Natural Language Processing
with Deep Learning

CS6010

Lecture 6:
Vanishing Gradients,

Fancy RNNs (LSTMs and GRUSs)
and applications

Presenters:
Mirco Milletari
Tram Anh Nguyen
Chenglei Si
Tasbolat Taunyazov
Chen Yang

This lecture

* Vanishing Gradient problem
* Fancy RNNs:

*GRU

LSTM

Bidirectional

‘Multi-layer

RNN Refresher |

» Multiply the same matrix at each time step during forward prop

E\(0) Ex(0) E3(0) E40)
I I I I

PYCORC B C) 5@
U U U U
h©)__ hL) h(2) h(3) h®)
@ @ O O O
@ Wi |0\ W), |l@|Wh |0 Wr |@| W, _
@ 10 O 1@ 1@ g
O @ O O O
h = 7 7
We We We We
o O O O
eS| e O |9 ew o
Sr @) @) @)

the Students opened their exams

2 2(2) e ey

RNN Refresher Il

« Each RNN cell does the following Yt
A
b, SF
W, U
ht—l f ht

ow.
|

h; = f(Wph;_, + W, x; +b,)

In a nutshell:
y: = softmaxz(U h; + b,)

The vanishing gradient problem - Details

« Similar but simpler RNN formulation:

hy =W, f(h;—1) + W ;x;+ b,
y: = Uf(h;) + b,

« Total error is the sum of each Error at time step t

dEt
=T Z

« Take t=2 for example, then (e2 x (¥2 —y2))

dE; e dy2
AW, 2dW, 2
_ 0B 09,
~ 9¥2 Ohy

5 R. Pascanu et al. JMLR: W&CP volume 28 (2013)

The vanishing gradient problem - Details
dhy 1y Oh;

* In particular, we have defined: oh, — 1 n,

« Generalising to -t- and counting from k=1 we get

dE; i OE; 89: dh; Ohy
k=

dWp, ~1 0y: Oh; ohy OWy,
Oh, . Hh. to
on, = Ll gp, = 11 Widiagly'(h;0)]
Jj=k+ j=k+1
« Each partial is a Jacobian: -0, Of,
aoE A o O
dx 0xq 0x,, % “ 8fm
L Oy ox,,

Analyze the norms of the Jacobians

1. Assume |f'(h;)| is bounded
2. ||diag[f'(h;-1)|]| <7€eR

Using the Cauchy-Schwarz inequality

oh;

an || = IWh diag[f'(h;-1)|| < |[Wy]| ||diag[f' (h;)]
7—1

d

If the largest eigenvalue of W is A; < 1/v, then

oh;
oh;_,

1 General
< -—v<1 = Vg “
Y

d

oh;_;

Consider the full expression now

| 1L

Oh,
dhy,

_7—1

« Do the simple case first!

Ohy
Oh;

_ ||6h, 8hy
~ ||6h; 9,

< ||9B2
~ ||Ohy

ohy
dhy

« From direct inspection or by looking at scaling dimensions,
one finds the general result

oh, f oh;
oh;,

< nt—k

j—1

j= k+1

« This can be very small in the long term! Mathematically

t>k :{> " F =0 (n<1)

 For the exploding gradient condition, consider A; > 1/v ,
then going through the same steps one finds 7> 1 | from
which the exploding gradient follows.

Why is the vanishing gradient a problem?

1. Gradients can be seen as a measure of influence of the past
on the future

2. How does the perturbation at time -t- affect predictions at
time t+k ?

Why is the vanishing gradient a problem?

« ldeally, the error E'on step t can flow backwards, via
backprop, and allow the weights on a previous timestep
(maybe many timesteps ago) to change.

Q(l) Q(2) g(3) g(il)
\U \U \U \U
h©)__ h) h(2) h(3))
O @ O O (@]
| W, Q/,I’Kh_\\g_ Wh] R Q Wh -
O @ 1o e 1@ g
O ® O O (@
— ‘/r et et
W, W, W, W,
o O O O
o o) O O
o o o o
(1) 7 (2) 7 (3) (%)

—

Why is the vanishing gradient a problem?

