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Today we will:

• Introduce a new NLP task
• Language Modeling

motivates

• Introduce a new family of neural networks
• Recurrent Neural Networks (RNNs)

THE most important 
idea  for the rest of 

the class!

Overview



• Language Modeling is the task of predicting what word 
comes next

• More formally: given a sequence of words                          ,
compute the probability distribution of the next word          :

where   is a word in the vocabulary

• A system that does this is called a Language Model.

Language Modeling

laptops

the students opened their  
exams

minds

books



You use Language Models every day!



You use Language Models every day!



n-gram Language Models

the students opened their  

• Question: How to learn a Language Model?
• Answer (pre- Deep Learning): learn a n-gram Language 

Model!

• Definition: A n-gram is a chunk of n consecutive words.
• unigrams: “the”, “students”, “opened”, ”their”
• bigrams: “the students”, “students opened”, “opened their”
• trigrams: “the students opened”, “students opened their”
• 4-grams: “the students opened their”

• Idea: Collect statistics about how frequent different 
n-grams  are, and use these to predict next word.



• Question: How do we get these n-gram and (n-1)-gram 
probabilities?

• Answer: By counting them in some large corpus of text!

n-gram Language Models

depends only on the

(definition of  
conditional prob)

(assumption)

• First we make a simplifying assumption:  
preceding (n-1) words

prob of a n-gram

prob of a (n-1)-gram

(statistical  
approximation)

n-1 words



Why is it an approximation?

Recall conditional probability of 2 random variables, x and a known y is 

Rearranging

https://lagunita.stanford.edu/c4x/Engineering/CS-224N/asset/slp4.pdf

“Out of sequence of length n, how many of them is the sequence of interest?”

is the joint probability of the words sequence

aka chain rule

Generalising



n-gram Language Models: Example

Suppose we are learning a 4-gram Language 
Model.

as the proctor started the clock, the
discard

students opened their  

condition on this

In the corpus:
• “students opened their” occurred 1000 times
• “students opened their books” occurred 400 times

• → P(books | students opened their) = 0.4
• “students opened their exams” occurred 100 times

• → P(exams | students opened their) = 0.1

Should we have  
discarded the  
“proctor” 
context?



Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.
Typically we can’t have n bigger than 5.

Problem: What if “students  
opened their” never occurred in  
data? Then we can’t calculate  
probability for any      !

Sparsity Problem 2

Problem: What if “students  
opened their ” never  
occurred in data? Then
has probability 0!

Sparsity Problem 1

(Partial) Solution: Add small ᶖ
to count for every        . 
This is called smoothing.

(Partial) Solution: Just condition  on 
“opened their” instead.
This is called backoff.



Problems with n-gram Language Models

Storage: Need to store count  
for all possible n-grams. So  
model size is O(exp(n)).

Increasing n makes model size huge!



n-gram Language Models in practice

• You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop*

today the  

* Try for yourself: 
https://nlpforhackers.io/language-models/

Otherwise, seems reasonable!

get 
probability  
distribution

Sparsity problem:  not 
much granularity  in the 
probability  distribution

Business and financial news

company    0.153
bank       0.153
price      0.077
italian    0.039
emirate    0.039

...



Generating text with a n-gram Language Model

• You can also use a Language Model to generate text.

company
bank  price  
italian  
emirate

…

today the  

condition on this
get probability  
distribution

0.153
0.153
0.077 sample
0.039
0.039



• You can also use a Language Model to generate text.

today the price  

condition on this
get probability  distribution

Generating text with a n-gram Language Model

of  
for  
it  
to  
is

0.308
0.050
0.046
0.046
0.031

…

sample



• You can also use a Language Model to generate text.

today the price of  

condition on this

Generating text with a n-gram Language Model

the  
18
oil  
its  
gold

0.072
0.043
0.043
0.036
0.018

…
sample

get probability distribution



Generating text with a n-gram Language Model

• You can also use a Language Model to generate text.

today the price of gold  



Generating text with a n-gram Language Model

• You can also use a Language Model to generate text.

today the price of gold per ton , while production of shoe  
lasts and shoe industry , the bank intervened just after it  
considered and rejected an imf demand to rebuild 
depleted  european stocks , sept 30 end primary 76 cts a 
share .

