Transformers and CNNs

Week 8 - CS6101 Deep Learning for NLP @ NUS SoC

Lim How Khang
Takanori Aoki

Attention is all you need

Key ideas of paper (https://arxiv.org/abs/1706.03762):

1. Multi-head attention (fully)
2. Batch with masking (related to above)
3. Sinusoidal positional encoding (jury is still out on this)

Implementation tricks:

Byte-Pair Encodings, Layer Normalization, Residual Connections, Adam (with
warm start), Label Smoothing, Checkpoint Averaging, Decoder Beam Search

and Length Penalty

https://arxiv.org/abs/1706.03762

Class Poll Results

Polly 2:16 PM
@howkhang has a poll for you!

Will attention eventually replace recurrence in
deep learning for NLP?

1: Yes - it's already taking place.

I 29% (4)
@mohit, @ad, @garygsw, @zhangzn

2: No - recurrence is established.
I /1% (10)
@Louis Tran, @aceofspade, @Yang Chen,
@Eric_Vader, @Nan, +5 more

Total votes
14

Resources

e Jay Alammar’s lllustrated Transfomer
http://jalammar.qgithub.io/illustrated-transformer/

e Alexander Rush’'s Annotated Transformer
http://nlp.seas.harvard.edu/2018/04/03/attention.html

e Michal Chromiak’s post
https://mchromiak.github.io/articles/2017/Sep/12/Transformer-Attention-
is-all-you-need/

e Google Al Blog
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.htm
I

e Building the Mighty Transformer for Sequence Tagging with Pytorch
https://medium.com/@kolloldas/building-the-mighty-transformer-for-sequ
ence-tagging-in-pytorch-part-i-a1815655cd8

http://jalammar.github.io/illustrated-transformer/
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://mchromiak.github.io/articles/2017/Sep/12/Transformer-Attention-is-all-you-need/
https://mchromiak.github.io/articles/2017/Sep/12/Transformer-Attention-is-all-you-need/
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://medium.com/@kolloldas/building-the-mighty-transformer-for-sequence-tagging-in-pytorch-part-i-a1815655cd8
https://medium.com/@kolloldas/building-the-mighty-transformer-for-sequence-tagging-in-pytorch-part-i-a1815655cd8

Encoder-Decoder
Architecture

Most competitive neural sequence
transduction models have an
encoder-decoder structure (Vaswani et
al, 2017).

The encoder is composed of a stack of
N=6 identical layers, each with two
sub-layers: a multi-head self-attention
mechanism, and a simple,
position-wise fully connected
feed-forward network. There is a
residual connection around each of
the two sub-layers, followed by layer
normalization.

The decoder is also composed of a
stack of N=6 identical layers. The
decoder inserts a third sub-layer, which
performs multi-head

attention over the output of the
encoder stack. The self-attention
sub-layer in the decoder stack has
masking to prevent positions from
attending to subsequent positions.

Output
Probafbilities

Softmax}

4

| Linear)

-

-
| Add & Norm h
Feed

Forward

e

4 R | Add & Norm |<-\
fed S o Multi-Head

FFeedrzd Attention \
orwa %
 S—

l Add & Norm H

Nx
f‘" Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
L — Y N J
Positional o @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Positional Encoding

Output
Probabilities

0.0

-0.5+

-1.0

T
0 20 40 60 80 100

Credit: http://nlp.seas.harvard.edu/2018/04/03/attention.html
Feed
Forward
((Add & Norm I?:
) _ '))) Add & Norm = u“'."'H 5
In this work, we use sine and cosine functions of different frequencies: Tood A“;ﬁf;
PE (05 2i) = $in(pos/10000%/ duedet) Forwan) 5 Noc
2 L. . . Add orm
PE 05 2i+1) = cos(pos/ 100002%"/dmedet) where pos is the position and i is the dimension. Nx | —s{Adda Norm) e
Multi-Head Multi-Head
Attention Attention
A=)
]
POSITIONAL 1 1 0.84 [N 1 (XMl 0.0002| -0.42 [ositional Positional
ENCODING Encoding & Encoding
Output
+ + * Embedding
EMBEDDINGS xi [[[x[T T 1] S |
Outputs
(shifted right)

INPUT Je suis étudiant

Credit: http://jalammar.github.io/illustrated-transformer/

Attention
distribution

Attention

Encoder

Seq2Seq with Attention (Recap)

scores

RNN

Attention
output

<
«

|

%

7]

les pauvres sont démunis

\

J

W
Source sentence (input)

<START>

Use the attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly contains
information the hidden states that
received high attention.

NNY J2p02ag

Encoder-Decoder Attention (Recap)

We have encoder hidden states hq,...,hy € R?
On timestep t, we have decoder hidden state s; € R"
We get the attention scores e! for this step:

el =[slhy,...,sThy] € RN

We take softmax to get the attention distribution at for this step (thisis a
probability distribution and sums to 1)

o = softmax(e’) € RY

We use o' to take a weighted sum of the encoder hidden states to get the
attention output a;

N
a; = Z Ozﬁhz = Rh
i=1

Finally we concatenate the attention output a; with the decoder hidden
state s; and proceed as in the non-attention seq2seq model

[as; s¢] € R2P

Multi-Head Attention

K
Attention(Q, K, V) = softmax(Q—)V

MultiHead(Q, K, V) = Concat(heady, ..., heady,)W
where head; = Attention(QW<, KWX viv)Y)

T

Where the projections are parameter matrices W2 € Rimoaxdi K ¢ Rilmoserxdi 7V ¢ Rebmoder X o

and WO e thv deodel.

.................................

Attention

|

MatMul

)
SoftMax

1

Mask (opt.)