When we only observe

=TT ot <t going to 0

oh,
ohy,,

We cannot tell whether
1. No dependency between t and k in data,

or
2. Wrong configuration of parameters, e.g.

wrong initialization

11

Why is the vanishing gradient a problem?

1. No dependency between t and t-n in data

0&; . O 0%y 0T xy,
E\(6) Ex0) Es(9) Es6) E(6) 00 <Z< Ox; 0%, 00
(I T 1 e
g(l) ﬁ(2) 1}(3) g(4) y(S) ¢ ¢ ¢ ¢ ¢
OF; OFy 0F3 0F>» 0F
U U U U U = — — -
At h“i K h“‘i h""l h"‘i oL, o o, oL, oL
@wh o| W, HEAHEAHEA o| W, OE, Ohs Ohy N
O @ O =
o] (o [of (o o o Ohy Ohy gp e i)
EWQ IW“ IW“ IW'* Ve JFE3 dhs dhs
| © 2 8 3) 8 (41)8 (5) 8 + . : p
eWlg| e® ol °“lel ¢ le@ 2 I ()hs ()h;; o
of o (o o o
T 7T 1 +o
the Students opened their exams () El ()hS (‘_)hI

(1) (2 2(3) @ x®

© s Ohy 00

When s o 9B

0111 ()9
Therefore, no dependency between 5th word and 1st word. More specifically,
model fails to get feedback from previous words, e.g. “the”, “students” for
context

The vanishing gradient problem for language
models

« The vanishing gradient problem can cause problems for
RNN Language Models;

« When predicting the next word, information from many
time steps in the past is not taken into consideration.

« Example:

Jane walked into the room. John walked in too. It
was late in the day. Jane said hi to

13

One solution: Initialization + ReLUs

* You can improve the Vanishing Gradient Problem with
good initialization and ReLUs.

* [nitialize W(*)‘s to
identity matrix | o
and ;
f(z) = rect(z) = max(z, 0)

il
Activation fn: & _'l,/

rect = Rectified Linear 10’—

* — Huge Difference!| " &Y

 [nitialization idea first introduced in Parsing with
Compositional Vector Grammars, Socher et al. 2013

* New experiments with recurrent neural nets in A Simple
Way to Initialize Recurrent Networks of Rectified Linear
Units, Le et al. 2015

15

In [21]:

Out[21]:

plt.plot(np.array(relu array[:6000]),color='blue')
plt.plot(np.array(sigm array[:6000]),color="green')
plt.title('Sum of magnitudes of gradients -- hidden layer neurons')

<matplotlib.text.Text at 0x10a331310>

Sk Sum of magnitudes of gradients -- hidden layer neurons

0 1000 2000 3000 4000 5000

6000

Trick for exploding gradient:
clipping trick

16

The solution first introduced by Mikolov is to clip
gradients so that their norm has some maximum
value.

Algorithm 1 Pseudo-code for norm clipping the gra-

dients whenever they explode
88

g+ 55
if ||g|| > threshold then
threshold
A
end if

Makes a big difference in RNNs and many other unstable
models

There’s another method of clipping absolute value for
gradient.

Exploding gradient:
Gradient clipping
intuition

0.35
0.30
0.25 L
o
0.20 =
7]
0.15
0.10
0.05

s = wo(ri—1) + b

e One hidden unit RNN model
e Given initial state x0 = 0.5 — Train for

a specific target value after 50 steps
e Gradient explodes — High curvature walls | Recap