Incoherent! We need to consider more  than 3 
words at a time if we want to  generate good 

text.

But increasing n worsens sparsity problem,  and 
exponentially increases model size…



How to build a neural Language Model?

• Recall the Language Modeling task:
• Input: sequence of words
• Output: prob dist of the next word

• How about a window-based neural model?
• We saw this applied to Named Entity Recognition in 
Lecture 4



A fixed-window neural Language Model

as the proctor started the clock

discard
the students opened their

fixed window



Softmax

● A.K.A normalized exponential function
● is a generalization of the logistic function 

AKA Sigmoid function
● Used to provide a probabilistic 

interpretation of classification prediction
● More appropriate for mutually-exclusive 

classes because during training, values of 
correct classes pushed towards +ive inf, 
values of wrong classes pushed towards -ive 
inf ⇒ Only one correct class, all other 
classes are wrong!



Softmax

Say we have 4 classes, so final layer fan-out is 4

z1

z2

z3

z4

Softmax
function σ

σ(z)1

σ(z)2

σ(z)3

σ(z)4

probability 
vector



Softmax

Question: Why do we use 
output values as exponent to 
the natural log base?

Hint: Think about the value 
range of layer output values



Softmax
In practice...

Where log(C) is taken to be –max(a). Why? 



Cross Entropy

● A measure of distance between what the 
model believes the output distribution 
should be (“unnatural” distribution), and 
the original distribution (“natural” 
distribution)

true “natural” distribution

our “unnatural” distribution

For discrete outcomes:



Cross Entropy

0

0

1

0

Say for a given input, the correct class is 3 out of classes 
{1,2,3,4}

0.23

0.01

0.67

0.09

= -1 × 0.67 = -0.67



Cross Entropy

= -log q(x)



A fixed-window neural Language Model

books
laptops

concatenated word embeddings

words / one-hot vectors

hidden layer

a zoo

output distribution

the students opened their



A fixed-window neural Language Model

books
laptops

a zoo

the students opened their

Improvements over n-gram LM:
• No sparsity problem
• Model size is O(n) not O(exp(n))

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges
• Window can never be large  

enough!
• Each x(i)uses different rows 

cols of W. We don’t share 
weights  across the window.

We need a neural  
architecture that can  

process any length input



W × e =
A fixed-window neural Language Model

W1,1
 ... W1,d ...

 ... ... W1,nd
… ... ... ... ... ... ... ... ... …
… ... ... ... ... ... ... ... ... …
… ... ... ... ... ... ... ... ... …
… ... ... ... ... ... ... ... ... …
… ... ... ... ... ... ... ... ... …
… ... ... ... ... ... ... ... ... …
Wfan_out,1 ... … ... ... 

Wfan_out,nd

e(1)
1 

…
e(1)

d

…

e(n)
1

…
e(n)

d

×

fan_out × nd
nd × 1n is window size

d dimensions in each word embedding

How does our weight matrix look like?

=

…
… 
…
…
…
…
…
…

fan_out × 1



Question: Why do we want to 
share weights across the 
window?

A fixed-window neural Language Model



● Else the number of weights would grow 
linearly with the number of time steps 
(our window size) like a feed-forward 
network

● We want to capture shared 
representations across sequences of text

Why do we want to share weights across 
windows?



Recurrent Neural Networks (RNN)
A family of neural architectures

e(t)

h(t)

we

wh h(t-1)

whf



hidden 
states

input sequence  
(any length)

…

…

…

Core idea: Apply the  
same weights  
repeatedly

Recurrent Neural Networks 
(RNN)
A family of neural architectures

outputs  
(optional)

visualized as feedforward networks “unrolled across time”:



Recurrent Neural Networks (RNN)
How does our weight matrix Wh look like?