A
Scale

1
MatMul

T 1
Q K

A

>

Credit: https://mchromiak.github.io/articles/2017/Sep/12/Transformer-Attention-is-all-you-need/

)

Linear

A

Concat

AL
1L

Output
Probabilities

Scaled Dot-Product

Attention
Al AL AL
’4‘) Ij) ’j
Linear Linear Linear
V K Q

Feed
Forward
I Add & Norm z
A Multi-Head
Feed Attention
Forward YY) Nx
—]
N Add & Norm
Add & Norm Masked
ulti- Multi-Head
Attention Attention
t
\ . —,
Positional Q Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Multi-Head Attention

The

Law
-never

perfect

" be

~will

The
Law
will
never
be
perfect

The
Law
will
never
be
perfect

The
Law
will
never
be
perfect

Figure 5: Many of the attention heads exhibit behaviour that seems related to the structure of the
sentence. We give two such examples above, from two different heads from the encoder self-attention

- but

-

but

but
its

but

its

its «

application

its

application

c
2
=

©
2

[+

o

©

application
~should

-should

should

should

be -

just

be

be
just

just

this
is

we
are
“missing

is

this
what

this
is
what

is

this «
what

we
are
missing

we
are
missing

we
are
missing

at layer 5 of 6. The heads clearly learned to perform different tasks.

in

in

in
my
opinion

my
“ opinion

my
“~opinion

c
e
£
o
o

<EOS>./

<EOS>
<pad>

<EOS>
<pad>

<EOS>

<pad>

<pad>

Output
Probabilities

Feed
Forward
| Add & Norm IT:
£0d & Mo Muti-Head
Feed Attention
Forward) 3 Nx
—]
Nx
Add & Norm Masked
ulti- Multi-Head
Attention Attention
t
\ . p—
Positional q Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

10

Layer Normalization + Residual Connections

b E(z 1
Zn,j =7 z =) 2] + 8 Elz]= m Z Zn,k
\/|L(j)| (zn,j — E[zn])? J keL(j) Output
Probabilities
C(Add & Normalize)\
4
] Add & Norm
|
Feed
: (Feed Forward) (Feed Forward) Forward
|
—" S —)
- [- O] Wi Head
A Add & Normalize A 33 Nx
X
w| ,» LayerNorm(+) Mot Head
z|: =
! » x ==
Of » D?:] Positional Positional
E ' } Encloding % ¢ Egcs:gginng
- (Self-Attention) input Output
. Embedding Embedding
\b. 4TI x[T1T] ! !
A = Inputs Outputs
POSITIONAL é é (shifted right)
ENCODING
x¢ [T x2 [T 117
Thinking Machines

Layer Normalization, Ba et al (2016) https://arxiv.org/pdf/1607.06450.pdf

Credit: http://jalammar.github.io/illustrated-transformer/

Position-wise Feed Forward Network

3.3 Position-wise Feed-Forward Networks

In addition to attention sub-layers, each of the layers in our encoder and decoder contains a fully
connected feed-forward network, which is applied to each position separately and identically. This
consists of two linear transformations with a ReLU activation in between.

Output
Probabilities

FFN(z) = max(0,zW; + by)Ws + by) Fmd
While the linear transformations are the same across different positions, they use different parameters mﬁ
from layer to layer. Another way of describing this is as two convolutions with kernel size 1. it oad
The dimensionality of input and output is dyeger = 512, and the inner-layer has dimensionality Attention
d ff = 2048. |) Nx
Masked
. Multi-Head
Why do we need a FFN when we already have attention? o
.)
. . . . Positional Positional
How is this position-wise? Encoding (9 @) Encoding
Input Output
Embedding Embedding
How is the FFN described in formula (2) the same as two mp'uts Oulms
convolutions with kernel size 1? (shifd right

Decoder Masked Attention

Credit: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Output
Probabilities

J

Positional &
Encoding &
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Positional
Encoding

More Recent Works

Constituency Parsing with a Self-Attentive Encoder (Kitaev and Klein, 2018)

et
(]
i v s
= p(t—1) t P(t=T)
8 4 — il
layers ™A e e ki Vi
Z Mulli—l-_{ead
4 . Attention I > ki Ve
_ - @ query key value f
gt] qr ki Vi
(word]l tag i[positjon] K \—’/ j kr VT

Xt
Figure 2: An overview of our encoder, which pro-

duces a context-aware summary vector for each Fjgure 3: A single attention head. An input z; is

word in the sentence. The multi-headed attention gplit into three vectors that participate in the atten-

mechanism is the only means by which informa- tion mechanism: a query g, a key k¢, and a value

tion may propagate between different positions in ;. The query ¢; is compared with all keys to form

the sentence. a probability distribution p(¢ — -), which is then
used to retrieve an average value ;.

https://arxiv.org/abs/1805.01052

More Recent Works

Semi-Supervised Disfluency Detection (Wang et al. 2018)

1 Introduction

A characteristic of spontaneous speech is different from written text, since it’s usually accompanied by
disfluencies. Identifying and removing these non-fluent factors would help to improve the spontaneous
speech quality. It often plays a significant role in understanding the semantics of these sentences and it’s
vital for the downstream NLP tasks, such as question answering, machine translation, and information

extraction.

I want to flight [to Boston + { um } + to Denver |
RM ™ RP

Figure 1: Example of disfluency annotation style in Switchboard corpus.

| want to flight E E E to Denver OOOOEEE OO

Word Softmax

Encoder Outputs

Enc, Dec,
3+ Bnc,—Dec,
X a1 Lol 1l x"
Ok posmonm
xl L ol) i Encj-Dec Encoding Flnpul
7 Encoding
- == B | want to flight to
Enc, Dec, Boston um to Denver)
Positional
Output ?‘—{9 :
Encgdmg Encoding
| want to flight E E E to Denver
(a) Weight sharing model with GAN (b) Multi-task Transformer model

Figure 2: The framework of the proposed model. (a) is the whole architecture of our model, which con-

tains two independent encoders with some weight sharing and the fully-shared decoder. (b) is the speciﬁhttp s://a rxiv. org /a bs / 1806.06957

architecture of the proposed model which extends the Transformer into multi-task learning setting.