Parameter update in

e Solid lines: standard gradient descent SGD:

trajectories w:=w — nVQ(w)
e Dashed lines: gradients rescaled to fixed size

16

“On the difficulty of training Recurrent Neural Networks”, Pascanu et al. 2013

Summary for problems with training RNNs

Vanishing gradient

What gives I Oh;,
rise? pe— 0
ohy,
Gradients of many time steps ago
approaching 0
How to fix? 1. Good initialization (ldentity matrix)
2. RelLU
3. Hessian-Free Optimization
[Martens, 2010] (not covered in this lecture)
Can we do 1. LSTM [Hochreiter, Schmidhuber,
more? 1999]
Yes, we can! 2. GRU [Cho, 2014]
By using 3. Residual Net [He, 2015] (not covered in
different this lecture)

architectures

Reference for papers on the next slide

Exploding gradient

Ohy

—| >1
Ohy

Gradients of many time steps ago
getting very large

1. Gradient Clipping (Absolute
Clipping or Norm Clipping)

2. RelLU

3. Weight Regularization

4. Structural damping [Sutskever,
201 1] (not covered in this lecture)

1. LSTM

References

1. Good initialization + RelLU
(4 Simple Way to Initialize Recurrent Networks of Rectified Linear Units, Le et al.
2015)

2. Hessian-Free Optimization
(Deep learning via Hessian-free optimization, J. Martens, 2010)

3. Absolute Gradient Clipping

(Tomas Mikolov PhD Thesis, Mikolov, 2012)
4. Norm Clipping
(On the difficulty of training Recurrent Neural Networks, Pascanu et al, 2013)
5. Hessian-Free + Structural Damping
(Generating text with recurrent neural networks, Sutskever et al, 2011)
6. LSTM
(Long short-term memory, Hochreiter et al, 1997)
7. GRU

(On the properties of neural machine translation: Encoder-decoder approaches,
Cho, 2014)

8. Residual Network (ResNet)
(Deep Residual Learning for Image Recognition, He, 2015)

Main solution for better RNNs: Better
Units

* The main solution to the Vanishing Gradient Problem is
to use a more complex hidden unit computation in
recurrence!

« Gated Recurrent Units (GRU) introduced by [Cho et al.
2014] and LSTMs [Hochreiter & Schmidhuber, 1999]

 Main ideas:

- keep around memories to capture long distance
dependencies

- allow error messages to flow at different strengths
depending on the inputs

20

Gated Recurrent Units (GRU)

GRUs

Goal:

- “Memorize” long distance
dependencies

- Allow error messages to flow back to
faraway timesteps (solve vanishing
gradient problem)

GRUs

« Standard RNN computes hidden layer at next time
Step: hi = f (W(hh)ht—1 + W(hx)xt)

* GRU first computes an update gate (another layer
with dimension (d_h,n)) based on current input
word vector and hidden state

2 =0 (W<Z)xt + U(z)ht_1>

« Compute reset gate similarly but with different

welghts =0 (W(r)xt i U(T)ht—l)

23

GRUs

24

Update gate =0 (W(z)xt + U<z>ht_1)
Reset gate re=o (WO + UOhy)

New memory content: j, = tanh (Wa, + 7, 0 Uhy_1)
If reset gate unit is ~0, then this ignores
previous memory and only stores the new
word information

Final memory at time step combines current
and previous time steps:

~

ht:ZtOht_1+(1—Zt)Oht

GRU illustration

Pi== (W(z)a:t - U(")ht_l)
r; =0 (W(T)a:t - U(r)lz,t_l)

hbl ht

Final memory

hy = tanh (Wxz; + 14 0 Uhy_y)

he =z 0hi1+(1—2)0h
Memory (reset) ¢ t©hi—1 +(t) © hy

Update gate

Reset gate

Input:

21 2/6/18

How do Gated Recurrent Units fix vanishing gradient
problems?

Is the problem with standard RNNs the naive transition function?
he = f (W(hh)hf—l g W(""");m)

It implies that the error must backpropagate through all the
intermediate nodes:

O=0=0O=0—6

* Perhaps we can create shortcut connections.

24 2018-02-06

GRU intuition

- Update gate z controls how much of previous memory
should matter now.

- |If z close to 1, then we can copy information in that
unit through many time steps! Less vanishing
gradient!

]’:Lt = tanh (Wl't + 7140 Uht_l)

~

htZZtOht_l—l—(].—Zt)Oht

Then why do we still need the reset gate?

27

How do Gated Recurrent Units fix vanishing
gradient problems?

