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Outline

® Introduction - the evolution of machine translation systems (Yesha)

® Statistical machine translation (Gary)

® Neural machine translation and sequence-to-sequence architecture (Vikash)
® Attention (Nick)

® Other applications of seq2seq and attention (Hoang)



Evolution of Machine Translation

The first known machine
translation proposal was made
in 1924 in Estonia and involved
a typewriter-translator

In 1933, French-Armenian
inventor Georges Artsrouni
received a patent for a
mechanical machine translator
that looked like a typewriter

1920s to
1950s

1954 to
1966

1966 to
1975

Early Experiments

Birth of Ruled-Based Translation

Diversification of Strategies



Evolution of Machine Translation

e From then to 1946, numerous
proposals were made.
e Russian scholar Peter
Petrovich Troyanskii got a
patent for proposing a
mechanised dictionary
e In 1946, Booth and Richens in (920816 Early Experiments
Britain did a demo on 1950
automated dictionary
e In 1949, Warren Weaver wrote
a memorandum that first 1954 0 Birth of Ruled-Based Translation
mentioned the possibility of o
using digital computers to
translate documents between o ‘
natural human Ianguages 19?2;: Diversification of Strategies



Evolution of Machine Translation

In 1954, IBM and Georgetown

University conduct a public

demo

o Direct translation systems
for pairs of languages
o Example: Russian-English

systems to US Atomic

Energy Commision

Direct translation - limited
scope in terms of languages
and grammar rules used
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Evolution of Machine Translation

Research continues - better
understanding of linguistics
and indirect approaches to

system design
Different types of rule-based

translation systems:
o Interlingual MT

SL
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Evolution of Machine Translation

e Different types of rule-based
translation systems:
Transfer MT

O
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Evolution of Machine Translation

e Statistical Machine Translation

e Example Based Machine
Translation

e Neural Machine Translation

1954 to
1966

1966 to
1975

197510
present

Birth of Ruled-Based Translation

Diversification of Strategies

Modern MT



Statistical Machine
Translation



Basic Approach

® Task: Given source text F (foreign language)
find target text E (English)



Basic Approach

® Task: Given source text F (foreign language)
find target text E (English) T

® Probabilistic formulation (via Bayes Rule) p(g|F) = LEIFPE)
- P(F)

E = argmax P(E|F) = argmax P(F|E)P(E)
E E ( : J \ Y J

Translation Language
model model



Basic Approach

® Task: Given source text F (foreign language)
find target text E (English) T

® Probabilistic formulation (via Bayes Rule) FiElR _ P(E|F)P(E)
~P(F)

E = argmax P(E|F) = argmax P(F|E)P(E)
E E ( : J \ Y J

Translation Language
model model

® Translation model, P(F|E) models the correctness of

the translation
® | anguage model, P(E) models the fluency of the target

language
® Two components are trained independently, with
different datasets



General Formulation

® | og-linear model
E = argmax P(E|F) = argmax Y. A;f;(E, F)
E E



General Formulation

® | og-linear model
E = argmax P(E|F) = argmax Y. A;f;(E, F)
E E

O Allows introduction of additional components (m)
e.g. length of sentence (penalty term)
additional language models
external lexicon co-occurrence
syntactic dependencies, e.g. grammar

O Assigns weights to different components



General Formulation

® | og-linear model
E = argmax P(E|F) = argmax Y. A;f;(E, F)
E E

O Allows introduction of additional components (m)
e.g. length of sentence (penalty term)
additional language models
external lexicon co-occurrence
syntactic dependencies, e.g. grammar

O Assigns weights to different components

back to earlier simple case

® Can get overly-complex (we shall not go further)



E.g. On voit Jon a la télévision
(French)

good match to French? good English?
P(FIE) P(E)

Jon appeared in TV. v

It back twelve saw.

In Jon appeared TV. v

Jon is happy today. v

Jon appeared on TV. v v

TV appeared on Jon. v

Jon was not happy. e




u
Ove rVI eW Of S M T (from http://courses.engr.illinois.edu/cs447; lecture 22 slides)

- the meeting. First of all, the motion on the

Parallel corpora Monolingual corpora
t ‘ ‘ ) L Good morning, Honourable Members. We will now start the
g MOT_ION: PRESIDENT (in Cantonest?): Good meeting. First of all, the motion on the "Appointment of the
J morning, Honourable Members. We will now start Chief Justice of the Court of Final Appeal of the Hong Kong

Special Administrative ion". Secretary for Justice.