More Recent Works

Improving Language Understanding by Generative Pre-Training (OpenAl)

Model specifications Our model largely follows the original transformer work [62]. We trained a
12-layer decoder-only transformer with masked self-attention heads (768 dimensional states and 12
attention heads). For the position-wise feed-forward networks, we used 3072 dimensional inner states.
We used the Adam optimization scheme [27] with a max learning rate of 2.5e-4. The learning rate
was increased linearly from zero over the first 2000 updates and annealed to 0 using a cosine schedule.
We train for 100 epochs on minibatches of 64 randomly sampled, contiguous sequences of 512 tokens.
Since layernorm [2] is used extensively throughout the model, a simple weight initialization of
N(0,0.02) was sufficient. We used a bytepair encoding (BPE) vocabulary with 40,000 merges [53]
and residual, embedding, and attention dropouts with a rate of 0.1 for regularization. We also
employed a modified version of L2 regularization proposed in [37], with w = 0.01 on all non bias or
gain weights. For the activation function, we used the Gaussian Error Linear Unit (GELU) [18]. We
used learned position embeddings instead of the sinusoidal version proposed in the original work.
We use the fify library? to clean the raw text in BooksCorpus, standardize some punctuation and
whitespace, and use the spaCy tokenizer.’

https://s3-us-west-2.amazonaws.com/openai-assets
/research-covers/language-unsupervised/language_u
nderstanding_paper.pdf

More Recent Works

A Comparison of Transformer and Recurrent Neural Networks
on Multilingual Neural Machine Translation (Lakew et al. 2018)

Summary and Conclusions

In this work, we showed how bilingual, multilingual, and zero-shot models perform in terms of overall
translation quality, as well as the errors types produced by each system. Our analysis compared Recurrent
models with the recently introduced Transformer architecture. Furthermore, we explored the impact of
grouping related languages for a zero-shot translation task. In order to make the overall evaluation
more sound, BLEU and TER scores were complemented with mTER and ImmTER, leveraging multiple
professional post-edits. Our investigation on the translation quality and the results of the fine-grained
analysis shows that:

e Multilingual models consistently outperform bilingual models with respect to all considered error
types, i.e., lexical, morphological, and reordering.

e The Transformer approach delivers the best performing multilingual models, with a larger gain over
corresponding bilingual models than observed with RNNs.

e Multilingual models between related languages achieve the best performance scores and relative
gains over corresponding bilingual models.

e When comparing zero-shot and bilingual models, relatedness of the source and target languages
does not play a crucial role.

e The Transformer model delivers the best quality in all considered zero-shot condition and translation
directions.

https://arxiv.org/abs/1806.06957

More Recent Works

How Much Attention Do You Need? http://aclweb.org/anthology/P18-1167

A Granular Analysis of Neural Machine Translation Architectures (Domhan 2018)

Table 5: Different variations of the encoder and decoder self-attention layer.

In addition to that, we try a combination where the =~ a granular level. Using this language we ex-

first and fourth block use self-attention, the second
and fifth an RNN, the third and sixth a CNN (com-
bined).

Replacing the self-attention on both the encoder
and the decoder side with an RNN or CNN re-
sults in a degradation of performance. In most
settings, such as WMT’ 17 EN—DE for both vari-
ations and WMT’17 LV—EN for the RNN, the
performance is comparable when replacing the de-
coder side self-attention. For the encoder how-
ever, except for IWSLT, we see a drop in perfor-
mance of up to 1.5 BLEU points when not using
self-attention. Therefore, self-attention seems to
be more important on the encoder side than on the
decoder side. Despite the disadvantage of having a
limited context window, the CNN performs as well
as self-attention on the decoder side on IWLT and
WMT’17 EN—DE in terms of BLEU and only
slightly worse in terms of METEOR. The combi-
nation of the three mechanisms (combined) on the
decoder side performs almost identical to the full
Transformer model, except for INSLT where it is
slightly worse.

It is surprising how well the model works with-

plored how specific aspects of the Transformer ar-
chitecture can successfully be applied to RNNs
and CNNs. We performed an extensive evalua-
tion on IWSLT EN—DE, WMT"17 EN—DE and
LV—EN, reporting both BLEU and METEOR
over multiple runs in each setting.

We found that RNN based models benefit from
multiple source attention mechanisms and resid-
ual feed-forward blocks. CNN based models on
the other hand can be improved through layer nor-
malization and also feed-forward blocks. These
variations bring the RNN and CNN based models
close to the Transformer. Furthermore, we showed
that one can successfully combine architectures.
We found that self-attention is much more impor-
tant on the encoder side than it is on the decoder
side, where even a model without self-attention
performed surprisingly well. For the data sets we
evaluated on, models with self-attention on the en-
coder side and either an RNN or CNN on the de-
coder side performed competitively to the Trans-
former model in most cases.

We make our implementation available so that it
can be used for exploring novel architecture varia-

More Recent Works

Universal Transformers (Dehghani et al. 2018)

Output Probabilities

(Softmax)
r §
After T steps
{ A
Decoder [Transition Function]
Block 1 -
Recurrent After T steps Q
Encoder [Transition Function] - —b[Multihead Attention] i
Block g 8
[Muttihead Self-Attention | 2 [Multihead Self-Attention | =
g
7]

< J <
<% %

(Embed Input Symbols | (Embed Target Symbols |

Input Sequence Target Sequence (right-shifted by one)

Figure 2: The recurrent blocks of the Universal Transformer encoder and decoder. This diagram omits
position and time-step encodings as well as dropout, residual connections and layer normalization.
A complete version can be found in the appendix. The Adaptive Universal Transformer dynamically

determines the number of steps 7" for each position using ACT.

https://arxiv.org/abs/1807.03819

End of Part 1

Convolutional
Neural Networks

for NLP

Takanori Aoki

21

Overview

Why CNN for NLP ?
* Comparison between RNNs and CNNs
 What is “convolution” ?