28

We can learn adaptive shortcut connections.
(update gate)

Let the net prune unnecessary connections
adaptively. (reset gate)

Suppose we only have

update gate, we can’t B (2) (2)
clear our memory of the = (W t+U ht‘l)
past = - “hy—

That’s what the gates
do. And that’s why we
want two gates. he =2z 0hi_1+ (1 — 2) o hy

Bt — tanh (Wl‘t —|—\Kt\0 Uht_l)

Why do GRUs help with the
vanishing gradient problem?

e We had:
61(0_2 9J® aye _ 5 aJ®) 9y dhy dhy
k=1 3y, aw k=1 39, dh; dhy oW
3hc dh;j ;
- _ < gt-j-1
dhy Hl =k+1 55, . dh;_ e
* Now:
oh; oh;
. L i J
T zj + (1 z]) T
ohj
.ahj_1 islforz; =1 :tz(,(uc Dt S 1)

-r'f_—.n(li' lf_Ll,hf 1)
L;—l'llllllu'l;‘f‘lf oUhy—1)

llf—‘ /l]+|J._j<./lf

_<h —) - x time=3

time=2
2 = 1oignore NN
time=1
“Shutting” the update gate lets
us essentially “skip” layers when
calculating the gradient. time=0
This ameliorates the vanishing, .
exploding gradient problem. dh; dh;

dh, oh;

j=k#1 71

Performance Comparison

tanh | GRU | LSTM

train || 322 | 2.79 | 3.08
test 3.13 | 3.23 3.20
Music Datasets train || 8.82 | 6.94 8.15
JSB Chorales | . || 910 | 854 | 8.67
train || 5.64 | 5.06 5.18
MuseData test || 623 | 599 | 6.23

train || 5.64 | 493 | 649
test || 9.03 | 882 | 9.03
. train ([620 | 231 | 1.44
Ubisoft dataset A | o |l 644 | 359 | 2.70
Ubisoft Datasets : train || 7.61 | 0.38 0.80
Ubisoft dataset B | . || 762 | 0.88 | 1.26

Nottingham

Piano-midi

Table 2: The average negative log-probabilities of the training and test sets.

from: Chung et al., https://arxiv.org/pdf/1412.3555.pdf

https://arxiv.org/pdf/1412.3555.pdf

Performance Comparison

Sentiment Analysis Task

- Predict sentiment (positive/negative)of IMDB movie
review

- training : 20000, validation: 5000

. vocab size: 10000

. hidden unit dimension: 24

- word embedding dimension: 16

. all models trained on GTX 1080

. dataset from: http://ai.stanford.edu/-amaas/data/sentiment/

http://ai.stanford.edu/~amaas/data/sentiment/

Performance Comparison

RNN Structure validation accuracy training time per
(%) epoch

vanilla RNN 83.74 12s

GRU 87.26 40s

bidirectional GRU 87.32 82s

Source code (notebook):
https://github.com/NoviScl/DeepLearning/blob/master/tensorflow_tutorials/GRU_IMDB.ipynb

https://github.com/NoviScl/DeepLearning/blob/master/tensorflow_tutorials/GRU_IMDB.ipynb

Variants of GRU

- Jozefowicz et al. (2015)
conducted a thorough
architecture search where
they evaluated over ten

z = blgm(xzTt T+ b,)
= sigm(Wx.zy + Wichy + b;)
(

hiy1 = tanh(Wy,(r ® hy) + tanh(z;) + by) © 2

+ hoO(l-2)
thousand different RNN
architectures. MUT?2:
z = sigm(We,z; + Wy,hy +b,)
- They proposed three r = sigm(z; + Waehe + by
variants of GRU. These hisi = tanh(Win(r © hy) + Wants + bn) © 2
variants sometimes achieve + ho(l1-2)

higher accuracy than GRU

on some tasks, but none of WD

them can consistently z = sigm(Wyz, + Wh, tanh(h;) + b,)
outperform GRU. r = sign(Wuz, + Wirh, +br)
http://proceedings.mlr.press/v37/j M+ = tanh(Win(r © hy) + Wonz, +bn) © 2

ozefowicz15.pdf + hO(l1-2)

http://proceedings.mlr.press/v37/jozefowicz15.pdf
http://proceedings.mlr.press/v37/jozefowicz15.pdf