Wh × h =
W1,1

 W1,2 ...
 ... ... ... ...  

W1,fan_out
.. ... ... ... ... ... ... ... ... ... ... …
... ... ... ... ... ... ... ... ... ... ... …
.. ... ... ... ... ... ... ... ... ... ... …
.. ... ... ... ... ... ... ... ... ... ... …
.. ... ... ... ... ... ... ... ... ... ... …
.. ... ... ... ... ... ... ... ... ... ... …
Wfan_out,1

 … ... Wfan_out,fan_out

× =

…
… 
…
…
…
…
…
…

fan_out × 1

h1
… 
…
…
…
…
…

hfan_ou

t

fan_out × fan_out fan_out × 1



Recurrent Neural Networks (RNN)
How does our weight matrix Wh look like?

We × e =
W1,1

 W1,2 ...
 ... ... ... ...  W1,d

.. ... ... ... ... ... ... ... ... ... ... …
... ... ... ... ... ... ... ... ... ... ... …
.. ... ... ... ... ... ... ... ... ... ... …
.. ... ... ... ... ... ... ... ... ... ... …
.. ... ... ... ... ... ... ... ... ... ... …
.. ... ... ... ... ... ... ... ... ... ... …
Wfan_out,1

 … ... Wfan_out,d

× =

…
… 
…
…
…
…
…
…

d × 1

e1
… 
…
…
…
…
…
ed

fan_out × d fan_out × 1



A RNN Language Model

words / one-hot vectors

books
laptops

word embeddings

a zoo

output distribution

Note: this input sequence could be much  
longer, but this slide doesn’t have space!

hidden states

is the initial hidden state

the students opened their

usually initialized to 
zeros in most contexts

E: d x |V|





Question: So what is recurrent 
about it?

A RNN Language Model





RNN Disadvantages:
• Recurrent computation  

is slow
• In practice, difficult to  

access information from
many steps back

A RNN Language Model books
laptops

a zo
o

RNN Advantages:
• Can process any length  

input
• Model size doesn’t  

increase for longer input
• Computation for step t  

can (in theory) use  
information from many  
steps back

• Weights are shared  
across timesteps →  
representations are  
shared

More on  
these 
next  
week

the students opened their



Training a RNN Language Model

• Get a big corpus of text which is a sequence of words
• Feed into RNN-LM; compute output distribution for every step t.

• i.e. predict probability dist of every word, given words so far

• Loss function on step t is usual cross-entropy (CE) between our 
predicted  probability distribution      , and the true next word               
:

• Average this to get overall loss for entire 
training set:



Training a RNN Language Model
= negative log prob  of 

“students”

Loss

…

Corpus the students opened their exams …



Training a RNN Language Model
= negative log prob  

of “opened”

Loss

…

Corpus the students opened their exams …



Training a RNN Language Model
= negative log prob  

of “their”

Loss

…

Corpus the students opened their exams …



Training a RNN Language Model
= negative log prob  

of “exams”

Los
s

…

Corpus the students opened their exams …



Training a RNN Language Model

+ + + + … =Loss

…

Corpus the students opened their exams …



Training a RNN Language Model

• However: Computing loss and gradients across entire 
corpus is  too expensive!

• Recall: Stochastic Gradient Descent allows us to 
compute loss  and gradients for small chunk of data, 
and update.

• → In practice, consider                as a sentence

• Compute loss       for a sentence (actually usually a 
batch of  sentences), compute gradients and update 
weights. Repeat.





Imagine training the entire wikipedia corpus to just 
get 1 gradient update...



Question: What’s the derivative of  
weight matrix      ?

Answer:

Backpropagation for RNNs

……

 w.r.t. the repeated

“The gradient w.r.t. a repeated weight  is 
the sum of the gradient
w.r.t. each time it appears”

Why?



