
Week 5: Recurrent Neural Networks & Language Models

Kee Yuan Chuan
Zhou Yizhuo
Wu Jiacheng
Liu Juncheng
Jin Zhe

CS6101 - Deep Learning for NLP

Today we will:

• Introduce a new NLP task
• Language Modeling

motivates

• Introduce a new family of neural networks
• Recurrent Neural Networks (RNNs)

THE most important
idea for the rest of

the class!

Overview

• Language Modeling is the task of predicting what word
comes next

• More formally: given a sequence of words ,
compute the probability distribution of the next word :

where is a word in the vocabulary

• A system that does this is called a Language Model.

Language Modeling

laptops

the students opened their
exams

minds

books

You use Language Models every day!

You use Language Models every day!

n-gram Language Models

the students opened their

• Question: How to learn a Language Model?
• Answer (pre- Deep Learning): learn a n-gram Language

Model!

• Definition: A n-gram is a chunk of n consecutive words.
• unigrams: “the”, “students”, “opened”, ”their”
• bigrams: “the students”, “students opened”, “opened their”
• trigrams: “the students opened”, “students opened their”
• 4-grams: “the students opened their”

• Idea: Collect statistics about how frequent different
n-grams are, and use these to predict next word.

• Question: How do we get these n-gram and (n-1)-gram
probabilities?

• Answer: By counting them in some large corpus of text!

n-gram Language Models

depends only on the

(definition of
conditional prob)

(assumption)

• First we make a simplifying assumption:
preceding (n-1) words

prob of a n-gram

prob of a (n-1)-gram

(statistical
approximation)

n-1 words

Why is it an approximation?

Recall conditional probability of 2 random variables, x and a known y is

Rearranging

https://lagunita.stanford.edu/c4x/Engineering/CS-224N/asset/slp4.pdf

“Out of sequence of length n, how many of them is the sequence of interest?”

is the joint probability of the words sequence

aka chain rule

Generalising

n-gram Language Models: Example

Suppose we are learning a 4-gram Language
Model.

as the proctor started the clock, the
discard

students opened their

condition on this

In the corpus:
• “students opened their” occurred 1000 times
• “students opened their books” occurred 400 times

• → P(books | students opened their) = 0.4
• “students opened their exams” occurred 100 times

• → P(exams | students opened their) = 0.1

Should we have
discarded the
“proctor”
context?

Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.
Typically we can’t have n bigger than 5.

Problem: What if “students
opened their” never occurred in
data? Then we can’t calculate
probability for any !

Sparsity Problem 2

Problem: What if “students
opened their ” never
occurred in data? Then
has probability 0!

Sparsity Problem 1

(Partial) Solution: Add small ᶖ
to count for every .
This is called smoothing.

(Partial) Solution: Just condition on
“opened their” instead.
This is called backoff.

Problems with n-gram Language Models

Storage: Need to store count
for all possible n-grams. So
model size is O(exp(n)).

Increasing n makes model size huge!

n-gram Language Models in practice

• You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop*

today the

* Try for yourself:
https://nlpforhackers.io/language-models/

Otherwise, seems reasonable!

get
probability
distribution

Sparsity problem: not
much granularity in the
probability distribution

Business and financial news

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

...

Generating text with a n-gram Language Model

• You can also use a Language Model to generate text.

company
bank price
italian
emirate

…

today the

condition on this
get probability
distribution

0.153
0.153
0.077 sample
0.039
0.039

• You can also use a Language Model to generate text.

today the price

condition on this
get probability distribution

Generating text with a n-gram Language Model

of
for
it
to
is

0.308
0.050
0.046
0.046
0.031

…

sample

• You can also use a Language Model to generate text.

today the price of

condition on this

Generating text with a n-gram Language Model

the
18
oil
its
gold

0.072
0.043
0.043
0.036
0.018

…
sample

get probability distribution

Generating text with a n-gram Language Model

• You can also use a Language Model to generate text.

today the price of gold

Generating text with a n-gram Language Model

• You can also use a Language Model to generate text.

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild
depleted european stocks , sept 30 end primary 76 cts a
share .

Incoherent! We need to consider more than 3
words at a time if we want to generate good

text.

But increasing n worsens sparsity problem, and
exponentially increases model size…

How to build a neural Language Model?