Variants of GRU

Minimal Gated Unit (same gate for update and reset)
GRU (Gated Recurrent Unit)

ze =0 (W, [ht-l,il?t] +b,) , (Sa)
r; =0 (W, [hi—1,x¢] + b;) , (5b)
h; = tanh (W}, [r; ® he—1, @] + ba) | (5¢)
hi=(1—-2:) ©hi—1+2: O hs. (5d)
MGU (Minimal Gated Unit, the proposed method)
fi=0(Wgl|hi—1,2¢] + bg) , (6a)
h; = tanh (W}, [f, ® hy—1, @] + by) (6b)
htz(l—ft)th—l'*'.ft@ﬁt- (6¢)

(Zhou et al., 2016) https://arxiv.org/pdf/1603.09420.pdf

https://arxiv.org/pdf/1603.09420.pdf

90 T T T

80 f

70

Variants of GRU

Performance of MGU

(4]
o
T

Y
o
T

L

Accuracy (%)

w
o
T

1

- N

o o

—l
L

0-64 T T T i
0.62 0 : : :
0 50 100 150
06 Epochs/100
0.58 Figure 4. Test set classification accuracy comparison (MGU vs.
< GRU) on the MNIST dataset. This is the first task, where the
9; 0.56 sequence length is 28. Higher is better.
g 0.5
3 0.54
§ 220
0.52
200 +
0.5
180
0.48 2160
i 3
0.46 ? 2 ; s
0 50 100 150 & 140
Epochs/100 i%6
Figure 3. Test set classification accuracy comparison (MGU vs. b i |
GRU) on the IMDB dataset. Higher is better. 80 -]
0 5 10 15 20 25

Epochs/1316

Figure 5. Test set perplexity comparison (MGU vs. GRU with
500 hidden units) on the PTB dataset. Lower is better.

Backprop for GRU

Please refer to:
https://medium.com/swlh/only-numpy-deriving-forw

ard-feed-and-back-propagation-in-gated-recurrent-n
eural-networks-gru-8b6810f91bad

https://medium.com/swlh/only-numpy-deriving-forward-feed-and-back-propagation-in-gated-recurrent-neural-networks-gru-8b6810f91bad
https://medium.com/swlh/only-numpy-deriving-forward-feed-and-back-propagation-in-gated-recurrent-neural-networks-gru-8b6810f91bad
https://medium.com/swlh/only-numpy-deriving-forward-feed-and-back-propagation-in-gated-recurrent-neural-networks-gru-8b6810f91bad

Long-Short-Term-Memory (LSTMS)

Some history on LSTMs

- First introduced by Dr.Hochreiter and Dr. Schmidhurber in
the paper named “Long Short Term Memory”

- GRU is still type of LSTM (less complex)

- LSTMs perform really good in NLP, speech and video
recognition

- LSTM unit consists of cell, input, output and forget gates

LSTM vs RNN: big picture

h(t-1) h(t) h(t+1)

(Te (T
f f f
x(t-1) x(t) x(t+1)
h(t-1) h(t) h(t+1)
A A A

T e T

f f f

x(t-1) x(t) x(t+1)

LSTM vs RNN: inside picture

h(t)
w > h(t)

A
[
RNN h(t-1) anh
N S

x(t)

o(t-1) —L@ ? A\c(t)
 tanh |

LSTM (X O———> h()

h(t-1)

c(t-1) —L? ?
Ji /dAj S L ho

|cr |tanh| o

h(t-1) — /

Forgetgate: fi=o0 (W(f)xt + U(f)ht_l)

Intuition: we want to forget some information about the subject, if new information describes it. Ex: two
people talking about their cars with different colors: when one of them speaks, we want to forget about
other person’s car’s color

| tanh |
T Go—L— o
Ct
o] |o] | tanh | | o |
h(t-1)
. -

Input gate: 1+ =0 (W(i)azt + U(i)ht_l)