* Convolutional Neural Networks for Sentence
Classification (Kim, 2014)

 Character-level CNN

22

Why CNN for NLP ?

* Application
* Text classification (e.g. sentiment analysis)
e Translation
e Recurrent Continuous Translation Models
(Kalchbrenner and Blunsom, 2013)
e Using CNN for encoding and RNN for decoding

* Motivation
* CNN is faster since the computations can be more parallelized
compared to RNN
* RNN needs to be processed sequentially because subsequent
steps depend on previous ones
* CNN is good at extracting “strong signal” from a document no matter
where important features are.
* In RNN, words in the center of a longer document might get lost

23

Comparison between RNNs and CNNs

 RNN processes input sequentially

1

f1 . N
~3.5 [D)

5

>

the country

of

5.5 (4.5 2,
6.1 3.8 3.

4 L O A |
5 I 1 I 4 I G 5

my

Birth

 CNN can compute vectors for every possible phrase
* Example: “the country of my birth”

* “the country", "country of", "of my", "my birth", "the
country of", "country of my", "of my birth", ...

111 [3.5
L

0.3
" the country blrth

What is “convolution” ?

* Convolution is good at extracting features from input data !
* Elementwise multiplication and sum of a filter and the input

e 1-dconvolution: (f=g)n]= > fln —m]gm]
 Useful for text classification 1D-conv.
« ‘f"is words,
* ‘g’ isvalue of filter -

Z Z fln,n,]-glx—n,y—n,]

2D-conv.
: . =5,
 Useful forimage recognition
* ‘fisinput pixels of image [>
* ‘g’ isvalue of filter

« 2-d convolution flx.y1*glx.y]

25

1-d convolution processing flow

filter

\

Input

feature map
21 = w11 +wax2 + b

ref: https://pdfs.semanticscholar.org/2af2/2f144da59836946a58fe6ff993be59bccd24.pdf
26

https://pdfs.semanticscholar.org/2af2/2f144da59836946a58fe6ff993be59bccd24.pdf

1-d convolution processing flow

&

feature map
Z9 = w1T2 + woxr3 + b

filter

Input

ref: https://pdfs.semanticscholar.org/2af2/2f144da59836946a58fe6ff993be59bccd24.pdf
27

https://pdfs.semanticscholar.org/2af2/2f144da59836946a58fe6ff993be59bccd24.pdf

1-d convolution processing flow

filter

Input

\

Zl z2 z3

feature map

23 = wixy + woxy + b

Featur map z; measures the dot product similarity to the local inputs.
Our goal is to train the parameters w;. The hope is we can capture
patterns occurred in the input.

ref:

https://pdfs.semanticscholar.org/2af2/2f144da59836946a58fe6ff993be59bccd24.pdf

28

https://pdfs.semanticscholar.org/2af2/2f144da59836946a58fe6ff993be59bccd24.pdf

Convolutional Neural Networks for Sentence

Classification (Kim, 2014)

* Following 7 text classifications were attempted by using CNN

MR: Movie reviews with one sentence
per review. Classification involves
detecting positive / negative reviews

SST-1: Stanford Sentiment Treebank—an
extension of MR but with train/dev/test
splits provided and fine-grained labels
(very positive, positive, neutral, negative,
very negative)

TREC: TREC question dataset—task
involves classifying a question into 6
question types (whether the question is
about person, location, numeric
information, etc.)

SST-2: Same as SST-1 but with neutral
reviews removed and binary labels.

CR: Customer reviews of various
products (cameras, MP3s etc.). Task is to
predict positive / negative reviews

Subj: Subjectivity dataset where the task
is to classify a sentence as being
subjective or objective

MPQA: Opinion polarity detection
subtask of the MPQA dataset

29

Convolutional Neural Networks for Sentence
Classification (Kim, 2014)

e Highlights
e Convolution layer

* To extract feature (i.e. generate feature map) from
sentence

Max-over-time pooling layer
e To capture “strongest signal” from feature map

Multi-channel
* To prevent overfitting
Fully connected layer with softmax

* To classify sentence

Dropout and L2 regularization
 To make a model robust

30

CNN architecture of Kim’s paper (2014)

wait [—
for [] TS
............. —" i
the s | =m
n video = ___; ..
— and T & %
do L™ Sl T " TR e
n't . = B . S, C
.................. k...
l'ent T Wi
it =
I | I J I | I |
n x k representation of k Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

Figure 1: Model architecture with two channels for an example sentence.

n-words (possibly zero padded) and

each word vector has k-dimensions
31

Convolutional layer

- -
. B
fo T i \
[S N R
i L T
: -~ SN
n't == I e = i L I
e T
| OO) N | P
I I I I
n x k representation of Convolutional layer with Max-over-time i dropoutang
sentence with static and multiple filter widths and e ebeleinl
non-static channels feature maps softmax output

Figure 1: Model architecture with two channels for an example sentence.