• Recall the Language Modeling task:
• Input: sequence of words
• Output: prob dist of the next word

• How about a window-based neural model?
• We saw this applied to Named Entity Recognition in
Lecture 4

A fixed-window neural Language Model

as the proctor started the clock

discard
the students opened their

fixed window

Softmax

● A.K.A normalized exponential function
● is a generalization of the logistic function

AKA Sigmoid function
● Used to provide a probabilistic

interpretation of classification prediction
● More appropriate for mutually-exclusive

classes because during training, values of
correct classes pushed towards +ive inf,
values of wrong classes pushed towards -ive
inf ⇒ Only one correct class, all other
classes are wrong!

Softmax

Say we have 4 classes, so final layer fan-out is 4

z1

z2

z3

z4

Softmax
function σ

σ(z)1

σ(z)2

σ(z)3

σ(z)4

probability
vector

Softmax

Question: Why do we use
output values as exponent to
the natural log base?

Hint: Think about the value
range of layer output values

Softmax
In practice...

Where log(C) is taken to be –max(a). Why?

Cross Entropy

● A measure of distance between what the
model believes the output distribution
should be (“unnatural” distribution), and
the original distribution (“natural”
distribution)

true “natural” distribution

our “unnatural” distribution

For discrete outcomes:

Cross Entropy

0

0

1

0

Say for a given input, the correct class is 3 out of classes
{1,2,3,4}

0.23

0.01

0.67

0.09

= -1 × 0.67 = -0.67

Cross Entropy

= -log q(x)

A fixed-window neural Language Model

books
laptops

concatenated word embeddings

words / one-hot vectors

hidden layer

a zoo

output distribution

the students opened their

A fixed-window neural Language Model

books
laptops

a zoo

the students opened their

Improvements over n-gram LM:
• No sparsity problem
• Model size is O(n) not O(exp(n))

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges
• Window can never be large

enough!
• Each x(i)uses different rows

cols of W. We don’t share
weights across the window.

We need a neural
architecture that can

process any length input

W × e =
A fixed-window neural Language Model

W1,1
 ... W1,d ...

 W1,nd
… …
… …
… …
… …
… …
… …
Wfan_out,1 ... …

Wfan_out,nd

e(1)
1

…
e(1)

d

…

e(n)
1

…
e(n)

d

×

fan_out × nd
nd × 1n is window size

d dimensions in each word embedding

How does our weight matrix look like?

=

…
…
…
…
…
…
…
…

fan_out × 1

Question: Why do we want to
share weights across the
window?

A fixed-window neural Language Model

● Else the number of weights would grow
linearly with the number of time steps
(our window size) like a feed-forward
network

● We want to capture shared
representations across sequences of text

Why do we want to share weights across
windows?

Recurrent Neural Networks (RNN)
A family of neural architectures

e(t)

h(t)

we

wh h(t-1)

whf

hidden
states

input sequence
(any length)

…

…

…

Core idea: Apply the
same weights
repeatedly

Recurrent Neural Networks
(RNN)
A family of neural architectures

outputs
(optional)

visualized as feedforward networks “unrolled across time”:

Recurrent Neural Networks (RNN)
How does our weight matrix Wh look like?

Wh × h =
W1,1

 W1,2 ...

W1,fan_out
.. …
... …
.. …
.. …
.. …
.. …
Wfan_out,1

 … ... Wfan_out,fan_out

× =

…
…
…
…
…
…
…
…

fan_out × 1

h1
…
…
…
…
…
…

hfan_ou

t

fan_out × fan_out fan_out × 1

Recurrent Neural Networks (RNN)
How does our weight matrix Wh look like?

We × e =
W1,1

 W1,2 ...
 W1,d

.. …
... …
.. …
.. …
.. …
.. …
Wfan_out,1

 … ... Wfan_out,d

× =

…
…
…
…
…
…
…
…

d × 1

e1
…
…
…
…
…
…
ed

fan_out × d fan_out × 1

A RNN Language Model

words / one-hot vectors

books
laptops

word embeddings

a zoo

output distribution

Note: this input sequence could be much
longer, but this slide doesn’t have space!

hidden states

is the initial hidden state

the students opened their

usually initialized to
zeros in most contexts

E: d x |V|

Question: So what is recurrent
about it?

A RNN Language Model

RNN Disadvantages:
• Recurrent computation

is slow
• In practice, difficult to

access information from
many steps back

A RNN Language Model books
laptops

a zo
o

RNN Advantages:
• Can process any length

input
• Model size doesn’t

increase for longer input
• Computation for step t

can (in theory) use
information from many
steps back

• Weights are shared
across timesteps →
representations are
shared

More on
these
next
week

the students opened their

Training a RNN Language Model

• Get a big corpus of text which is a sequence of words
• Feed into RNN-LM; compute output distribution for every step t.