Translation Model Language Model

P(F|E) P (B = | morning) ' ‘ Pim(honorable | good morning) l P(E)

”‘l "l Translation

Input
R, Fko

DeCOding algor ithm President: Good

morning, Honourable
Members.

argmax P(F|E)P(E)
E


http://courses.engr.illinois.edu/cs447

Recap: Language Model, P(FE)

® [argely covered in Week 5

o N-grams models via chain rule
P(E) = P(ey, €y, ...,ey) = P(e1)P(ezle1)P(ezleze) ... P(eyley—q ... €1)
P(e;, €i-1,...,€i—n)

P(ei—1,.-€i—n)
_ Counts(e;, ej_1, ..., €i—n)

P(eilej—1 ...e1) = P(ejlej—q ...ej_p) =

Markov assumption

Counts(e;_q, ...€j_yn)

Maximum Likelihood Estimation

O estimate the likelihood of words/phrases based
on their frequencies found in large corpuses
O Extensions: Smoothing + Backoffs



Translation Model, P(F|E)

® Learns the lexical mapping
between languages + ordering

® Typically focus on word-level or

phrase-level mapping
(insufficient data to learn entire
sentences mapping directly)



Translation Model, P(F|E)

. heavy tung 0.95
between Ianguages T Ordermg heavy metal heavy metal 0.61
heavy metal tungmetal 0.34
® Typically focus on word-level or  [smoker royker 0.99
] heavy smoker storragyker 0.99

phrase-level mapping

(insufficient data to learn entire

. . Translation probability table
sentences mapping directly)

null The quick fox jumps over the lazy dog

AN

Le renard rapide saut par - dessus le chien parasseux

Lexical mapping between languages



Translation Model, P(F|E)

. heavy tung 0.95

+
between Ianguages Ordermg heavy metal heavy metal 0.61
heavy metal tungmetal 0.34
@ Typically focus on word-level or  |smoker M Lo
] heavy smoker storragyker 0.99

phrase-level mapping

(insufficient data to learn entire
sentences mapping directly)

® Chicken-and-egg problem: C )

null The quick fox jumps over the lazy dog

O Given a translation table, we / //\ \
can easily extract the mappings / w\

Le renard rapide saut par - dessus le chien parasseux

Translation probability table

O Given the mappings, we can

: . . Lexical mapping between languages
easily estimate the probabilities PPINg Juas



Word Alignments

@ Assume that every sentence is aligned
@® Break it down further: P(F|E) = ¥, P(E, A|F)
where A is the alignment



Word Alignments

@® Assume that every sentence is aligned
@® Break it down further: P(F|E) = ¥, P(E, A|F)
where A is the alignment
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Word Alignments

@® Assume that every sentence is aligned

@® Break it down further: P(F|E) = ¥, P(E, A|F)
where A is the alignment

1-1 mapping

Japan
shaken
by
two
new
quakes

L[] ]

1-many mapping
Spurious words

Le And Le
Japon the -—/_/: programme
secoué program _/— a
par has _/— été
deux been mis
nouveaux implemented ._6 en
séismes application

many-1 mapping

The
balance
was

the
territory
of

the
aboriginal
people
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i=0
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many-many mapping




Word Alignments

@® Assume that every sentence is aligned
@ Break it down further: P(F|E) =Y, P(E,A|F) s
where A is the alignment

Mary
did
not

the

® Qn: How many possible alignments are there? green

1-1 mapping

Japan
shaken
by
two
new
quakes

where [ is the # of words in E sentence (target)

L[] ]

witch

m is the # of words in F sentence (source)

Spurious words

Le And
Japon the
secoué program
par has

deux been
nouveaux implemented
séismes

=
_/"

-

1-many mapping

Le
programme
a

été

mis

en
application

many-1 mapping

The
balance
was

the
territory
of

the
aboriginal
people

Le
reste
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:7—— aux
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IBM Translation Models

® Characterise P(E|F) with 4 parameters:

1. Lexical translation, t
e.g. t(x|y): probability that x translates to y

2. Fertility, n
e.g. n(3|x): probability that x produces 3 words

3. Distortion, d
e.g. d(jli,m,n): prob. that the j** word generates the i*"
word. m and n are the length of the source and target
sentences

