layer fan-out is 4

~ ™ ~ ™
AN f
/@ Softmax ] probability
\@ function o ) vector
[
Zj
0(2)j = ox = forj=1,... .,k



Softmax

Question: Why do we use
output values as exponent to
the natural log base?

Hint: Think about the value
range of layer output values



Softmax

In practice...

Pi = N

N ar+log(C
Zk’Zl ek g(C)

Where log(C) is taken to be —max(a). Why?



Cross Entropy

e A measure of distance between what the
model believes the output distribution
should be (“unnatural” distribution), and
the original distribution (“natural”

distribution)

For discrete outcomes:

true “natural” distribution

H(p,q) = — Zpl(w) log g(z).

/

our “unnatural” distribution




Cross Entropy
H(p,q) = — Y p(x) logq(z).

Say for a given input, the correct class is 3 out of classes
{1,2,3,4}

0 023 )

0 0.01
— o =-1x0.67 =-0.67
1 0.67

_ 0 . 0.09



Cross Entropy

Zp log q(z

= -log q(x)



A fixed-window neural Language Model

books
laptops
output distribution
y = softmax(Uh + by) € RIV! : -
a N Z00
U
nidden “ayer oy
h = f(We —+ bl) y Y
w
concatenated word embeddings
e =[eM): e e @] [‘f\" ©000 0000 “;\“]
words / one-hot vectors the students opened  their

2D 2?2 23 2@ () +(2) £(3) ()



A fixed-window neural Language Model

Improvements over n-gram LM: books

» No sparsity problem
* Model size is O(n) not O(exp(n))

laptops

Remaining problems:
* Fixed window is too small I\

« Enlarging window enlarges w U

« Window can never be large
enough! (e00000000000|
« Each xWuses different rows y
cols of W. We don’t share W
weights across the window.

QA
N
o
o

(0000 0000 0000 0000

N N N N

We need a neural
architecture that can
process any length input

the students opened  their
2(1) 2(2) 7 (3) (%)




A fixed-window neural Language Model
How does our weight matrix look like?

er—

~N r 3 s

CW e W e e(1)1

(1)
€y
X =
Wfan_out,1"'
\_ J g
. v

n is window size
d dimensions in each word embedding




A fixed-window neural Language Model

Question: Why do we want to
share weights across the
window?



Why do we want to share weights across
windows?

e Else the number of weights would grow
linearly with the number of time steps
(our window size) like a feed-forward
network

e We want to capture shared
representations across sequences of text



Recurrent Neural Networks (RNN)

A family of neural architectures

ho
w,
hen

row
W, ¢



Recurrent Neural Networks
(RNN)

A family of neural architectures

Core idea: Apply the
same weights W
repeatedly

visualized as feedforward networks “unrolled across time”:

outputs ~ ~ ~
P { e e g

hidden J w

Q(4)

h4)

A4

S
7

(optional)
_ h1) h(2) h(i
O
O
(©)
@

states

i

input sequence {
(any length)

8
5
O
5

(3)

%

ey



Recurrent Neural Networks (RNN)
How does our weight matrix W, look like?

W, x h=

P N R R

1,fan_out

an_ou o
K\I/Vfan out,1 """ """ Wfan out.fan out/ w_j N .
an_out, 2 . J W_J

fan_out X fan out fan out X1 fan out x 1




Recurrent Neural Networks (RNN)
How does our weight matrix W, look like?

W X e=

e
/‘ \ r 3 r 2
W1’1W1’2............... W1’d e

\\ Wfan_out,1 Wfan_out,d % d L
. T

fan out < d dx 1 fan_out x 1




A RNN Language Model

output distribution

§® = softmax (Uh(t> + bg) eR"

usually initialized to
zeros in most contexts

hidden states
h) = o (Whh(t‘l) +We® + b1>

h(9) is the initial hidden state

word embeddings
) — Bp®
E:dx |V|

words / one-hot vectors
x®) ¢ RIVI

g = P(:c(5)|the students opened their)

[ccccﬁl

books
laptops
:a A Z(:)O
U
hY_ h(2) h) h(4)
€] &) O @
W, @ Wr l@| Wr @ Wr |@
10 1@ 1@ 1@
@ @ @ (©)
e Y i
We We We We
r— r— r——\
1| © (2) (3) (4)
eYle| ol “lo| o
o O O O
Te T8 To o
the students opened  their
(1) 7 (2) 7 (3) (%)

Note: this input sequence could be much
longer, but this slide doesn’t have space!