Convolutional layer:
To extract feature (i.e. generate feature map) from sentence

32

How Convolutional Layer works — generate feature map

Word vectors: X; € R¥
X; is k-dimensional word vector corresponding to the i-th word in the sentence

Sentence: Xi,

=X; ® X, - D X,, (concatenated vectors)

@ is the concatenation operator
Concatenation of words in range: Xi.;

Convolutional fitter: W € R™ (h: window size)

* E.g.3-gram (i.e. window size=3) convolution with 2-dimensional word vectors

FN

1.1

s

:T,w\
0.4 2.1] [7] [4] [2.3]
0.3 3.3 7 4.5 3.6
the country of my birth
)f1 X; X,s Xy Xs

Y J

X Xl
1:3 2.4 33

How Convolutional Layer works — generate feature map

» Convolutional fitter: W € R™ (goes over window of h words)
* Note: filter is a vector!

* Window size h could be 2 or higher

* Formulatocomputefeature: C; — f(WTXi:fH_h_l -+ b)
f :activation function b :bias term

Clr N

1.1

| &~

'T.w —

0.4 2.1] [7] [4]
0.3 3.3 7 45

&

the country of my birth
X1 X X3 Xy X5
|
X1:3

34

How Convolutional Layer works — generate feature map

* Filter wis applied to all possible windows (concatenated vectors)
* Sentence: X1, =X1 D X; - DX,
* All possible windows of length h: {X1.n,X2.n+1,X3:h42) «» Xn—h+1m}

» Result is afeature map: € = [C;,C;,Cs, ...,, Cpns1] € RP1HL

Cif Cofs o Caf 4 .
L p1 =235 3124 Narrow convolution !

¢ N

4 2.3
4.5 3.6
my birth

0.4 2.1)
0.3 3.3

" the country

X3:5 35

How Convolutional Layer works — generate feature map

* Filter wis applied to all possible windows (concatenated vectors)
* Sentence: X1, =X1 D X; - DX,
* All possible windows of length h: {X1.n,X2.n+1,X3:h42) «» Xn—h+1m}

+ Result is afeature map: € = [C;,C;,Cs, ..., Cpns1] € RP1HL

Cif Cofs o Ce () . .
I |1 2235 5124 Wide convolution !

2 2.3

M BT

" the country my birth

X X X X

$! '2 3 ’4 Xs '

X1. Xe.
1:3)('2:4 5.7

¢ N

0.4 2.1)

36

Max-over-time pooling layer

wait — " —
for L | T
............. - e
the — —— | r___I
video 2 gy PEEET SR & ol
and e & %
do — T = -.v—-
n't b TS - .._‘
rent T — Wi
it -
I | I J I |
n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

Figure 1: Model architecture with two channels for an example sentence.

Max-over-time pooling layer:
To capture “strongest signal” from feature map

37

How Pooling Layer works - capture the strongest signal

* Max-over-time pooling layer
» Capture mostimportant activation (maximum over time)

» Fromfeature map:C = [C;,C,,Cs,...,,Cypeq] € R RHL
» Pooledsinglenumber:C = max{C}

3-gram C = max{C} = G,
| \ |
Cq C2 C3
1.1 [2.4
0.4 2 % 2'1‘3
03 [3.3 4.5 3.6
" the country my birth

X1 X; X3 Xy Xs *

How Pooling Layer works - capture the strongest signal

We can use multiplefilters which can be applied for different word set by
using differentwindow sizes h

* To make a model better, we need more features !

Because of max pooling C =max{C}, we don’t need to worry about
length of C

C =[C,C,,Cs3,....,Ch_py1] € R IH
Hence, we can have somefilters that look at uni-gram, 2-grams, etc.

2-gram C = max{C} = C,

| : |

C C2 C4

(~0.7 ’3.1~ :1;

)

2.3

. 3.6

birth

X5 39

Multi-channel approach

.............
...............
..........
.........
...........

.......

......
.......
.......
......
.......

n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

Figure 1: Model architecture with two channels for an example sentence.

Multi-channel:
To prevent overfitting

40

How Multi-channel works

* [|nitializewith pre-trained word vectors (word2vecor Glove)

» Start with two copies, Static channel and Non-static channel.
* Backprop intoonly one set, keep other "static"

* Both channels are added to C; before max-pooling layer

Non-static
Static channel |
channel N
%\
for
the
video
and
do
n't
rent
& DT T T T T 1 0 ™ o
I I I | I
n x k representation of Convolutional layer with Max-over-time
sentence with static and multiple filter widths and pooling

non-static channels feature maps

Fully connected layer with softmax

- L
i i B ™™
........... k] b." =
the we I e S Foeee] Ll
[s i e S
and Ll T = 11
dO — T =~ i N . o N [
" S LI |
rent T — il
it i
I I | I
n x k representation of Convolutional layer with Max-over-time i aroposana
sentence with static and multiple filter widths and pooling with dropout and
rience wih staic a feature maps softmax output

Figure 1: Model architecture with two channels for an example sentence.

Fully connected layer with softmax:
To classify sentence

Dropout and L2 regularization:
To make a model robust 42

Fully connected layer with softmax and dropout

* Finalfeature vector: z = [C, Cy, ..., Cyy]
m: the number of outputs of Max-pooling layer

* Simple final softmax layer:
y = softmax (W(S)z + b)

* |naddition, dropout is introduced to above formula
« Randomly mask/dropout/set to0 some of the feature weightsz

 Create maskingvector (r € R™) of Bernoulli random variables with
probability p of being 1 (p is a hyperparameter)

y = softmax (W(S)(r oz)+ b)

o is element-wise multiplication operator

43

Fully connected layer with softmax and dropout

y = softmax (W(S)(r o z)+ b)

* During model training, gradients are backpropagated ONLY through
those elements of z vector forwhichr; =1

* Duringinference,thereis NOdropout, so value of feature vector z get
larger !