• i.e. predict probability dist of every word, given words so far

• Loss function on step t is usual cross-entropy (CE) between our
predicted probability distribution , and the true next word
:

• Average this to get overall loss for entire
training set:

Training a RNN Language Model
= negative log prob of

“students”

Loss

…

Corpus the students opened their exams …

Training a RNN Language Model
= negative log prob

of “opened”

Loss

…

Corpus the students opened their exams …

Training a RNN Language Model
= negative log prob

of “their”

Loss

…

Corpus the students opened their exams …

Training a RNN Language Model
= negative log prob

of “exams”

Los
s

…

Corpus the students opened their exams …

Training a RNN Language Model

+ + + + … =Loss

…

Corpus the students opened their exams …

Training a RNN Language Model

• However: Computing loss and gradients across entire
corpus is too expensive!

• Recall: Stochastic Gradient Descent allows us to
compute loss and gradients for small chunk of data,
and update.

• → In practice, consider as a sentence

• Compute loss for a sentence (actually usually a
batch of sentences), compute gradients and update
weights. Repeat.

Imagine training the entire wikipedia corpus to just
get 1 gradient update...

Question: What’s the derivative of
weight matrix ?

Answer:

Backpropagation for RNNs

……

 w.r.t. the repeated

“The gradient w.r.t. a repeated weight is
the sum of the gradient
w.r.t. each time it appears”

Why?

Backpropagation Review

http://cs231n.github.io/optimization-2/#staged

Multivariable Chain Rule

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-r
ule-simple-version

http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs: Proof sketch

…

In our
example:

Apply the multivariable chain
rule:

= 1

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-r
ule-simple-version

http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs

……

Question: How do we
calculate this?

Answer: Backpropagate over
timesteps i=t,…,0, summing
gradients as you go.
This algorithm is called
“backpropagation through
time”

37

BPTT(backpropagation through time)

BPTT(backpropagation through time) credit to DENNY BRITZ

BPTT(backpropagation through time) credit to DENNY BRITZ

Vanishing/exploding gradient problem

● Multiply the same W at each time step during backprop.
● The gradient is a product ofJacobian matrices, each associated

with a step in the forward computation. This can become very
small or very large quickly, and the locality assumption of
gradient descent breaks down. → Vanishing or exploding
gradient.

● Gradients can be seen as a measure of influence of the past
on the future.

● The vanishing gradient problem can cause problems: When
predicting the next word, information from many time steps in
the past is not taken into consideration.

Vanishing/exploding gradient problem

● Gradient clipping method

● Initialization and ReLus

● Gated Recurrent Units (GRU) introduced by
[Cho et al. 2014] and LSTMs [Hochreiter &
Schmidhuber, 1999]

Truncated BPTT

Truncated BPTT processes the sequence one timestep at a time, and

every k1 timesteps, it runs BPTT for k2 timesteps, so a parameter

update can be cheap if k2 is small.

1. k1: The number of forward-pass timesteps between updates.
Generally, this influences how slow or fast training will be, given how
often weight updates are performed.

2. k2: The number of timesteps to which to apply BPTT. Generally, it
should be large enough to capture the temporal structure in the
problem for the network to learn. Too large a value results in
vanishing gradients.

TBPTT (k1, k2)
● TBPTT(n,n): Updates are performed at the end of the

sequence across all timesteps in the sequence (e.g.
classical BPTT).

● TBPTT(1,n): timesteps are processed one at a time
followed by an update that covers all timesteps seen so far
(e.g. classical TBPTT by Williams and Peng).

● TBPTT(k1,1): The network likely does not have enough
temporal context to learn, relying heavily on internal state
and inputs.

● TBPTT(k1,k2), where k1<k2<n: Multiple updates are
performed per sequence which can accelerate training.

● TBPTT(k1,k2), where k1=k2: A common configuration
where a fixed number of timesteps are used for both
forward and backward-pass timesteps (e.g. 10s to 100s).

Prepare sequence data
The way that you break up your sequence data will define the
number of timesteps used in the forward and backward passes of
BPTT.

● Use data as-is
● Naive data split
● Domain-specific data split

○ In natural language processing problem, the input sequence
could be divided by sentence and then padded to a fixed
length, or split according to the average sentence length in
the domain.

● Systematic data split (e.g. grid search)
○ perform a grid search over each sub-sequence length and

adopt the configuration that results in the best performing
model on average.