4. Insertion, p,
e.g. p1(x): probability that x is generated from NULL



IBM Translation Model Example

NULL Quan tornes a casa 7

NULL When are coming back ho

you When are coming back home 7

When are you coming back home 7

/~NE T

[ /NN N\

NULL Quan tornestornestornes casa 7

me

Fertility

Translation

Insertion

Distortion



IBM Translation Model Example

Produces 0

NULL Quan tornes a casa 7

NULL When are coming back ho

you When are coming back home 7

When are you coming back home 7

/~NE T

2\ N
/ Produces 3 \ \ \

NULL Quan tornestornestornes casa 7

me

Fertility

Translation

Insertion

Distortion



IBM Translation Model Example

Produces 0
NULL Quan tornes a casa 7 .
/ P'm;u;es} ~ \ \ Fertility
NULL Quan tornestornestornes casa 7
Translation

NULL When are coming back home 7
|
Inserts Insertion

yéu When are coming back home 7

N | ‘ ‘ ‘ Distortion

When are you coming back home 7



IBM Translation Model Example

Produces 0

NULL Quan tornes a casa 7

2\ N = o
/ Produces 3 P \ \ Fertlhty

NULL Quan tornestornestornes casa 7

NULL When are
|

Inserts

yéu When are

~ V4
/ Distorts
VS

When are you

Translation

coming back home 7
Insertion

coming back home 7
| ‘ ‘ ‘ Distortion

coming back home 7



IBM SMT Translation Models

® Models are typically built progressively, starting
from the simplest to the most complex

O O O O O O

BM1 —
BM2 —
AMM —

exical transitions only
exicon plus absolute position
exicon plus relative position

BM3 — plus fertilities
BM4 — inverted relative position alignment
BM5 — non-deficient version of model 4



IBM1 Translation Model

PEAIE) = | | tCilea)

where [ is the number of words in E sentence (target)
m is the number of words in F sentence (source)
e is the normalizing constant



IBM1 Translation Model

PEAIE) = | | tCilea)

where [ is the number of words in E sentence (target)
m is the number of words in F sentence (source)
e Is the normalizing constant

€.9. null The quick fox jumps over the lazy dog (=8

N

Le renard rapide saut par - dessus le chien parasseux m=10

P(F,A|E) =

a +E Sy [t(lelthe) -

t(reneard|fox) -

t(parasseux|lazy)]



Training Translation Models

® Howcant, n,dandp, be
estimated?



Training Translation Models

® How can t, n, d and p1 be Start with uniform transition probabilities
estimated? ( Parameter initialisation )

[ Alignment probability calculation j

® Use ( Parameter reestimation )~ Maxi;?ejzpation
: e v
EXpeCtat|On-MaX|mlzat|On [Alignment probability recalculationj IIExpectation
(EM) method to iteratively " step
. Converged '
infer the parameters -
( Final parameters and alignments )
lterate until

converge



Decoder — Search problem

® Finds a list of possible

target translation
candidates, with the
highest probabilities

® Exhaustive search is
infeasible

® Typically, search

heuristics are used

iInstead

e.g. beam search
greedy decoding

does not go
Sa

i

er geht ja nicht nach hause
C he ) C 1S ) ( yes ) C not ) (  aiter D) (C_ house )
C it ) C are ) C 1S B) ( donot ) ( to ) (. _home )
C .t ) ( goes ) (C ofcourse ) ( doesnot ) ( ccodgto Y (_chamber )
C he ) (g ) ) Cwsnot ) C Y (Cathome )
( itis ) C not ) ( home )
C he will be ) s not ) C under house D)
(¢ it goes ) C does not ) eturn hom )
C he goes ) C do not C do not )
C is Yy C to )
C are C following )
C S after all Yy C ot aft D)
¢ does ) C not 1o B
C not )
C S not )
C e not )
C s not a 5)
"
yes >
/' ~i
he = F-:1
goes i home
L1111
— are ﬂ
home



Other things not discussed

® Phrase-based alignment
® Sentence alignment
® Syntactic-based or grammar-based models

® Hierarchical phrase-based translation



Shortcomings of SMT

e Models can grow to be overly complex

e Requires a lot of hand-designed feature engineering in
order to be effective

e Difficult to manage out-of-vocabulary words

e Components are independently trained; no synergy
between models vs. end-to-end training

e Memory-intensive, as decoder relies on huge lookup
tables — not mobile-tech friendly

-> Let’s look into how Neural Machine Translation
(NMT) models solves the above issues



Neural machine translation and
sequence-to-sequence architecture



What is Neural Machine Translation?

e Neural Machine Translation (NMT) is a way to do Machine Translation with a
single neural network.

e The neural network architecture is called sequence-to-sequence (aka
seg2seq) and it involves two RNNSs.