* Hence, scaling final vectorby Bernoulliprobabilityp was introduced
WS — pW (5)

* Kim (2014) reported 2 — 4% accuracy improvement and abilitytouse
very large networks without overfitting

44

To make a model robust: L2 regularization

« Constrain L, -norms of weight vectors of each class (row in softmax
weight W6) to fixed number s (s is a hyperparameter)

S
* Whenever If ||Wc()|| > S after a gradient descent step
then rescale it so that: ”Wc(-S) |=s

45

All hyperparameters of Kim’s paper (2014)

Following hyperparameter were chosen as a result of Grid Search on
the SST-2 dev set (*1).

 Activation function: Rectified Linear Unit (ReLU)

* Window filter sizes:h= 3,4, and 5 with 100 feature maps each

* Dropout p=05

» |2 constraints for rows of softmax = 3

e Mini batch size for SGD training: 50

* Word vectors: pre-trained (*2) with word2vec, dimension k=300

*1 For datasets without a standard dev set Kim randomly select 10% of the training data
as the dev set. Trainingis done through stochastic gradient descent over shuffled mini-
batches with the Adadelta update rule (Zeiler, 2012).

*2 Publiclyavailable word2vec vectors that were trained on 100 billion words from
Google News. Words not present in the set of pre-trained words are initialized randomly

46

Experiments

 These 4 models were compared

CNN-rand: Baseline model where all words are randomly initialized and
then modified during training.

CNN-static: A model with pre-trained vectors from word2vec. All
words— including the unknown ones that are randomly initialized—are
kept static and only the other parameters of the model are learned.

CNN-non-static: Same as above but the pretrained vectors are
fine-tuned for each task.

CNN-multichannel: A model with two sets of word vectors. Each set of
vectors is treated as a “channel” and each filter is applied to both
channels, but gradients are backpropagated only through one of the
channels. Hence the model is able to fine-tune one set of vectors while
keeping the other static. Both channels are initialized with word2vec.

Experimental results (Kim, 2014)

Model MR | SST-1 | SST-2 | Subj | TREC| CR | MPQA
CNN-rand 76.1 | 45.0 82.7 | 89.6 | 91.2 | 79.8 | 834
CNN-static 81.0 | 45.5 86.8 | 93.0 | 92.8 | 84.7 [|89.6
CNN-non-static 81.5]| 48.0 . 934 | 93.6 | 843 | 89.5
CNN-multichannel BT1 | 474 03.2 | 92.2 89.4
RAE (Socher et al., 2011) T | 43.2 824 — = = 86.4
MV-RNN (Socher et al., 2012) 79.0 | 444 82.9 - . — —=
RNTN (Socher et al., 2013) — 45.7 85.4 — — — —
DCNN (_Kalchbrennelr etal., 2014) — 48.5 86.8 — 93.0 — —
Paragraph-Vec (Le and Mikolov, 2014) — 48.7 | 87.8 — — — ==
CCAE (Hermann and Blunsom, 2013) 778 — — — — — 87.2
Sent-Parser (Dong et al., 2014) 79.5 = = = = = 86.3
NBSVM (Wang and Manning, 2012) 79.4 = — 93.2 — 81.8 | 86.3
MNB (Wang and Manning, 2012) 79.0 = — 93.6 — 80.0 | 86.3
G-Dropout (Wang and Manning, 2013) || 79.0 — — 93.4 — 82.1 86.1
F-Dropout (Wang and Manning, 2013) || 79.1 — — 93.6 — 81.9 | 86.3
Tree-CRF (Nakagawa et al., 2010) 113 — — — — 81.4 | 86.1
CRF-PR (Yang and Cardie, 2014) — — — — — 82.7 —
SVMg (Silva et al., 2011) — — — — 95.0 — -

Note: Problem with comparison?

* Dropout gives 2 —4 % accuracy improvement. However, several
baselines didn’t use dropout.
 Still remarkable results and simple architecture !

* Difference to window and RNN architectures we described in
previous lectures: pooling, many filters and dropout

* |deas can be used in RNN's too

49

CNN application: Translation

P(f|e

 One of the first successful neural machine)

translation efforts ol [of [o [o] [o [o [o
* Uses CNN for encoding and RNN for : : : : : : :

decoding
* Kalchbrenner and Blunsom (2013) e

“Recurrent Continuous Translation Models” Ll

csSMm

50

Character-level
CNN

Why Character-level CNN (CLCNN) ?

* Advantage
* Model is robust against typos and misspelling
» Usefulto classify human written sentences such as Amazon
review and WhatsApp chat
* CLCNN can be applicable for non-document strings such as URL
and source code
* Raw input can be used for a model without some pre-processing
* In some languages such as Japanese and Chinese, word
segmentation is required because there is no whitespace
between words

| study Deep Learning for NLP.
FANIBARSEUNEOI-HODEEEEEMELET .

» Disadvantage
* Model training time is longer

52

Character-level Convolutional Networks for Text
Classification (Zhang, X., et al., 2015)

» Text classifications were attempted by using Character-level CNN
» Architectur of Character-level CNN is as follows

Length

—P
c |
S
s
N
=
©
=2
&
e Ll
L] i ‘
Convolutions Max-pooling Conv. and Pool. layers Fully-connected

* Data Augmentation using Thesaurus

* All replaceable words were extracted from the given text and
randomly choose r of them to be replaced by synonyms

53

Quantization (Zhang, X., et al., 2015)

Length
|

Quantization
Feature

—

= ‘ |

Convolutions Max-pooling Conv. and Pool. layers Fully-connected

- Encode following 70 target characters as one-hot vectors

abcdefghijklmnopgrstuvwxyz0123456789
~g e b PR T RSN | GiEE s T Y= () [] 1]

(e.g.) a=(100...0),
b=(010...0),

;;MOO_.H 54

Conv, Pooling, and Fully-connected layers
(Zhang, X., et al., 2015)

."‘ Quantization

Length

—>

)