Backpropagation Review

http://cs231n.github.io/optimization-2/#staged



Multivariable Chain Rule

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-r
ule-simple-version

http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version


Backpropagation for RNNs: Proof sketch

…

In our 
example:

Apply the multivariable chain 
rule:

= 1

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-r
ule-simple-version

http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version


Backpropagation for RNNs

……

Question: How do we  
calculate this?

Answer: Backpropagate over  
timesteps i=t,…,0, summing  
gradients as you go.
This algorithm is called
“backpropagation through 
time”

37



BPTT(backpropagation through time)



BPTT(backpropagation through time) credit to DENNY BRITZ



BPTT(backpropagation through time) credit to DENNY BRITZ





Vanishing/exploding gradient problem

● Multiply the same W at each time step during backprop.
● The gradient is a product ofJacobian matrices, each associated 

with a step in the forward computation. This can become very
small or very large quickly, and the locality assumption of 
gradient descent breaks down.  →  Vanishing or exploding 
gradient.

● Gradients can be seen as a measure of influence of the past 
on the future.

● The vanishing gradient problem can cause problems: When 
predicting the next word, information from many time  steps in 
the past is not taken into consideration.



Vanishing/exploding gradient problem

● Gradient clipping method

● Initialization and ReLus

● Gated Recurrent Units (GRU) introduced by 
[Cho et al. 2014] and LSTMs [Hochreiter & 
Schmidhuber, 1999]



Truncated BPTT

Truncated BPTT processes the sequence one timestep at a time, and 

every k1 timesteps, it runs BPTT for k2 timesteps, so a parameter 

update can be cheap if k2 is small. 

1. k1: The number of forward-pass timesteps between updates. 
Generally, this influences how slow or fast training will be, given how 
often weight updates are performed.

2. k2: The number of timesteps to which to apply BPTT. Generally, it 
should be large enough to capture the temporal structure in the 
problem for the network to learn. Too large a value results in 
vanishing gradients.



TBPTT (k1, k2)
● TBPTT(n,n): Updates are performed at the end of the 

sequence across all timesteps in the sequence (e.g. 
classical BPTT).

● TBPTT(1,n): timesteps are processed one at a time 
followed by an update that covers all timesteps seen so far 
(e.g. classical TBPTT by Williams and Peng).

● TBPTT(k1,1): The network likely does not have enough 
temporal context to learn, relying heavily on internal state 
and inputs.

● TBPTT(k1,k2), where k1<k2<n: Multiple updates are 
performed per sequence which can accelerate training.

● TBPTT(k1,k2), where k1=k2: A common configuration 
where a fixed number of timesteps are used for both 
forward and backward-pass timesteps (e.g. 10s to 100s).



Prepare sequence data
The way that you break up your sequence data will define the 
number of timesteps used in the forward and backward passes of 
BPTT.

● Use data as-is
● Naive data split
● Domain-specific data split

○ In natural language processing problem, the input sequence 
could be divided by sentence and then padded to a fixed 
length, or split according to the average sentence length in 
the domain.

● Systematic data split (e.g. grid search)
○ perform a grid search over each sub-sequence length and 

adopt the configuration that results in the best performing 
model on average.

● Lean heavily on internal states with TBPTT(1, 1)



Pseudo code  truncated version of BPTT

Back_Propagation_Through_Time(a, y)   // a[t] is the input at time t. y[t] is 
the output
    Unfold the network to contain k instances of f
    do until stopping criteria is met:
        x = the zero-magnitude vector;// x is the current context
        for t from 0 to n - k         // t is time. n is the length of the training 
sequence
            Set the network inputs to x, a[t], a[t+1], ..., a[t+k-1]
            p = forward-propagate the inputs over the whole unfolded network
            e = y[t+k] - p;           // error = target - prediction
            Back-propagate the error, e, back across the whole unfolded network
            Sum the weight changes in the k instances of f together.
            Update all the weights in f and g.
            x = f(x, a[t]);           // compute the context for the next time-step



RNN Applications 

• Language Model 
• Sentiment Classification 
• Machine Translation 
• Question Answering 
• Speech recognition 
• Time series prediction 



Generating text with a RNN Language Model
Just like a n-gram Language Model, you can use a RNN Language Model 
to generate text by repeated sampling. Sampled output is next step’s 
input.

my favorite season is

…

favorite

sample

season

sample

is

sample

spring

sample

spring



Generating text with a RNN Language Model

• Let’s have some fun!
• You can train a RNN-LM on any kind of text, then 

generate text in that style.