● Lean heavily on internal states with TBPTT(1, 1)

Pseudo code truncated version of BPTT

Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is
the output
 Unfold the network to contain k instances of f
 do until stopping criteria is met:
 x = the zero-magnitude vector;// x is the current context
 for t from 0 to n - k // t is time. n is the length of the training
sequence
 Set the network inputs to x, a[t], a[t+1], ..., a[t+k-1]
 p = forward-propagate the inputs over the whole unfolded network
 e = y[t+k] - p; // error = target - prediction
 Back-propagate the error, e, back across the whole unfolded network
 Sum the weight changes in the k instances of f together.
 Update all the weights in f and g.
 x = f(x, a[t]); // compute the context for the next time-step

RNN Applications

• Language Model
• Sentiment Classification
• Machine Translation
• Question Answering
• Speech recognition
• Time series prediction

Generating text with a RNN Language Model
Just like a n-gram Language Model, you can use a RNN Language Model
to generate text by repeated sampling. Sampled output is next step’s
input.

my favorite season is

…

favorite

sample

season

sample

is

sample

spring

sample

spring

Generating text with a RNN Language Model

• Let’s have some fun!
• You can train a RNN-LM on any kind of text, then

generate text in that style.

• RNN-LM trained on Obama speeches:

Source:
https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

https://medium.com/%40samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

Generating text with a RNN Language Model

• Let’s have some fun!
• You can train a RNN-LM on any kind of text, then

generate text in that style.

• RNN-LM trained on Harry Potter:

Source:
https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803d
a6

Generating text with a RNN Language Model

• Let’s have some fun!
• You can train a RNN-LM on any kind of text, then

generate text in that style.

• RNN-LM trained on Seinfeld scripts:

Source:
https://www.avclub.com/a-bunch-of-comedy-writers-teamed-up-with-a-computer-to-18186332
42

http://www.avclub.com/a-bunch-of-comedy-writers-teamed-up-with-a-computer-to-1818633242
http://www.avclub.com/a-bunch-of-comedy-writers-teamed-up-with-a-computer-to-1818633242

Generating text with a RNN Language Model

• Let’s have some fun!
• You can train a RNN-LM on any kind of text, then

generate text in that style.

• (character-level) RNN-LM trained on paint colors:

Source:
http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-netwo
rk

http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network
http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

Evaluating Language Models

• The traditional evaluation metric for Language
Models is perplexity.

Normalized by
number of
words

Inverse probability of dataset

• Lower is better!
• minimizing perplexity and minimizing the loss function

are equivalent.

•

RNNs have greatly improved perplexity

n-gram model

Increasingly
complex RNNs

Perplexity
improves
(lower is
better)

Source:https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-w
ords/

Why should we care about Language
Modeling?
• Language Modeling is a subcomponent of other NLP

systems:
• Speech recognition

• Use a LM to generate transcription, conditioned on
audio

• Machine Translation
• Use a LM to generate translation, conditioned on

original text

• Summarization
• Use a LM to generate summary, conditioned on original

text

• Language Modeling is a benchmark task that
helps us measure our progress on understanding
language

These
systems are
called
conditional
Language
Models

Recap

• Language Model: A system that predicts the next word

• Recurrent Neural Network: A family of neural
networks that:

• Take sequential input of any length
• Apply the same weights on each step
• Can optionally produce output on each step

• Recurrent Neural Network ≠ Language Model

• We’ve shown that RNNs are a great way to build a LM.

• But RNNs are useful for much more!

RNNs can be used for tagging
e.g. part-of-speech tagging, named entity recognition

knocke
d

over the vasethe startled cat

VBN IN D
T

NNDT VBN NN

RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence
encoding?

e.g. sentiment classification

RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence
encoding?

Basic way:
Use final hidden

state

e.g. sentiment classification

RNNs can be used for sentence
classification

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence
encoding?

Usually better:
Take element-wise
max or mean of all

hidden states

e.g. sentiment classification

RNNs can be used to generate text
e.g. speech recognition, machine translation, summarization

what’
s

the

the weatherwhat’s

<START>

Remember: these are called “conditional language
models”. We’ll see Machine Translation in much
more detail later.

RNNs can be used as an encoder module

Question encoding
= element-wise max of hidden

states
Context: Ludwig
van Beethoven was
a German composer
and pianist. A
crucial figure …

Beethoven ?nationality was
Question: what

Here the RNN acts
as an encoder for
the Question. The
encoder is part of
a larger neural
system.

e.g. question answering, machine translation
Answer: German

Thank you