‘Convolutions Max-pooling Conv. and Pool. layers FuIIy-connecte'd

Layer (Large Feature) (Small Feature | Kernel —Pool

1 1024 256 7 3 Layer (Output Units Larga (Output Units Smalﬂ

2 1024 256 7 3 7 2048 1024

3 1024 256 3 N/A 8 L 2048 J L 1024

i 1024 256 3 N/A 9 Depends on the problem

5 1024 256 3 N/A

6 _ 1024 /J_ 256) 3 3

55

Dataset for evaluation (Zhang, X., et al., 2015)

* Following 8 text classifications were attempted by using CLCNN

Table 3: Statistics of our large-scale datasets. Epoch size is the number of minibatches in one epoch

Dataset Classes Train Samples Test Samples Epoch Size
AG’s News 4 120,000 7,600 5,000
Sogou News (*1) 3 450,000 60,000 5,000
DBPedia 14 560,000 70,000 5,000
Yelp Review Polarity 2 560,000 38,000 5,000
Yelp Review Full 5 650,000 50,000 5,000
Yahoo! Answers 10 1,400,000 60.000 10,000
Amazon Review Full 5 3,000,000 650,000 30,000
Amazon Review Polarity 2 3,600,000 400,000 30,000

*1 Although this is a dataset in Chinese, we used pypinyin package
combined with jieba Chinese segmentation system to produce Pinyin — a
phonetic romanization of Chinese. The models for English can then be
applied to this dataset without change. The fields used are title and content.

56

Experimental results (Zhang, X., et al., 2015)

Best model in the dataset
Worst model in the dataset

Model AG Sogou DBP. YelpP. YelpE Yah.A. Amz. K Amz P
BoW 1119, 215 3.39 1.76 42.01 31.11 45.36 9.60
BoW TFIDF 10.36 6.5 2.63 6.34 40.14 28.96 44.74 9.00
ngrams 7.96 2.92 1.37 4.36 43.74 3133 45.73 7.98
ngrams TFIDF 7.64 2.81 1.31 4.56 45.20 31.49 47.56 8.46
Bag-of-means 1691 10.79 955 12.67 47.46 39.45 55.87 18.39
LSTM 13.94 482 1.45 5.26 41.83 29.16 40.57 6.10
Lg. w2v Conv. 9.92 4.39 1.42 4.60 40.16 31.97 44.40 5.88
Sm. w2v Conv. 11.35 4.54 1.71 5.56 42.13 31.50 42.59 6.00
Lg. w2v Conv. Th. 9.91 - .57 4.63 39.58 51.23 43.75 5.80
Sm. w2v Conv. Th. 10.88 - 153 5.36 41.09 29.86 42.50 5.63
Lg. Lk. Conv. 8.55 4.95 1.72 4.89 40.52 29.06 45.95 5.84
Sm. Lk. Conv. 10.87 493 1.85 5.54 41.41 30.02 43.66 5.85
Lg. Lk. Conv. Th. 8.93 - 1.58 5.03 40.52 28.84 42.39 .52
Sm. Lk. Conv. Th. 9.12 - 1.77 3.37 41.17 28.92 43.19 3.31

g. Full Conv. 0.85 8.80 1.66 329 38.40 29.90 40.89 5.7m
Sm. Full Conv. 11.59 8.95 1.89 5.67 38.82 30.01 40.88 .78
Lg. Full Conv. Th. 9.51 - 1.55 4.88 38.04 29.58 40.54 3.51
Sm. Full Conv. Th. 10.89 - 1.69 542 795 29.90 40.53 5.66
Lg. Conv. 12.82 4.88 L.73 5.89 39.62 29.55 41.31 3:51
Sm. Conv. 15.65 8.65 1.98 6.53 40.84 29.84 40.53 5.50
Lg. Conv. Th. 13.39 - 1.60 5.82 39.30 28.80 40.45 4.93

Qm. Conv. Th. 14.80 - 1.85 6.49 40.16 29.84 40.43 5.6y

Table 4: Testing errors of all the models. Numbers are in percentage. “Lg” stands for “large™ and
“Sm” stands for “small”. “w2v” i1s an abbreviation for “word2vec”, and “LK" for “lookup table™.
“Th™ stands for thesaurus. ConvNets labeled “Full” are those that distinguish between lower and

upper letters Best model in the dataset
Worst model in the dataset

Model AG Sogou DBP. YelpP. YelpE Yah.A. Amz. E Amz P.
BoW 11.19. .13 3.39 1.76 42.01 31.11 45.36 9.60
BoW TFIDF 10.36 6.55 2.63 6.34 40.14 28.96 44.74 9.00
ngrams 7.96 2.92 .57 4.36 43.74 3193 45.73 7.98
ngrams TFIDF 7.64 2.81 1.31 4.56 45.20 31.49 47.56 8.46
ES‘gT - Larger datasets tend to perform better in CLCNN ']309
Le. - More than several millions samples, CLCNN starts todo g8
Sm. better D0
Lg. 80
sm.| = CLCNN may work well for user-generated data 53
Lg. - Further analysis is needed to validate the hypothesis 821
°™| . There is no free lunch -
Sﬁl. Lk. Conv. Th. 0.12 - 1.77 .37 41.17 28.92 43.19 3.51

/Eg. Full Conv. 985 880 1.66 525 3840 2990 40.89 5.7@
Sm. Full Conv. 11.59 8.95 1.89 5.67 38.82 30.01 40.88 5.78
Lg. Full Conv. Th. 0.51 - 1.55 4.88 38.04 29.58 40.54 5.51
Sm. Full Conv. Th. 10.89 - 1.69 5.42 37.95 29.90 40.53 5.66
Lg. Conv. 12.82 488 LT3 5.89 39.62 29.55 41.31 351
Sm. Conv. 15.65 8.65 1.98 6.53 40.84 29.84 40.53 5.50
Lg. Conv. Th. 13.39 - 1.60 5.82 39.30 28.80 40.45 4.93

\.Sm. Conv. Th. 1480 - .85 649 40.16 29.84 40.43 5.67/

A Character-Level Convolutional Neural Network with
Embeddings For Detecting Malicious URLs, File Paths and Registry
Keys (Saxe, X. & Berlin, K., 2017)

* Malicious URLs, File Paths and Registry Keys detections were
attempted by using Character-level CNN

e Targets are not documents but just strings!