• RNN-LM trained on Obama speeches:

Source: 
https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

https://medium.com/%40samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0


Generating text with a RNN Language Model

• Let’s have some fun!
• You can train a RNN-LM on any kind of text, then 

generate text in that style.

• RNN-LM trained on Harry Potter:

Source: 
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803d
a6



Generating text with a RNN Language Model

• Let’s have some fun!
• You can train a RNN-LM on any kind of text, then 

generate text in that style.

• RNN-LM trained on Seinfeld scripts:

Source: 
https://www.avclub.com/a-bunch-of-comedy-writers-teamed-up-with-a-computer-to-18186332
42

http://www.avclub.com/a-bunch-of-comedy-writers-teamed-up-with-a-computer-to-1818633242
http://www.avclub.com/a-bunch-of-comedy-writers-teamed-up-with-a-computer-to-1818633242


Generating text with a RNN Language Model

• Let’s have some fun!
• You can train a RNN-LM on any kind of text, then 

generate text in that style.

• (character-level) RNN-LM trained on paint colors:

Source: 
http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-netwo
rk

http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network
http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network


Evaluating Language Models

• The traditional evaluation metric for Language 
Models is  perplexity.

Normalized by  
number of 
words

Inverse probability of dataset

• Lower is better!
• minimizing perplexity and  minimizing the loss function 

are equivalent.

•



RNNs have greatly improved perplexity

n-gram model

Increasingly  
complex RNNs

Perplexity 
improves  
(lower is 
better)

Source:https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-w
ords/



Why should we care about Language 
Modeling?
• Language Modeling is a subcomponent of other NLP 

systems:
• Speech recognition

• Use a LM to generate transcription, conditioned on 
audio

• Machine Translation
• Use a LM to generate translation, conditioned on 

original text

• Summarization
• Use a LM to generate summary, conditioned on original 

text

• Language Modeling is a benchmark task that 
helps us measure our progress on understanding 
language

These  
systems  are 
called  
conditional  
Language  
Models



Recap

• Language Model: A system that predicts the next word

• Recurrent Neural Network: A family of neural 
networks that:

• Take sequential input of any length
• Apply the same weights on each step
• Can optionally produce output on each step

• Recurrent Neural Network ≠ Language Model

• We’ve shown that RNNs are a great way to build a LM.

• But RNNs are useful for much more!



RNNs can be used for tagging
e.g. part-of-speech tagging, named entity recognition

knocke
d

over the vasethe startled cat

VBN IN D
T

NNDT VBN NN



RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

How to compute  
sentence 
encoding?

e.g. sentiment classification



RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

How to compute  
sentence 
encoding?

Basic way:
Use final hidden 

state

e.g. sentiment classification



RNNs can be used for sentence 
classification

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

How to compute  
sentence 
encoding?

Usually better:
Take element-wise 
max or  mean of all 

hidden states

e.g. sentiment classification



RNNs can be used to generate text
e.g. speech recognition, machine translation, summarization

what’
s

the

the weatherwhat’s

<START>

Remember: these are called “conditional language 
models”.  We’ll see Machine Translation in much 
more detail later.



RNNs can be used as an encoder module

Question encoding
= element-wise max  of hidden 

states
Context: Ludwig 
van  Beethoven was 
a  German composer  
and pianist. A 
crucial  figure …

Beethoven ?nationality was
Question:   what

Here the RNN acts  
as an encoder for  
the Question. The  
encoder is part of 
a  larger neural 
system.

e.g. question answering, machine translation
Answer: German



Thank you 