/



RNN: Computational Graph: Many to Many -/

Y, ™ L Y. L Ys 1 Ls Yr Lt
h0—>fw—>h1—>fw—>h2—>fw—>h3—> —>hT

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - 29 Uﬂ)‘l&?ﬁ&iﬁ,’mw




A RNN Language Model

Question: So what is recurrent
about it?



P

fw

new state /

(-

)

Lt

)

old state input vector at
some time step

some function
with parameters W

K-

T




g = P(:L'(5)|the students opened their)

A RNN Language Model books

RNN Advantages:

Can process any length
input

Model size doesn’t
increase for longer input
Computation for step t
can (in theory) use
information from many
steps back

Weights are shared
across timesteps -

representations are
shared
RNN Disadvantages: 3

Recurrent computation

is slow

In practice, difficult to

access information from
many steps back

~

laptops

A
~
7
N
(@)

(0]
U
h®)__ h(})—~ h(2 h3) h4)
@ O &) O @
@ W, |0 W, |@0|Wr 0| Wr |@
o lo| e[ ‘o] |o
O @ @ O (©)
— Y " N N
We We We We
(1) (2) 3) © (4)
ol “le| “le| ¢ e
o @ @) O
More on % Tl:? E E
~these the students opened  their
next (1) 7 (2) 2(3) 24
week




Training a RNN Language Model

Get a big corpus of text which is a sequence of words z(1), ... z(T)

Feed into RNN-LM; compute output distribution g)(t) for every step t.
- i.e. predict probability dist of every word, given words so far

Loss function on step t is usual cross-entropy (CE) between our

predicted probability distribution g“), and the true next word
: y(t) — m(t+1)

J®(0) = CE(y®,g®) Zy )logy

Average this to get overall loss for entire
training set: T

7(60) = % S J0)

t=1



Training a RNN Language Model

= negative log prob of
“students”

Loss —— | s () J2)(9) J3)(9) J(9)

N N N N
g 72 33 g4
A A A A
U U U U
h©®)__ h(}_)_ h(2 h(3) h#)
@ @ O @ O
| Wr |0 W, |l@|WrL || Wr |0 W,
@ 10 1@ 1@ 1@ -
@ ;‘ O @ O
— - N N N
W, W, W, We
(1) 2)| © 3) © 4| ©
“lo| “’le|l “le|l ¢ e
O O O @
T T2 Tz s

Corpus—— the  students opened their exams
2(1) 7(2) 2(3) 24



Training a RNN Language Model

= negative log prob
of “opened”

Loss ———— JW@)  |JD@)|  J®0)  JD(9)

N N N N
g 72 33 g4
A A A A
U U U U
h©®)__ h(}_)_ h(2 h(3) h#)
@ @ O @ O
| Wr |0 W, |l@|WrL || Wr |0 W,
@ 10 1@ 1@ 1@ -
@ ;‘ O @ O
— - N N N
W, W, W, We
(1) 2)| © 3) © 4| ©
“lo| “’le|l “le|l ¢ e
O O O @
T T2 Tz s

Corpus—— the  students opened their exams
2(1) 7(2) 2(3) 24



Training a RNN Language Model

= negative log prob
of “their”

Loss ———— JW@)  J@@6)  |J®@6)  JD9)

N N N N
g 72 33 g4
A A A A
U U U U
h©®)__ h(}_)_ h(2 h(3) h#)
@ @ O @ O
| Wr |0 W, |l@|WrL || Wr |0 W,
@ 10 1@ 1@ 1@ -
@ ;‘ O @ O
— - N N N
W, W, W, We
(1) 2)| © 3) © 4| ©
“lo| “’le|l “le|l ¢ e
O O O @
T T2 Tz s

Corpus—— the  students opened their exams
2(1) 7(2) 2(3) 24



Training a RNN Language Model

= negative log prob
of “exams”

Los ———— JW@)  J@@e)  J®06)  |JD9)

S N N N N
g 72 7> g4
A A A A
U U U U
h©®)__ h(}_)_ h(2 h(3) h#)
@ @ O @ O
| Wr |0 W, |l@|WrL || Wr |0 W,
@ 10 1@ 1@ 1@ -
@ ;‘ O @ O
— - N N N
We We We We
(1) 2)| © 3) © 4| ©
“lo| “’le|l “le|l ¢ e
o O O O
Te T& T& I

Corpus—— the  students opened their exams
2(1) 7(2) 2(3) 24



Training a RNN Language Model

Loss ——— ,](1)(9) + J(2)(9) + J(3)(9) + J(4)(9) + ... =
N N N N
5D e e e
A A A A
U U U U
h©)__ hW| h(® h® h4)
© © O O O
| Wi (0| W, |[@| Wh |@| Wr |@| W) _
© 1@ @ 1K @ g
© © O O O
— - 5 " 5
We W, W, W,
(1) (2) © 3) © (4) ©
e O e o e o e o
© o O o
Corpus—— the  students opened their exams

GY -(2) 2(3) (@)



Training a RNN Language Model

However: Computing loss and gradients across entire
corpus is too expensive!

Recall: Stochastic Gradient Descent allows us to

compute loss and gradients for small chunk of data,
and update.

- In practice, considerz®,...,z(Tas a sentence
T
1
— (¢)
JO) == J®)
t=1
Compute loss J(#) for a sentence (actually usually a

batch of sentences), compute gradients and update
weights. Repeat.



Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

target chars: ‘e’

output layer

hidden layer

input layer

input chars:

Fei-Fei Li & Justin Johnson & Serena Yeung

- ¥ | 0

1.0 0.5 0.1 0.2

2.2 0.3 0.5 -1.5
-3.0 -1.0 1.9 -0.1

4.1 1.2 -1.1 2.2

T T T [ w_ny
0.3 1.0 0.1 |w hn|-0-3
-0.1 0.3 » 05— 0.9

0.9 0.1 -0.3 0.7
] T W
1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0

“h" uen | “In

Lecture 10 - 36 UM¥§FSit3017




Forward through entire sequence to

Backpropagation through time e soencis gl rsigent

IR TR TN T TR TN T T I )

>
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t 1 t

>
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t
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>
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na
>

+

>
>

t ot

Ba
Ba

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - 41 UWI%V&%E’ZOW

Imagine training the entire wikipedia corpus to just
get 1 gradient update...



Backpropagation for RNNs

J® (6)
h(Or)_’ h(fi) h(t—2) R(t—1) h(t)i
0 0 o B 0
— > > > > >
@ &) O @ O
° o o o e

Question: What’s the derivative of J®(9) w.r.t. the repeated

weight matrix Wp,?

Answer: 0J%) AW
W L oW,

1

(%)

“The gradient w.r.t. a repeated weight is
the sum of the gradient
w.r.t. each time it appears”

Why?




Backpropagation Review

http://cs231n.github.io/optimization-2/#staged



Multivariable Chain Rule

« Given a multivariable function f(z, ), and two single variable functions
z(t) and y(t), here's what the multivariable chain rule says:

d Of dr Of dy

J

-
Derivative of composition function

One final output f(x(¢), y(t))

AN

Tefenefie o7 ) y(¢)