Malicious URLS
http:\\0£fx80.841240.cc\201610\18\content_23312\svchost.exe
http:\\31.14.136.202\secure.apple.id.login\Apple\login.php
http:\\lstopmoney.com\paypal-login-secure\websc.php

Malicious File Paths
C:\Temp\702D97503A79BOEC69\JUEGOS/Call of Duty 4+Keygen

C:\Temp\svchost.vbs
C:\DOCUME~1\BASANT~1\LOCALS~1\Temp\WzEC. tmp\fax.doc.exe

Malicious Registry Keys
HKCU\Software\Microsoft\Windows\CurrentVersion\Run Alpha Antivirus

HKCR\Applications\WEBCAM HACKER 1.0.0.4.EXE
HKCR\AppID\bccicabecccag.exe

59

Overview of CNN architecture
(Saxe, X. & Berlin, K., 2017)

Computational flow

u s
i 10
1. Raw characters are embedded

as multi-dimensional vectors, one
per character

7 10

il

2. Convolutional filters slide over

vector sequences to find patterns 2

O =Ry -

N W o~ 0

N W -
w

o w
[T O
e
vy
H.
I 7~
E\/{no

in characters

| Buppequs3

25]-3]2[-1]5]-4[-9]5]

summed up and assigned to one entry in the

3. Each convolutional filter's activations are
resulting feature vector

uoI}OBIIXD 3iNjed

5. A suspiciousness score is
assigned based on output of sigmoid
output neuron

uoneosyisse|

J \

Encoding input string into
embedded vector by each
character

Feature extraction by
Convolution and Pooling
layers

Classification by
Fully-connected layers

60

Detail of CNN architecture
(Saxe, X. & Berlin, K., 2017)

Input string encoded as integers, maximum length, 200 characters

Character embedding laysr (32 dimensions)

b

b

b

256 2-length 256 3-length 256 4-length 256 5-langth
convolutions (relu) convolutions (relu) convolutions (relu) convolutions (relu)
Layer normalization Layer normalization Layer nommalization Layer normalization

Sum pooling Sum pooling Sum pooling Sum pooling

Dropout, 0.5 | | Dropout, 0.5 | | Dropout, 0.5 | I Dropout, 0.5

Concatenats filter activation averages into 1024-length vector

Layer normalization

b

Fully connected relu laysr (1024 units)

Layer normalization

Dropout, 0.5

.

Fully connacted relu layer (1024 units)

Layer normalization

Dropout, 0.5

b

Fully connectad relu layer (1024 units)

Layer normalization

Dropout, 0.5

b

Fully connacted sigmoid layer (1 unit)

I I uonoalep ainjeaq I Buippaquig

uoneoyIsse|

61

Experimental results
(Saxe, X. & Berlin, K., 2017)

Task TPR (at various FPRs)|AUC
10~*[1073[10~2

Convnet|0.77]0.8410.92 0.993

URLs N-gram [0.76 [0.78 [0.84 0.985

Expert]0.74 10.78 [0.84 0.985

File Puths Convnet|0.16 0.43 0.68 0.978

N-gram [0.18]0.33 [0.65 0.972

Rty Keve Convnet|0.51|0.62]0.86 0.992

: *IN-gram |0.11 |0.49 |0.72 0.988

62

Other interesting attempts for Japanese

e Japanese Text Classification by Character-level Deep ConvNets
and Transfer Learning (Sato, M., et al., 2017)

http://www.scitepress.org/Papers/2017/61934/61934.pdf

 Compared model performance between Japanese text
romanization and character-level embeddings

* One-hot encoding is not good way because there are
2,000+ daily use characters in Japanese

* Transfer learning can be helpful to build robust model given
small training dataset

 Document Classification through Image-Based Character
Embedding and Wildcard Training (Shimada, D., 2016)

http://ucrel.lancs.ac.uk/bignlp2016/Shimada.pdf
* Using text as image data to build CNN

63

http://www.scitepress.org/Papers/2017/61934/61934.pdf
http://ucrel.lancs.ac.uk/bignlp2016/Shimada.pdf

Bibliography

Word-level CNN

- Convolutional Neural Networks for Sentence Classification (Kim, 2014)
https://arxiv.org/pdf/1408.5882.pdf

Character-level CNN

- Character-level Convolutional Networks for Text Classification
(Zhang, X., et al., 2015)
https://arxiv.org/pdf/1509.01626.pdf

- A Character-Level Convolutional Neural Network with Embeddings For
Detecting Malicious URLs, File Paths and Registry Keys
(Saxe, X. & Berlin, K., 2017)
https://arxiv.org/pdf/1702.08568.pdf

- Japanese Text Classification by Character-level Deep ConvNets and Transfer
Learning (Sato, M., et al., 2017)
http://www.scitepress.org/Papers/2017/61934/61934.pdf

- Document Classification through Image-Based Character Embedding and
Wildcard Training (Shimada, D., 2016)
http://ucrel.lancs.ac.uk/bignlp2016/Shimada.pdf

https://arxiv.org/pdf/1509.01626.pdf
https://arxiv.org/pdf/1702.08568.pdf
http://www.scitepress.org/Papers/2017/61934/61934.pdf
https://arxiv.org/pdf/1408.5882.pdf