The sequence-to-sequence model

DECOder: Awesome sauce
Y1 Y,
Encoder 1 1
® @)
O @
® O
® @)

l =

(ec0@|

E =

(® oo °

= =
=

!

o

X1 r X, r X
This needs to

(0o000| (000e| (0000] e

Echt dicke Kiste entire phrase!

/
S




Simplest Model

Encoder: h;=o¢(hi_1,2¢) = f (W(hh)ht—l n W(h%t)

Decoder; = ¢h-1) =1 (W(hh)ht—l)

Yy = softmax (W(S)ht)

Minimize cross entropy error for all target words
conditioned on source words

N
1
_ (n)|(n)
max E log po(y\"™ |2'\"™)

n=1



Model Extensions

1. Train different RNN weights for encoding and decoding

Awesome sauce
Y1 Y,
o L]
@ ®
— —
h1 ° hz — h3 . = ® ®
O O
o W 0O W ® ® ®
— = > ’ —
O O @)
—>| @ O O
e’ VE— \ e’

[oohoo] [od_okoo] [00-00]




Model Extensions

Decoder

2. Compute every hidden state in
decoder from

*  Previous hidden state (standard)

C
* Last hidden vector of encoder c=h; ? e {/
*  Previous predicted output word y, , T

Encoder

hpt=o¢p(hi—1,¢,Yi—1)

Cho et al. 2014



Model Extensions

f= (La, croissance, économique, s'est, ralentie, ces, dernicres, années, .)

" S

i

Word Ssample

[TTTT ]
[T T T ]—

|
[T T T 11
AEEEEEs EEEEE

Kyunghyun Cho et al. 2014

[ 11
[T 11
[T 11
[T T T

|
[ |
|
|
|
|
(111

e = (Economic, growth, has, slowed, down, in, recent, years, .)



Model Extensions

3. Train stacked/deep RNNs o o i il
with multiple layers

4. Potentially train
bidirectional encoder B

5. Train input sequence in reverse order for simple
optimization problem: Instead of ABC 2 XY,
trainwith CBA 2 XY



Model Extensions

6.Use more complex hidden units GRU or LSTM.

e Main ideas:

* keep around memories to capture long distance
dependencies

* allow error messages to flow at different strengths
depending on the inputs



Greedy Decoding

e Target sentence is generated by taking argmax on each step of the decoder.

the poor don’t have any money <END>

éT. 5T §I< éT QT‘ QT‘ ET
Els E| s E £ = E £
-~ 2] s B '~ = I .~ -
o ®|: |0 |©]|: |O® ®|: |0
ol :.lof:|o] ilo| ile|}|of:]e
o[ le[ e[ e[ Dle[ o[ e@
ol :ile| ilo| ile| ile| i|le| :i|e®

<START> the poor don’t have any money



Greedy Decoding Problems

* Greedy decoding has no way to undo decisions!
* les pauvres sont démunis (the poor don’t have any money)
e >the
- the poor
e > thepoorare

e Better option: use beam search (a search algorithm) to explore
several hypotheses and select the best one



Beam Search Decoding

* |deally we want to find y that maximizes

P(y|z) = P(y1|z) P(y2|y1, ) P(y3|y1,y2, %) ..., P(yr|y1,- .., y7-1,7)

* We could try enumerating all y - too expensive!
* Complexity O(VT) where Vis vocab size and T is target sequence length

e Beam search: On each step of decoder, keep track of the k most
probable partial translations
* kis the beam size (in practice around 5 to 10)

* Not guaranteed to find optimal solution
* But much more efficient!