Internal cell state: & — tanh (W @, + U© ht_1>

tanh_
fi T co—L—=ho
Ct
% | tanh | | o |
h(t-1)

Cell state: ¢; = froci—1 + 14 0 G

This part is the the secret! (Of other recent things like
ResNets too!) Rather than multiplying, we get c, by adding
the non-linear stuff and ¢, , ! There is a direct, linear
connection between ¢, and ¢, .

| tanh |
Ji " L co—L
Ct Ot

h(t-1) — /i/ /

Output state: 0y =0 (W(O)xt + U ht_1>

Hidden state: 7+ = o o tanh(c;)

Some visualizations

/ t) r
—'C@) O s » w—>

A [O | I:ml [O | [A
— * -

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

By Chris Olah:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

46

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Most illustrations a bit overwhelming ;)

forget =
f(netfarget)

1/14/20 17

http://people.idsia.ch/~juergen/lstm/sld017.htm

net sFs+gy "

W
S
1
O
S
1
I

Long Short-Term Memory by Hochreiter and Schmidhuber

(1997)
forget gate
self-recurrent
‘ e " connection
memory cell Jr—— » memory cell
input | output
Input gate output gate

http://deeplearning.net/tutorial/lstm.html

Intuition: memory cells can keep information intact, unless inputs makes
them forget it or overwrite it with new input.
Cell can decide to output this information or just store it

47

http://people.idsia.ch/%7Ejuergen/lstm/sld017.htm
http://deeplearning.net/tutorial/lstm.html

Another
LSTM

visualization
inspired by
code

31

A4
CZ}
concat
A

@

.“‘ e
- ‘-
. Ot = P>
) -
s
0. ‘.

matmul ~~ + 0 sigm

......

=| matmul

matmul +

Tttt sigm yy

Ou€
®

Picture courtesy of Tim Rocktaschel

The LSTM ©)

@/

The LSTM gates all
operations so stuff
can be
forgotten/ignored
rather than it all
being crammed on
top of everything
else

49

Y

GD_
concat
A

matmul

matmul

U2

* sigm

. 5%

,,,,,

The
LSTM

LTI
* .
"
- ‘-
. O P>
>
. t o
.
* ,’
----- 3

matmul

O—
@
oS

The non-linear
update for the next
time step is just like
an RNN

- O

LSTM visualization after training for character
language modeling (predict the next character)
’it:U(W(i)ZEt—FU(i)ht_l) ct = froci_1+ 1 0C
fi=o (W(f):ct + U(f)ht_l) hi = o o tanh(c;)
Ot = 0O (W(O)xt + U(O)ht_1>

ét = tanh (W(C)xt - U(C) ht—l)
Visualizing activation of tanh(c)):

Cell sensitive to position in line:

tithielBerezina lies in the fagcE
: the fallacy of all the plans for
the soundness of the only possible
! e general mass of the army
ow the enemy up. The French crowd fL@@
ed and all its energy was directed to
a wounded animal and it was impossible
1N arrangements it
place at the bridges. wWhen the bri
le from Moscow and women with children
alls - carried on by vis inertiae--
d into the ice-covered water and did not)

51 From: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

LSTM visualization after training for character
language modeling (predict the next character)

CeII that turns on inside quotes:

Cell that robustly activates inside if statements:

A large portlon of cells are not easily interpretable. Here isa typlcal example

1 t & e 1
dJ.t

pacKistring(welid *®bufp, size_t HMremain, s¥zel ¢ Len)

52 From: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

LSTMs are a great default for all sequence
problems

* Very powerful, especially when stacked and
made even deeper (each hidden layer is
already computed by a deep internal network)

* Most useful if you have lots and lots of data

53

Deep LSTMs compared to traditional systems 2015

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45
Baseline System [29] 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59
Ensemble of 5 reversed LSTMSs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that an
ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30
Cho et al. [5] 34.54
Best WMT’ 14 result [9] 37.0
Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5
Oracle Rescoring of the Baseline 1000-best lists ~45

Sequence to Sequence Learning by Sutskever et al. 2014
54

Deep LSTMs (with a lot more tweaks)