One input

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-r
ule-simple-version



http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs: Proof sketch

e Given a multivariable function f(z,y), and two single variable functions
z(t) and y(t), here's what the multivariable chain rule says:

d _O0f dz  Of dy
\d_t (m(t)’y(t)z ~ Or dt & By dt

N
Derivative of composition function

In our J(t)(e) Apply the multivariable chain
example: rule:
Wh‘(l) Wh|(2) ces Wh‘(t) aWh 5—A 8Wh (¢ 8Wh
Q
% t (t)
W ~% o =D, giv
Wh 2:1 h (Z)

Source:

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-r
ule-simple-version



http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs

J®(6)
h(Or)_ h(fﬁ h(t—2) h(f__l), h(®)
O @ (©) @ ®
Q| W, Wi, @l W, |le|Wh |@| Wr |@| W,
— > > > > >
© o @ @) O
O o) (o (o e

o.J(®) t g
oW, |2

Question: How do we
37 calculate this?

Answer: Backpropagate over
timesteps i=t,...,0, summing
gradients as you go.

This algorithm is called
“backpropagation through
time”




BPTT(backpropagation through time)

Ei(yt,9;) = —ys log 9,
3t — ta'nh(th + W«St_l) E(y, @) — ZEt (yta?;t)

t
Y, = softmax(Vs;) "
— 2 Ytlogy,

-



BPTT(backpropagation through time) credit to DENNY BRITZ

9E; _ OE; 0 0B;  OF; 0y 0ss
oV 0yy OV OW i, Osy OW
- 8E3 3,?)3 823
i 0z3 OV O0E; i ayg 0s3 Osy.
= (3 — y3) ® 83 oW o 0s3 0s, OW



BPTT(backpropagation through time) credit to DENNY BRITZ

0Es5
0s3

081 089 o

g33 d
88() 881 882
N N




def bptt(self, x, y):
T = len(y)
# Perform forward propagation
0, s = self.forward_propagation(x)
# We accumulate the gradients in these variables

dLdU = np.zeros(self.U.shape)
dLdV = np.zeros(self.V.shape)
dLdW = np.zeros(self.W.shape)

delta_o = o
delta_o[np.arange(len(y)), y] -= 1.
# For each output backwards...
for t in np.arange(T)[::-1]:
dLdV += np.outer(delta_o[t], s[t].T)
# Initial delta calculation: dL/dz
delta_t = self.V.T.dot(delta_o[t]) * (1 - (s[t] ** 2))
# Backpropagation through time (for at most self.bptt_truncate steps)
for bptt_step in np.arange(max(@, t-self.bptt_truncate), t+1)[::-1]:
# print "Backpropagation step t=¥d bptt step=¥d " % (t, bptt_step)
# Add to gradients at each previous ste
dLdW += np.outer(delta_t, s bptt_step-lﬁ)
dLdU[:,x[bptt_step]] += delta_t
# Update delta for next step dL/dz at t-1
delta_t = self.W.T.dot(delta_t) * (1 - s[bptt_step-1] ** 2)
return [dLdU, dLdV, dLdW]



Vanishing/exploding gradient problem

e Multiply the same W at each time step during backprop.

e The gradient is a product of Jacobian matrices, each associated
with a step in the forward computation. This can become very
small or very large quickly, and the locality assumption of
gradient descent breaks down. — Vanishing or exploding
gradient.

e Gradients can be seen as a measure of influence of the past
on the future.

e The vanishing gradient problem can cause problems: When
predicting the next word, information from many time steps in
the past is not taken into consideration.



Vanishing/exploding gradient problem

e Gradient clipping method
e |nitialization and RelLus

e Gated Recurrent Units (GRU) introduced by
[Cho et al. 2014] and LSTMs [Hochreiter &
Schmidhuber, 1999]



Truncated BPTT

Truncated BPTT processes the sequence one timestep at a time, and
every k1 timesteps, it runs BPTT for k2 timesteps, so a parameter

update can be cheap if k2 is small.

1. k1: The number of forward-pass timesteps between updates.
Generally, this influences how slow or fast training will be, given how
often weight updates are performed.

2. k2: The number of timesteps to which to apply BPTT. Generally, it
should be large enough to capture the temporal structure in the
problem for the network to learn. Too large a value results in
vanishing gradients.