Multilingual NMT

Multiple Encoders — Multiple
Decoders [1]

Er-Es Encoder l
-

)
Er-NL Encoder

N/

)
Er-Fr Encoder

———/

Er-Es Decoder
)

Er-NL Decoder

)

)
Er-Fr Decoder

e/

Shared Encoder — Multiple Decoder [2]

Shared Encoder

En-NL Decoder

En-Fr Decoder

En-Es Decoder

En-Es | En-NL | En-Fr En-Es

En-NL

En-Fr

Mini batches of training data

R
NL-Er Encoder

————

)
Fr-Er Encoder

Multiple Encoders — Shared
Decoder [3]

Es-Er Encoder \

> Shared Decoder

——



Google’s Multilingual NMT

Training
¢ Simplicity: single model
| B Google Newral Englis i o Low-resource language
Machine Translation nts S
Japanese | | Japanese ’ e Zero-shot translation

\ J \

Korean Korean !
L




Google’s Multilingual NMT Architecture

yl'_ =P Yo =F wr: —» <[s>

,"8 layers
i Encoder LSTMs

EGPus - -0

A\

—'C]

1
] L\‘H GPU3
s

| GPU2 GPU2




Four big wins of NMT

1.

End-to-end training
All parameters are simultaneously optimized to minimize
a loss function on the network’s output

. Distributed representations share strength

Better exploitation of word and phrase similarities

. Better exploitation of context

NMT can use a much bigger context - both source and
partial target text - to translate more accurately

More fluent text generation
Deep learning text generation is much higher quality



So is Machine Translation solved?

e Nope!
* Many difficulties remain:
e Qut-of-vocabulary words
* Domain mismatch between train and test data
* Maintaining context over longer text
* Low-resource language pairs



Zero Shot Word Prediction

* Answers can only be predicted if they were seen during training
and part of the softmax

e Butit’s natural to learn new words in an active conversation and
systems should be able to pick them up



Predicting Unseen Words

e |dea: Mixture Model of softmax and pointers:

Fed Chair Janet Yellen ... raised rates - Ms. ] 7??
s A A A A A s A
S I i I
[T}
]
.E | ! | | ; <
S ! | ! : | Sentinel
I O e e (e | —
Pptr(Yellen) Y
] - aardvark Bernanke Rosenthal Yellen zebra
=g | | SR
Dvocab(Yellen)

p(Yellen) = g pyocab(Yellen) + (1 — g) pptr(Yellen)

e Pointer Sentinel Mixture Models by
Stephen Merity, Caiming Xiong, James Bradbury, Richard

Socher



Pointer Details

________________________________________________________________________________

Output Distribution

p(yN|w1 ----- wN—1)
ITTTTIT--TTTITTT1]

________________

Pointer Distribution | T Mixture gate g :

! Dotr(UN|w1, .., wN—1)  LLLLLI R

__________________________________________

_________________________________________________

________________________________________________________________

p(yzlxz) g pvocab(yzlxz) (

Zi = thz', pptr(w) =

SoftmaX'—>lllllll [TI111]
""""" RNN Distribution

pvocab(lewl ----- wN—l)

— 9) Ppu(yilzi)



59

Attention please!



Seq2Seq: the bottleneck problem

« Encoding of source sentence: a fixed length vector h,

Target sentence (output)

A
r A\

the poor don’t have any money <END>

Encoder RNN

les pauvres sont démunis <START> the poor don’t have any money

\ J
Y

Source sentence (input)

60
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Seq2Seq: the bottleneck problem

« Encoding of source sentence: a fixed length vector h,

* Need to capture all necessary information of source sentence

Target sentence (output)

A
4 A\

the poor don’t have any money <END>

Encoder RNN

les pauvres sont démunis <START> the poor don’t have any money

\ J
Y

Source sentence (input)

61

NNY 412p023(



Seq2Seq: the bottleneck problem

« Encoding of source sentence: a fixed length vector h,
* Need to capture all necessary information of source sentence

» Information bottleneck, especially when source sentence is long

{W@

les pauvres sont démunis <START> the poor don’t have any money

Target sentence (output)

A
4 A\

the poor don’t have any money <END>

Encoder RNN

Y
Source sentence (input)

62

NNY Jap02ag



Attention: thinking process

How to solve the bottleneck problem?

63



Attention: thinking process

How to solve the bottleneck problem?
Instead of only using only h4, let’s use all encoder hidden states!

J W

64



Attention: thinking process

How to solve the bottleneck problem?
Instead of only using only h,, let’s use all encoder hidden states!
hy h, h; hy

J W

How do we deal with variable length input sequence?

65



Attention: thinking process

How to solve the bottleneck problem?
Instead of only using only hy, let's use all encoder hidden states!
hy h, h; hy

J W

How do we deal with variable length input sequence?
Let's do a weighted sum of all encoder hidden states!

h, h; context vector

IR

66



Attention: thinking process

How to solve the bottleneck problem?
Instead of only using only hy, let's use all encoder hidden states!
hy h, h; hy

J W

How do we deal with variable length input sequence?
Let's do a weighted sum of all encoder hidden states!

h, h; context vector

IR

How do we get the weights «;?

