Week 8 Notes

Transformer Networks

Purpose of encoder: Low entropy info to high entropy, lower dimension representation/encoding

Purpose of decoder: Making sense of the representation to produce something

Positional encoding:

- Using sin & cos:
 - to be able to be used with longer lengths than training examples
 - “We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions,” (from the Attention paper)

Encoder-Decoder Attention similarities:

- Using decoder hidden states as queries, encoder attention scores as keys, encoder hidden states as “keys”

Multi-Head attention:

- **Self-attention** is achieved through passing Q, K, V from itself to itself
- At each sub-layer, there is normalisation between old Q, K, V and new. Therefore retaining dimensionality is needed.
- **Multi-headed-ness:** For every head, it just the same thing but with different weights. This allows each attention head to pay attention to different parts/representations.
- Why self-attention? Because this is how to encode the history up to the point - similar to the hidden states in an RNN.

Why residual connections?

- The result of multi-head attention is \((h \times d_h)\)-dimension after concatenation. So \(d_h\) is normally \(d_{model} / h\) to be able to perform the addition.
- Then you “put them back” into the original sequence in some way.
- LayerNorm needs to take place to prevent values from exploding

Feed-Forward Network

- Needed to “combine” the different inputs - allows more complex interactions between attention vectors
Decoder Layers:

- Only different from encoder with *masking*. This is to allow only attention to scores from the previous words in the sequence. This is only for training.
- Masking is only applied to self-attention sub-layer

CNNs

Why CNN?

- Faster than RNN (due to being more parallelized)
- CNN good at extracting signals

Convolution

- For NLP: using 1-d convolution
- Image recognition: 2-d convolution

Architecture in 2014 paper: n words * k vectors -> filter -> max-over-time pooling

Generating a feature map

- Sentence with n words
- Window of length h
- Result is a feature map in R^{n-h+1}

Why do we take the maximum value (in pooling)?

- Reduce dimensionality
- Helps to capture the strongest signal

Multi-channel approach

- To prevent overfitting
- How to use:
How Multi-channel works

- Initialize with pre-trained word vectors (word2vec or Glove)
- Start with two copies, Static channel and Non-static channel.
- Backprop into only one set, keep other "static"
- Both channels are added to C_i before max-pooling layer

Character-level CNN

Advantages: Model is robust against typos and misspelling, and can be used for strings like URLs

Disadvantages: Longer to train

Quantization

- Encoding target characters as one-hot vectors

Larger datasets tend to perform better in CLCNN.

“*No Free Lunch Theorem*”

URL Example: Sum pooling used to “accumulate” rather than max-pooling

Papers Referenced: