CS6101 Deep Learning for NLP

Recess Week Machine Translation, Seq2Seq and Attention

Presenters: Yesha, Gary, Vikash, Nick, Hoang

- Introduction the evolution of machine translation systems (Yesha)
- Statistical machine translation (Gary)
- Neural machine translation and sequence-to-sequence architecture (Vikash)
- Attention (Nick)
- Other applications of seq2seq and attention (Hoang)

- The first known machine translation proposal was made in 1924 in Estonia and involved a typewriter-translator
- In 1933, French-Armenian inventor Georges Artsrouni received a patent for a mechanical machine translator that looked like a typewriter

- From then to 1946, numerous proposals were made.
- Russian scholar Peter Petrovich Troyanskii got a patent for proposing a mechanised dictionary
- In 1946, Booth and Richens in Britain did a demo on automated dictionary
- In 1949, Warren Weaver wrote a memorandum that first mentioned the possibility of using digital computers to translate documents between natural human languages

- In 1954, IBM and Georgetown University conduct a public demo
 - Direct translation systems for pairs of languages
 - Example: Russian-English systems to US Atomic Energy Commision
- Direct translation limited scope in terms of languages and grammar rules used

- Research continues better understanding of linguistics and indirect approaches to system design
- Different types of rule-based translation systems:
 - Interlingual MT

- Different types of rule-based translation systems:
 - Transfer MT

- Statistical Machine Translation
- Example Based Machine Translation
- Neural Machine Translation

Statistical Machine Translation

Basic Approach

 Task: Given source text F (foreign language) find target text E (English)

Basic Approach

 $\widehat{E} =$

- Task: Given source text F (foreign language) find target text E (English)
 Bayes rule:
- Probabilistic formulation (via Bayes Rule)

$$P(E|F) = \frac{P(E|F)}{P(F)}$$

$$argmax P(E|F) = argmax P(F|E)P(E)$$

$$E$$

$$Translation Language$$

$$model model$$

P(F|F)P(F

Basic Approach

- Task: Given source text F (foreign language) find target text E (English)
- Probabilistic formulation (via Bayes Rule)

Bayes rule:

$$P(E|F) = \frac{P(E|F)P(E)}{P(F)}$$

$$\widehat{E} = \operatorname*{argmax}_{E} P(E|F) = \operatorname*{argmax}_{E} P(F|E)P(E)$$
Translation Language model model

- Translation model, P(F|E) models the correctness of the translation
- Language model, P(E) models the fluency of the target language
- Two components are trained independently, with different datasets

General Formulation

• Log-linear model $\hat{E} = \underset{E}{\operatorname{argmax}} P(E|F) = \underset{E}{\operatorname{argmax}} \sum_{i}^{m} \lambda_{i} f_{i}(E,F)$

General Formulation

- Log-linear model
 - $\hat{E} = \underset{E}{\operatorname{argmax}} P(E|F) = \underset{E}{\operatorname{argmax}} \sum_{i}^{m} \lambda_{i} f_{i}(E,F)$ $\circ \text{ Allows introduction of additional components } (m)$ e.g. length of sentence (penalty term) additional language models external lexicon co-occurrence syntactic dependencies, e.g. grammar
 - Assigns weights to different components

General Formulation

- Log-linear model
 - $\hat{E} = \operatorname{argmax}_{E} P(E|F) = \operatorname{argmax}_{E} \sum_{i=1}^{m} \lambda_{i} f_{i}(E,F)$
 - \circ Allows introduction of additional components (*m*)
 - e.g. length of sentence (penalty term) additional language models external lexicon co-occurrence syntactic dependencies, e.g. grammar
 - Assigns weights to different components
- If $f_1 = \log(P(F|E))$, $f_2 = \log(P(E))$, $\lambda_1 = \lambda_2$, then it falls back to earlier simple case
- Can get overly-complex (we shall not go further)

E.g. On voit Jon à la télévision (French)

	good match to French? P(F E)	good English? P(E)
Jon appeared in TV.	\checkmark	
It back twelve saw.		
In Jon appeared TV.	\checkmark	
Jon is happy today.		\checkmark
Jon appeared on TV.	\checkmark	✓
TV appeared on Jon.	\checkmark	
Jon was not happy.		✓

Overview of SMT (from <u>http://courses.engr.illinois.edu/cs447;</u> lecture 22 slides)

Recap: Language Model, P(E)

- Largely covered in Week 5
- N-grams models $P(E) = P(e_1, e_2, \dots, e_N) = P(e_1)P(e_2|e_1)P(e_3|e_2e_1) \dots P(e_N|e_{N-1} \dots e_1)$ $P(e_i|e_{i-1} \dots e_1) = P(e_i|e_{i-1} \dots e_{i-n}) = \frac{P(e_i, e_{i-1}, \dots, e_{i-n})}{P(e_{i-1}, \dots e_{i-n})}$ Markov assumption $\approx \frac{Counts(e_i, e_{i-1}, \dots, e_{i-n})}{Counts(e_{i-1}, \dots, e_{i-n})}$

Maximum Likelihood Estimation

- estimate the likelihood of words/phrases based on their frequencies found in large corpuses
- Extensions: Smoothing + Backoffs

Translation Model, P(F|E)

- Learns the lexical mapping between languages + ordering
- Typically focus on word-level or phrase-level mapping (insufficient data to learn entire sentences mapping directly)

Translation Model, P(F|E)

- Learns the lexical mapping
 between languages + ordering
- Typically focus on word-level or phrase-level mapping (insufficient data to learn entire sentences mapping directly)

English	Norwegian	Probability
heavy	tung	0.95
heavy metal	heavy metal	0.61
heavy metal	tungmetal	0.34
smoker	røyker	0.99
heavy smoker	storrøyker	0.99

Translation probability table

null The quick fox jumps over the lazy dog

Le renard rapide saut par - dessus le chien parasseux

Lexical mapping between languages

Translation Model, P(F|E)

- Learns the lexical mapping between languages + ordering
- Typically focus on word-level or phrase-level mapping (insufficient data to learn entire sentences mapping directly)
 - Chicken-and-egg problem:
 - Given a translation table, we can easily extract the mappings
 - Given the mappings, we can easily estimate the probabilities

English	Norwegian	Probability
heavy	tung	0.95
heavy metal	heavy metal	0.61
heavy metal	tungmetal	0.34
smoker	røyker	0.99
heavy smoker	storrøyker	0.99

Translation probability table

null The quick fox jumps over the lazy dog

Le renard rapide saut par - dessus le chien parasseux

Lexical mapping between languages

- Assume that every sentence is aligned
- Break it down further: $P(F|E) = \sum_{A} P(E, A|F)$

where A is the alignment

Assume that every sentence is aligned

• Break it down further: $P(F|E) = \sum_{A} P(E, A|F)$

where A is the alignment

Assume that every sentence is aligned

• Break it down further: $P(F|E) = \sum_{A} P(E, A|F)$

where *A* is the alignment

 $j=0 \rightarrow \text{means } NULL$ i=0

• Break it down further: $P(F|E) = \sum_{A} P(E, A|F)$

where A is the alignment

Qn: How many possible alignments are there?
 where *l* is the # of words in *E* sentence (target)
 m is the # of words in *F* sentence (source)

IBM Translation Models

- Characterise P(E|F) with 4 parameters:
 - **1.** Lexical translation, t
 - e.g. t(x|y): probability that x translates to y
 - **2.** Fertility, *n*
 - e.g. n(3|x): probability that x produces 3 words
 - **3.** Distortion, d
 - e.g. d(j|i, m, n): prob. that the j^{th} word generates the i^{th} word. m and n are the length of the source and target sentences
 - **4.** Insertion, p_1
 - e.g. $p_1(x)$: probability that x is generated from NULL

IBM SMT Translation Models

- Models are typically built progressively, starting from the simplest to the most complex
 - IBM1 lexical transitions only
 - IBM2 lexicon plus absolute position
 - \circ HMM lexicon plus relative position
 - IBM3 plus fertilities
 - IBM4 inverted relative position alignment
 - \circ IBM5 non-deficient version of model 4

IBM1 Translation Model

$$P(F,A|E) = \frac{\epsilon}{(1+l)^m} \prod_{i=1}^m t(f_i | e_{A_i})$$

where *l* is the number of words in *E* sentence (target) *m* is the number of words in *F* sentence (source) ϵ is the normalizing constant

IBM1 Translation Model

$$P(F,A|E) = \frac{\epsilon}{(1+l)^m} \prod_{i=1}^m t(f_i | e_{A_i})$$

where *l* is the number of words in *E* sentence (target) *m* is the number of words in *F* sentence (source) ϵ is the normalizing constant

e.g. *null* The quick fox jumps over the lazy dog
$$l=8$$

Le renard rapide saut par - dessus le chien parasseux $m=10$
 $P(F,A|E) = \frac{\epsilon}{(1+8)^{10}} [t(le|the) \cdot t(reneard|fox) \cdot \dots t(parasseux|lazy)]$

Training Translation Models

Training Translation Models

How can t, n, d and p₁ be estimated?

Expectation-Maximization (EM) method to iteratively infer the parameters

Decoder – Search problem

- Finds a list of possible target translation candidates, with the highest probabilities
- Exhaustive search is infeasible

does not

go

to

home

are

it

 Typically, search heuristics are used instead
 e.g. beam search greedy decoding
Other things not discussed

- Phrase-based alignment
- Sentence alignment
- Syntactic-based or grammar-based models
- Hierarchical phrase-based translation

Shortcomings of SMT

- Models can grow to be overly complex
- Requires a lot of hand-designed feature engineering in order to be effective
- Difficult to manage out-of-vocabulary words
- Components are independently trained; no synergy between models vs. end-to-end training
- Memory-intensive, as decoder relies on huge lookup tables → not mobile-tech friendly
- → Let's look into how Neural Machine Translation (NMT) models solves the above issues

Neural machine translation and sequence-to-sequence architecture

What is Neural Machine Translation?

• Neural Machine Translation (NMT) is a way to do Machine Translation with a single neural network.

• The neural network architecture is called sequence-to-sequence (aka seq2seq) and it involves two RNNs.

The sequence-to-sequence model

Simplest Model

Encoder: $h_t = \phi(h_{t-1}, x_t) = f\left(W^{(hh)}h_{t-1} + W^{(hx)}x_t\right)$ Decoder: $h_t = \phi(h_{t-1}) = f\left(W^{(hh)}h_{t-1}\right)$ $y_t = softmax\left(W^{(S)}h_t\right)$

Minimize cross entropy error for all target words conditioned on source words

$$\max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(y^{(n)} | x^{(n)})$$

1. Train different RNN weights for encoding and decoding

- 2. Compute every hidden state in decoder from
 - Previous hidden state (standard)
 - Last hidden vector of encoder c=h_T
 - Previous predicted output word y_{t-1}

$$h_{D,t} = \phi_D(h_{t-1}, c, y_{t-1})$$

Cho et al. 2014

- 3. Train stacked/deep RNNs with multiple layers
- 4. Potentially train bidirectional encoder

5. Train input sequence in reverse order for simple optimization problem: Instead of A B C \rightarrow X Y, train with C B A \rightarrow X Y

6.Use more complex hidden units GRU or LSTM.

- Main ideas:
 - keep around memories to capture long distance dependencies
 - allow error messages to flow at different strengths depending on the inputs

Greedy Decoding

• Target sentence is generated by taking argmax on each step of the decoder.

Greedy Decoding Problems

- Greedy decoding has no way to undo decisions!
 - les pauvres sont démunis (the poor don't have any money)
 - \rightarrow the _____
 - \rightarrow the poor _____
 - \rightarrow the poor are _____
- Better option: use beam search (a search algorithm) to explore several hypotheses and select the best one

Beam Search Decoding

- Ideally we want to find y that maximizes $P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$
- We could try enumerating all $y \rightarrow$ too expensive!
 - Complexity $O(V^T)$ where V is vocab size and T is target sequence length
- <u>Beam search</u>: On each step of decoder, keep track of the k most probable partial translations
 - k is the beam size (in practice around 5 to 10)
 - Not guaranteed to find optimal solution
 - But much more efficient!

Multilingual NMT

Google's Multilingual NMT

- Simplicity: single model
- Low-resource language

improvements

• Zero-shot translation

Google's Multilingual NMT Architecture

Four big wins of NMT

1. End-to-end training

All parameters are simultaneously optimized to minimize a loss function on the network's output

2. Distributed representations share strength Better exploitation of word and phrase similarities

3. Better exploitation of context

NMT can use a much bigger context – both source and partial target text – to translate more accurately

4. More fluent text generation

Deep learning text generation is much higher quality

So is Machine Translation solved?

Nope!

- Many difficulties remain:
 - Out-of-vocabulary words
 - Domain mismatch between train and test data
 - Maintaining context over longer text
 - Low-resource language pairs

Zero Shot Word Prediction

- Answers can only be predicted if they were seen during training and part of the softmax
- But it's natural to learn new words in an active conversation and systems should be able to pick them up

Predicting Unseen Words

Idea: Mixture Model of softmax and pointers:

 $p(\text{Yellen}) = g \ p_{\text{vocab}}(\text{Yellen}) + (1 - g) \ p_{\text{ptr}}(\text{Yellen})$

 Pointer Sentinel Mixture Models by Stephen Merity, Caiming Xiong, James Bradbury, Richard Socher

Pointer Details

 $p(y_i|x_i) = g p_{\text{vocab}}(y_i|x_i) + (1-g) p_{\text{ptr}}(y_i|x_i)$

$$egin{aligned} &z_i = q^T h_i, \qquad p_{ ext{ptr}}(w) = \sum_{i \in I(w,x)} a_i, \ &a = ext{softmax}(z), \end{aligned}$$

Attention please!

Seq2Seq: the bottleneck problem

• Encoding of source sentence: a fixed length vector h_4

Seq2Seq: the bottleneck problem

- Encoding of source sentence: a fixed length vector h₄
- Need to capture all necessary information of source sentence

Seq2Seq: the bottleneck problem

- Encoding of source sentence: a fixed length vector h₄
- Need to capture all necessary information of source sentence
- Information bottleneck, especially when source sentence is long

How to solve the bottleneck problem?

How to solve the bottleneck problem?

Instead of only using only h_4 , let's use all encoder hidden states!

How to solve the bottleneck problem?

Instead of only using only h_4 , let's use all encoder hidden states!

How do we deal with variable length input sequence?

How to solve the bottleneck problem?

Instead of only using only h_4 , let's use all encoder hidden states!

How do we deal with variable length input sequence? Let's do a weighted sum of all encoder hidden states!

$$\alpha_1 \underbrace{\bigcirc h_1}_{\bullet} + \alpha_2 \underbrace{\bigcirc h_2}_{\bullet} + \alpha_3 \underbrace{\bigcirc h_3}_{\bullet} + \alpha_4 \underbrace{\bigcirc h_4}_{\bullet}$$
 context vector

How to solve the bottleneck problem?

Instead of only using only h_4 , let's use all encoder hidden states!

How do we deal with variable length input sequence? Let's do a weighted sum of all encoder hidden states!

$$\alpha_1 \begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \mathbf{h}_3 & \mathbf{h}_4 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} &$$

How do we get the weights α_i ?

How to solve the bottleneck problem?

Instead of only using only h_4 , let's use all encoder hidden states!

How do we deal with variable length input sequence?

Let's do a weighted sum of all encoder hidden states!

$$\alpha_1 \underbrace{\bullet}_{\bullet}^{h_1} + \alpha_2 \underbrace{\bullet}_{\bullet}^{h_2} + \alpha_3 \underbrace{\bullet}_{\bullet}^{h_3} + \alpha_4 \underbrace{\bullet}_{\bullet}^{h_4} \qquad \text{context vector}$$

How do we get the weights α_i ?

Step 1: dot product
$$\begin{bmatrix} s_t \\ \bullet \\ \bullet \\ \bullet \end{bmatrix} = score_1$$

How to solve the bottleneck problem?

Instead of only using only h_4 , let's use all encoder hidden states!

How do we deal with variable length input sequence?

Let's do a weighted sum of all encoder hidden states!

How do we get the weights α_i ?

Step 1: dot product
$$\begin{bmatrix} s_t & h_1 \\ 0 & 0 \\ 0$$

How to solve the bottleneck problem?

Instead of only using only h_4 , let's use all encoder hidden states!

How do we deal with variable length input sequence?

Let's do a weighted sum of all encoder hidden states!

$$\alpha_1 \underbrace{\bigcirc \ h_1 \ h_2 \ h_3 \ h_4 \$$

How do we get the weights α_i ?

Step 1: dot product
$$s_t = score_1$$
 $s_t = h_2$ $s_t = score_2$ $s_t = h_3$ $s_t = score_3$ $s_t = score_4$

Step 2: softmax $\alpha_i = \frac{\exp(score_i)}{\sum_{i=1}^4 score_i}$

How to solve the bottleneck problem? Instead of only using only h_4 , let's use all encoder hidden states!

Q1: Why dot product?

How do we deal with variable length input sequence?

Let's do a weighted sum of all encoder hidden states!

Q2: What if dimension of $s \neq$ dimension of h? $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_$

How do we get the weights α_i ?

Step 1: dot product
$$\begin{bmatrix} s_t & h_1 \\ 0 & 0 \\ 0$$

Step 2: softmax $\alpha_i = \frac{\exp(score_i)}{\sum_{i=1}^{4} score_i}$

71

Seq2Seq with Attention

Use the attention distribution to take a weighted sum of the encoder hidden states.

The attention output mostly contains information the hidden states that received high attention.

Concatenate attention output - with decoder hidden state, then use to compute \hat{y}_1 as before

Seq2Seq with Attention

Seq2Seq with Attention

Decoder RNN

Seq2Seq with Attention

Seq2Seq with Attention

Seq2Seq with Attention

Attention: in equations

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

$$oldsymbol{a}_t = \sum_{i=1}^n lpha_i^t oldsymbol{h}_i \in \mathbb{R}^h$$

• Finally we concatenate the attention output a_t with the decoder hidden state s_t and proceed as in the non-attention seq2seq model

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

Attention is great

- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states

Seq2Seq Applications

Seq2seq and attention applications

- Summarization
- Dialogue systems
- Speech recognition
- Image captioning

Text summarization

"Automatic summarization is the process of shortening a text document with software, in order to create a summary with the major points of the original document."

volume of transactions at the nigerian stock exchange has continued its decline since last week , a nse official said thursday . the latest statistics showed that a total of ##.### million shares valued at ###.### million naira -Irb- about #.### million us dollars	transactions dip at nigerian stock exchange
-rrb- were traded on wednesday in #,### deals.	

Text summarization (before seq2seq)

Allahyari, Mehdi, et al. "Text summarization techniques: a brief survey."

Extractive Topic Representation Approaches:

- Latent Semantic Analysis
- Bayesian Topic Models
 - Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA)

- Each topic is a distribution over words
- Each document is a mixture of corpus-wide topics
- Each word is drawn from one of those topics

Text summarization (before seq2seq)

Their drawbacks:

- They consider the sentences as independent of each other
- Many of these previous text summarization techniques do not consider the semantics of words.
- The soundness and readability of generated summaries are not satisfactory.

Nallapati, Ramesh, et al. "Abstractive text summarization using sequence-to-sequence rnns and beyond."

Abstractive Summary - not a mere selection of a few existing passages or sentences extracted from the source

Neural Machine Translation	Abstractive Text Summarization
Output depends on source length	Output is short
Retains the original content	Compresses the original content
Strong notion of one-to-one word level alignment	Less obvious notion of such one-to-one alignment

Feature-rich encoder:

• POS, NER, TF, IDF

Switch generator/pointer for OOV

- Switch is on → produces a word from its target vocabulary
- Switch is off → generates a pointer to a word-position in the Source → copied into the summary

Identify the key sentences:

- 2 levels of importance \rightarrow 2 BiRNNs
- Attention mechanisms operate at both levels simultaneously.
- Word-level attention is reweighted:

$$P^{a}(j) = \frac{P^{a}_{w}(j)P^{a}_{s}(s(j))}{\sum_{k=1}^{N_{d}}P^{a}_{w}(k)P^{a}_{s}(s(k))}$$

Dialogue systems

"Dialogue systems, also known as interactive conversational agents, virtual agents and sometimes chatterbots, are used in a wide set of applications ranging from technical support services to language learning tools and entertainment."

Dialogue systems (before seq2seq)

Young, Steve, et al. "Pomdp-based statistical spoken dialog systems: A review."

Goal-driven system:

- At each *t*, SLU converts input to a semantic representation *u*₊
- System updates internal state and determines next action a₊, then converted to output speech

Dialogue systems (before seq2seq)

Their drawbacks:

- Use handcrafted features for the state and action space representations
- Require a large corpora of annotated task-specific simulated conversations
 - $\circ \quad \rightarrow \text{Time consuming to deploy}$

Dialogue systems (seq2seq)

Serban, Iulian Vlad, et al. "Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models."

• End-to-end trainable, non-goal-driven systems based on generative probabilistic models.

Dialogue systems (seq2seq)

Hierarchical Recurrent Encoder - Decoder

- Encoder map each utterance (last token) to an utterance vector
- Higher-level context RNN:

$$\circ \quad \mathbf{c}_{n} = \mathbf{f}(\mathbf{c}_{n-1}, \mathbf{u}_{n})$$

Speech recognition

From RNN to Speech Recognition:

- RNN requires pre-segmented input data
 - Word sequences (discrete) vs. audio sequences (continuous)
- RNNs can only be trained to make a series of independent label classifications
 - Network outputs must be post-processed

Speech recognition

Prabhavalkar, Rohit, et al. "A comparison of sequence-to-sequence models for speech recognition."

(c.) Attention-based Model

(d.) RNN-Transducer with Attention

Image captioning

Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention."

Image captioning

Location variable s_t : where to put attention when generating the tth word

http://kelvinxu.github.io/projects/capgen.html

A large white bird standing in a forest.

A woman holding a <u>clock</u> in her hand.

A man wearing a hat and a hat on a <u>skateboard</u>.

A person is standing on a beach with a surfboard.

A woman is sitting at a table with a large <u>pizza</u>.

A man is talking on his cell phone while another man watches.

Thank You!