67



Attention: thinking process

How to solve the bottleneck problem?
Instead of only using only hy, let's use all encoder hidden states!
hy h, h; hy

J W

How do we deal with variable length input sequence?
Let's do a weighted sum of all encoder hidden states!

h, h; context vector

IR

How do we get the weights «;?

Step 1: dot product o E| = score;
O

68



Attention: thinking process

How to solve the bottleneck problem?

Instead of only using only hy, let's use all encoder hidden states!
hy h, h; hy

J W

How do we deal with variable length input sequence?
Let's do a weighted sum of all encoder hidden states!

h, h; context vector

IR

How do we get the weights «;?

St h, S¢ h, St h;

O O O
Step 1: dot product O E| = score; (9|0 E| = score, O E| = score;
(@] (@) (0]

69

st h4,

@)
910 = score,
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Attention: thinking process

How to solve the bottleneck problem?

Instead of only using only hy, let's use all encoder hidden states!
hy h, h; hy

J W

How do we deal with variable length input sequence?
Let's do a weighted sum of all encoder hidden states!

h, h; context vector

IR

How do we get the weights «;?

St h, S¢ h, St h;

O O O
Step 1: dot product O E| = score; (9|0 E| = score, O E| = score;
(@] (@) (0]

. _exp(score;)
Step 2: softmax a;= =57, seore;
70

st h4,

@)
910 = score,
o



Q1: Why dot product?

Q2: What if dimension of s # dimension of h?




Attention

Encoder

Seq2Seq with Attention

dot product

scores
o

RNN
0000
v
0000

y

—> 0000
—> 0000
—>1 0000

[ T11

les pauvres sont démunis <START>

1\ )
72 W

Source sentence (input)

NNY J2p02aq
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Seq2Seq with Attention

On this decoder timestep, we’re

= mostly focusing on the first

= / encoder hidden state (”/es”)
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weighted sum of the encoder hidden
states.
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information the hidden states that
received high attention.
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Q3: How does decoder state participate in the attention mechanism?



Attention: in equations

85

We have encoder hidden states hq,...,hy € R?
On timestep t, we have decoder hidden state s; € R"
We get the attention scores e’ for this step:

el =[slhy,...,sThy] € RN

We take softmax to get the attention distribution at for this step (thisis a
probability distribution and sums to 1)

o = softmax(e’) € RY

We use o' to take a weighted sum of the encoder hidden states to get the

attention output a; N
a; = Z Ozﬁhz = Rh
i=1
Finally we concatenate the attention output a; with the decoder hidden
state s; and proceed as in the non-attention seq2seq model

[as; s¢] € R2P



Attention is great

e Attention significantly improves NMT performance

* |t's very useful to allow decoder to focus on certain parts of the source
e Attention solves the bottleneck problem
* Attention allows decoder to look directly at source; bypass bottleneck

e Attention helps with vanishing gradient problem

* Provides shortcut to faraway states

n B2

e Attention provides some interpretability % _ é
(73} o=

* By inspecting attention distribution, we can see 4883

what the decoder was focusing on » The
e We get alignment for free! poor
don’t

* This is cool because we never explicitly trained

an alignment system have

any

* The network just learned alignment by itself

money

86
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Seq2Seq Applications



Seqg2seq and attention applications

e Summarization

o Dialogue systems
e Speech recognition
o Image captioning



Text summarization

“Automatic summarization is the process of shortening a text document with
software, in order to create a summary with the major points of the original
document.”

volume of transactions at the transactions dip at nigerian stock
nigerian stock exchange has exchange

continued its decline since last
week , a nse official said thursday
. the latest statistics showed that
a total of ##.### million shares
valued at ###.### million naira
-Irb- about #.### million us dollars
-rrb- were traded on wednesday
in #, ##HE deals.




Text summarization (before seq2seq)

Allahyari, Mehdi, et al. "Text Latent Dirichlet allocation (LDA)
summarization techniques:
a brief survey." opics Documants e
EEE:M EEE Seeking Life’s Bare (Genetic? Necessities
Extractive Topic W L
Representation Approaches: e $31
e Latent Semantic e
Analysis o
e Bayesian Topic Models e o
o Latent Dirichlet P
Allocation

e Each topic is a distribution over words
e Each document is a mixiure of corpus-wide topics

e Each word is drawn from one of those topics



Text summarization (before seq2seq)

Their drawbacks:
e They consider the sentences as independent of each other

e Many of these previous text summarization techniques do not consider the
semantics of words.

e The soundness and readability of generated summaries are not satisfactory.