WMT 2016 competition results

Scored Systems

System

Submitter

System Notes

Constraint

Run Notes

uedin-nmt-ensemble (Details)

metamind-ensemble (Details)

uedin-nmt-single (Details)

KIT (Details)

5]

’uedin-pbt-wmtls-en-de (Details)

rsennrich
University of
Edinburgh

rsennrich
University of
Edinburgh

BPE neural MT system
with monolingual
training data (back-
translated). ensemble of
4, reranked with right-
to-left model.

yes

34.8

Neural MT system based
on Luong 2015 and
Sennrich 2015, using
Morfessor for subword
splitting, with
back-translated
monolingual
augmentation.
Ensemble of 3
checkpoints from one
run plus 1 Y-LSTM (see

entry).

yes

32.8

BPE neural MT system
with monolingual
training data (back-
translated). single
model. (contrastive)

yes

32.2

Phrase-based MT with
NMT in rescoring

yes

29.7

Phrase-based Moses

yes

29.1

Deep LSTM for Machine Translation

56

| OJohn admires Mary

PCA of vectors from last time step hidden layer

OMary admires John

OMary is in love with John

OMary respects John

OJohn is in love with Mary

OJohn respects Mary

151 . .
O | was given a card by her in the garden
10+ O In the garden , she gave me a card
O She gave me a card in the garden
5+
(0] 8
-5k o She was given a card by me in the garden
o In the garden , | gave her a card
_10 -
-15F .
O | gave her a card in the garden
_20 1 1 1 1 1 1 J
-15 -10 -5 0 5 10 15 20

Sequence to Sequence Learning by Sutskever et al. 2014

Example LSTM in Robotics application

Robots can learn about environment through LSTM

No vision!

Tactile sensor ouputs
spatial-temporal signal
during touch and slide

LSTM

v

Classification result

Tactile sensor (a.k.a robot skin)

Bidirectional RNN

Problem:For classification you want to incorporate
information from words both preceding and following

For example:
“He said, Teddy bears are on sale”
“He said, Teddy Roosevelt was a great President”

58 2/6/1

Bidirectional RNN

Two type of connections:
1) One going forward in time, which helps us learn

from previous representations
2) Another going backward in time, which helps us
learn from future representations

L

Al‘ Al‘_

59 2/6/1

Bidirectional RNN

b4 o
/‘ = f W+ VT +B)

h e o

\ A

e 7= FWx +V e +b)

X e & @ ®

y, = g(U[Z,;Z,] +C)

® /= [/3;73] represents the past and future around a
single token

e Weights will be reused

e The repeating module in a Bidirectional RNN could

., be a conventional RNN, LSTM or GRU

2/6/1
8

Bidirectional RNN

Forward Pass

fort=1toT do
Forward pass for the forward hidden layer, storing activations at each
timestep

fort=T to1 do
Forward pass for the backward hidden layer, storing activations at each
timestep

for all ¢, in any order do
Forward pass for the output layer, using the stored activations from both
hidden layers

61 2/6/1

Bidirectional RNN

Backward Pass

for all £, in any order do
Backward pass for the output layer, storing § terms at each timestep
fort =T to 1 do
BPTT backward pass for the forward hidden layer, using the stored &
terms from the output layer
fort=1toT do
BPTT backward pass for the backward hidden layer, using the stored 4
terms from the output layer

62

2/6/1

Bidirectional RNN
A modified Bidirectional RNN

Bidirectional Recurrent Neural Networks
Mike Schuster and Kuldip K. Paliwal, Member, IEEE, 1997

63 2/6/1

Deep Bidirectional RNN

y X . . .

/, / / f

VN NN R he R + B
h e ¥ h, / (W h(DLy)/1,)1+I;())

ALY
X v, =8WUlh: ;h: 1+¢)

Each intermediate neuron receives three sets of

parameters from

e Previous time-step (in the same RNN layer)

e left-to-right RNN (previous RNN hidden layer)
e right-to-left RNN (previous RNN hidden layer)

64 2/6/1
8

65

Thank You!

2/6/1