TBPTT (k1, k2)

TBPTT(n,n): Updates are performed at the end of the
sequence across all timesteps in the sequence (e.g.
classical BPTT).

TBPTT(1,n): timesteps are processed one at a time
followed by an update that covers all timesteps seen so far
(e.g. classical TBPTT by Williams and Peng).
TBPTT(k1,1): The network likely does not have enough
temporal context to learn, relying heavily on internal state
and inputs.

TBPTT(k1,k2), where k1<k2<n: Multiple updates are
performed per sequence which can accelerate training.
TBPTT(k1,k2), where k1=k2: A common configuration
where a fixed number of timesteps are used for both
forward and backward-pass timesteps (e.g. 10s to 100s).



Prepare sequence data

The way that you break up your sequence data will define the
number of timesteps used in the forward and backward passes of
BPTT.

e Use data as-is
e Naive data split
e Domain-specific data split

o In natural language processing problem, the input sequence
could be divided by sentence and then padded to a fixed
length, or split according to the average sentence length in
the domain.

e Systematic data split (e.g. grid search)

o perform a grid search over each sub-sequence length and
adopt the configuration that results in the best performing
model on average.

e Lean heavily on internal states with TBPTT(1, 1)



Pseudo code tuncated version of BPTT

Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is
the output
Unfold the network to contain k instances of f
do until stopping criteria is met.:
X = the zero-magnitude vector;// x is the current context
fortfromOton-Kk // tis time. n is the length of the training
sequence
Set the network inputs to x, a[t], a[t+1], ..., a[t+k-1]
p = forward-propagate the inputs over the whole unfolded network
e = y[t+k] - p; // error = target - prediction
Back-propagate the error, e, back across the whole unfolded network
Sum the weight changes in the k instances of f together.
Update all the weights in f and g.
x = f(x, a[t]); // compute the context for the next time-step



RNN Applications

Language Model
Sentiment Classification
Machine Translation
Question Answering
Speech recognition
Time series prediction



Generating text with a RNN Language Model

Just like a n-gram Language Model, you can use a RNN Language Model
to generate text by repeated sampling. Sampled output is next step’s
input.

favorite season is spring
N N N N
sample sample sample sample
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N AN N N
U U U U
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my favorite season is spring



Generating text with a RNN Language Model

« Let’s have some fun!
* You can train a RNN-LM on any kind of text, then
generate text in that style.

* RNN-LM trained on Obama speeches:

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will not
be able to get this done.

Source:

https://medium.com/®@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2eal


https://medium.com/%40samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

Generating text with a RNN Language Model

« Let’s have some fun!
* You can train a RNN-LM on any kind of text, then
generate text in that style.

* RNN-LM trained on Harry Potter:

“Sorry,” Harry shouted, panicking—*“T’ll leave those brooms in London, are
they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the
common room perched upon it, four arms held a shining knob from when the

spider hadn’t felt it seemed. He reached the teams too.

Source:
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803d
ab



Generating text with a RNN Language Model

 Let’s have some fun!

* You can train a RNN-LM on any kind of text, then
generate text in that style.

He slams his hand on the door. KRAMER enters dancing with
garbage.

KRAMER
Hey hey hey, great idea for a big
sponge: Make it so large you think
it’s got a fat clock in the
middle.

JERRY
(takes off his bones)
Kramer, do you have a fun
flashback to do?

Source:

https://www.avclub.com/a-bunch-of-comedy-writers-teamed-up-with-a-computer-to-18186332
42



http://www.avclub.com/a-bunch-of-comedy-writers-teamed-up-with-a-computer-to-1818633242
http://www.avclub.com/a-bunch-of-comedy-writers-teamed-up-with-a-computer-to-1818633242

Generating text with a RNN Language Model

e Let’s have some fun!
« You can train a RNN-LM on any kind of text, then
generate text in that style.