Text summarization (seq2seq)

Nallapati, Ramesh, et al. "Abstractive text summarization using sequence-to-sequence rnns
and beyond."

Abstractive Summary - not a mere selection of a few existing passages or sentences extracted
from the source

Neural Machine Translation Abstractive Text Summarization
Output depends on source length Output is short
Retains the original content Compresses the original content
Strong notion of one-to-one word level Less obvious notion of such one-to-one

alignment alignment



Text summarization (seq2seq)

Feature-rich encoder:

e POS, NER, TF, IDF

Attention mechanism

Outputaye

i Hiddestate

DECODER

Inputaye

ENCODER



Text summarization (seq2seq)

Switch generator/pointer
for OOV

Switch is on —
produces a word from
its

target vocabulary
Switch is off —
generates a pointer to a
word-position in the
Source — copied into
the summary

InputLayel EHidde:Statei OutputLaye!

ENCODER

DECODER



Text summarization (seq2seq)

Identify the key sentences:

e 2 levels of importance
— 2 BiRNNs

e Attention mechanisms
operate at both levels

Outputaye

simultaneously.
e Word-level attention is
reweighted:
. Pold)Pg(s(4))
P*() ,
>o2, Palk)Pa(s(k))

EHid derState

! Hidderbtate
| Worda

e -

. S— —
‘_-""

i1Sentenclaye

ye

s e e Sentence-level attention

Inputaye

G= — — — — Nord-level attention

ENCODER



Dialogue systems

“Dialogue systems, also known as interactive conversational agents, virtual agents and
sometimes chatterbots, are used in a wide set of applications ranging from technical
support services to language learning tools and entertainment.”




Dialogue systems (before seq2seq)

Young, Steve, et al. Inout secececccccccccccccncccccnn .
"Pomdp-based statistical spepech Lgﬁgﬁ:ge ' — '
spoken dialog systems: A : ;
review." ‘ Understanding Estimator
(SLU) :
Goal-driven system: User  — St
e Ateacht, SLU converts I LNaturaI i
i i n %
input to a se.mantlc 7 a guage - Policy
representation u, System Generation
e System updates internal Response (NLG) : .
state and determines next D R

: Dialogue Manager
action a , then converted 9 9

to output speech



Dialogue systems (before seq2seq)

Their drawbacks:

e Use handcrafted features for the state and action space representations
e Require a large corpora of annotated task-specific simulated conversations
o — Time consuming to deploy



Dialogue systems (seq2seq)

Serban, Iulian Vlad, et al. "Building End-To-End Dialogue Systems Using Generative
Hierarchical Neural Network Models."

e End-to-end trainable, non-goal-driven systems based on generative probabilistic
models.



Dialogue systems (seq2seq)

Hierarchical Recurrent
Encoder - Decoder

e Encoder map each
utterance (last token)
to an utterance vector

e Higher-level context
RNN:

© cn = f(cn-l’ un)

what ' s wrong ? </s>

w21 ... W2 N,

prediction

decoder
initial hidden state

context
hidden state

i feel like i ' m going to pass out . </s>

w3, 1 ... W3 N3

encoder
hidden state

utterance
representation

w1 e ie e Wi N,

mom , i don ' t feel so good </s>

utterance
representation

what ' s wrong ? </s>



Speech recognition

From RNN to Speech Recognition:

® RNN requires pre-segmented input data
o Word sequences (discrete) vs. audio sequences (continuous)
® RNNs can only be trained to make a series of independent label classifications

o Network outputs must be post-processed



Speech recognition

Prabhavalkar, Rohit, et al. "A
comparison of sequence-to-sequence
models for speech recognition.”
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Image captioning

Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual
attention.”

A___]
[bird |
flying

over

a
body
of
water
1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word
generatlon)

14x14 Feature Map

S




Image captioning

Location variable s : where to put attention when generating the t™ word

http://kelvinxu.github.io/projects/capgen.html

A Iarge white bird standing in a forest. A woman holding a clock in her hand. A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.


http://kelvinxu.github.io/projects/capgen.html

Thank You!