« (character-level) RNN-LM trained on paint colors:

| Ghasty Pink 231 137 165 Sand Dan 201 172 143

B Power Gray 151 124 112 I Grade Bat 48 94 83
Navel Tan 199 173 140 " Light Of Blast 175 150 147
Bock Coe White 221 215 236 B Grass Bat 176 99 108
Horble Gray 178 181 196 Sindis Poop 204 205 194

I Homestar Brown 133 104 85 Dope 219 209 179

B snader Brown 144 106 74 B Testing 156 101 106
Golder Craam 237 217 177 " Stoner Blue 152 165 159
Hurky White 232 223 215 Burble Simp 226 181 132
Burf Pink 223 173 179  Stanky Bean 197 162 171
Rose Hork 230 215 198 Turdly 190 164 116

Source:

http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-netwo
rk



http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network
http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

Evaluating Language Models

« The traditional evaluation metric for Language
Models is perplexity.

1/T
PP = H( V] (t) A(t)> \Normalized by

2.5=1Y; number of
N J

Y words

Inverse probability of dataset

« Lower is better!
« minimizing perplexity and minimizing the loss function
are equivalent.

» log(PP) = J(8)



RNNs have greatly improved perplexity

n-gram model——

Increasingly
complex RNNs

Source:https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-w

Model Perplexity
Interpolated Kneser-Ney 5-gram (Chelba et al., 2013) 67.6
RNN-1024 + MaxeEnt 9-gram (Chelba et al., 2013) 5.3
RNN-2048 + BlackOut sampling (Ji et al., 2015) 68.3
Sparse Non-negative Matrix factorization (Shazeer et 52.9
al., 2015) ’
LSTM-2048 (Jozefowicz et al., 2016) 43.7
2-layer LSTM-8192 (Jozefowicz et al., 2016) 30
Ours small (LSTM-2048) 43.9
Ours large (2-Tayer LSTM-2048) 39.8
Perplexity
improves
(lower is
better)

ords/




Why should we care about Language

Modeling?
« Language Modeling is a subcomponent of other NLP
systems:

 Speech recognition N These
systems are
» Use a LM to generate transcription, conditioned on C);ued
audio conditional
- Machine Translation >~ Language
Models

« Use a LM to generate translation, conditioned on
original text

 Summarization »

« Use a LM to generate summary, conditioned on original
text

« Language Modeling is a benchmark task that

helps us measure our progress on understanding
language



Recap

Language Model: A system that predicts the next word

Recurrent Neural Network: A family of neural
networks that:

« Take sequential input of any length
« Apply the same weights on each step
- Can optionally produce output on each step

Recurrent Neural Network = Language Model

We’ve shown that RNNs are a great way to build a LM.

 But RNNs are useful for much more!



RNNs can be used for tagging

e.g. part-of-speech tagging, named entity recognition




RNNs can be used for sentence classification

e.g. sentiment classification
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RNNs can be used for sentence classification

e.g. sentiment classification

positive How to compute
i sentence
encoding?
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Sentence O Basic way:
encoding 8 Use final hidden
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RNNs can be used for sentence
clasdFEation

positive How to compute
i sentence
0 encoding?
Sentence O Usually better:
encoding 8 Take element-wise

max or mean of all
hidden states
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RNNs can be used to generate text

e.g. speech recognition, machine translation, summarization

’s the weather

L1

1T

<START> what’ the
S

what

A4

A4

.
:

Remember: these are called “conditional language
models”. We’ll see Machine Translation in much
more detail later.



RNNs can be used as an encoder module

e.g. question answering, machine translation

Answer: German
- R

\ - "%
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(\ef.)f""{e Q’a""-.ﬁ\o
S 0“_\..«"‘2‘5}&0 X0
. . o) S RN
Question encoding o " G
= element-wise max of hidden |qg - :
o Context: Ludwig
states van Beethoven was

a German composer
and pianist. A
crucial figure ...

O

: Here the RNN acts

@ as an encoder for
T the Question. The

?

V
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encoder is part of
a larger neural
system.
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what nationality was  Beethoven



Thank you



