OpenAl + DotA 2
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DotA (Defense of the Ancients) 2 Gameplay

W

Multiplayer Online Battle Arena game.
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Steep learning curve.

Map based; pits 5 players on ‘Dire’ vs. 5 players on
‘Radiant’. Each player controls one hero.

Learned Bot Behaviors

115+ heroes: unique stats, spells & tree talents.

Objective: Destroy all the enemy towers and 1. Teamf|ght|ng (@ 0015)

ultimately their throne. . )

Gameplay: Fight the enemy team, destroy enemy 2 Value PredICtlon (@ 0140)
buildings, try to die as little as possible, level up, 3 Searching the Forest (@ 02’] 5)

buy items, and kill enemy players when possible.

4. Ganking (@ 02:40)
5. Focusing (@ 03:00)
6. Chasing (@ 03:20)
7. Diversion (@ 03:45)

Average game time: 45-50 minutes.

OpenAl Five: Dota Gameplay; Source: https://www.youtube.com/watch?v=UZHTNBMAfAA



https://www.youtube.com/watch?v=UZHTNBMAfAA

mﬁ DotA and StarCraft Il Challenges 1.2 3]

Information Type Various Perfect Imperfect Imperfect
Players Single Player Multi-player Multi-player Multi-player
Action Space Continuous & Discrete Discrete Continuous & Discrete Continuous & Discrete
Possible Actions 17 361 Millions Millions
No. of Moves per Game 100’s of moves 100’s of moves 1,000’s of moves 1,000’s of moves

* Long time horizons (30 fps @ 45min = 80,000 ticks per game; OpenAl Five observes every fourth frame - 20,000 moves).
* Partially-observed state (units and buildings can only see the area around them).

» High-dimensional, continuous action space (space discretized into 170,000 possible actions per hero with an average of
~1,000 valid actions each tick).

« High-dimensional, continuous observation space (a large continuous map containing ten heroes, dozens of buildings,
dozens of NPC units, and a long tail of game features such as runes, trees, and wards).

* Complex rules and constantly changing the environment semantics (game updates released every other week).
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? OpenAl DotA Progress Summary (1
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Finals

* Nov 2016: Beginning of development on the algorithms used for Dota2.

.

» Chosen for its popularity, native Linux support and ready application programming interface (API). 60 Buyack I

« Mar 2017: First agent defeated DotA (training) bots; but got confused against humans. b T
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7.20
Benchmark -

* Aug 2017: First public demonstration at The International 2017 (DotA annual tournament).

Trueskill

» OpenAl 1lvl defeated Dendi, a professional DotA player (in a live one-on-one matchup). I

1Courier

* Launched OpenAl Five initiative. . °
* Apr 2018: OpenAl Five beats internal, scripted baseline. B o =
§ Current model training progress =
N
* May 2018: OpenAl Five draws (1-1) against amateur OpenAl employee team (2.5k MMR; 46th %ile). B 102 50

Training PF/s Days
» Jun 2018: OpenAl Five decisively won all its games versus amateurs & semi-professionals playing as a team (2.5-4k MMR; 46th-90th %ile).

» Jun 2018: OpenAl Five won two of its first three games versus amateur team (4.2k MMR; 93rd %ile) and semi-pro team (5.5k MMR; 99th %ile).
* Aug 2018 @ The International (TI) 2018: OpenAl Five lost two games against professional teams.

* Apr 2019: Public demonstration at which OpenAl Five won two back-to-back games versus The International 2018 champions.

*  Public demo of cooperative play (OpenAl Five bots play alongside human players).

* Apr 2019: [upcoming] From Apr 18th-21st, OpenAl Five plays the Internet (https://arena.openai.com/).



https://arena.openai.com/

? OpenAl DotA Approach !
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Generic Approach

System learns using a massively-scaled version of
Proximal Policy Optimization (PPO).

Both OpenAl 1v1 and OpenAl Five learn ‘entirely’ from
self-play.

Focus: Running today’s RL algorithms at sufficient
scale and with a reasonable way of exploration.

Training starts with random parameters and do not
use search or bootstrap from human replays.

Agent trained to maximize the exponentially
decayed sum of future rewards, weighted by an
exponential decay factor called y.

Weakness (Aug 2018 Defeat)

Median score for last-hitting (ie, delivering the killing blow;
hero dealing the killing blow will be awarded a bounty).

CPUs

GPUs

Experience collected

Size of observation

Observations per
second of gameplay

Batch size

Batches per minute

OPENAI 1V1
T
[mid-2017]

60,000 CPU
cores on Azure

256 K80 GPUs on
Azure

~300 years per
day
~3.3 kB

10

8,388,608
observations

~20

OPENAI FIVE

Tl version [Jun 2018] [Apr 2019]
128,000 preemptible CPU 8x more
cores on GCP tiqinig
compute
256 P100 GPUs on GCP
~250 years
~180 years per day (~900 years ~ Per day (4.5
per day counting each hero tlmes.more
tely) experience
separately years than
Tl version)
~36.8 kB
7.5

1,048,576 observations



@ OpenAl DotA ‘Cheats’ 11 3]
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Human View

* APl and superhuman speed: The bots were trained using API to get precise game
state as thousands of exact numbers.

* Allows the bots to have ‘superhuman’ accuracy and speed - very hard to beat in head-to-head
short term fights that don’t require much long-term strategy.

* OpenAl: “Our method isn’t fundamentally tied to observing state, but just rendering pixels from the
game would require thousands of GPUs.”

» Simplifying some tasks during training: Agents encouraged to explore important
but possibly challenging strategic decisions.

* Hand-designing the model: Designed a complex neural net architecture specifically
for the task. 3.006 -1.386 -0. .8
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* Limitations on the game: Multiple restrictions were placed on standard gameplay. -
* E.g., map visibility and reduced roster of playable heroes.
« Reward shaping = learning is not purely from self-play!

* Heavy use of reward tuning (ie, short term goals are explicitly rewarded instead of only focusing
on winning the game).
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* Bots are guided to learn certain behaviours.



OpenAl Five Network Architecture!

1,6

s

T

m

2

o a

Pickup 1

==

Pickup Type

*Allied & enemy glyph cooldown

«is Night

*time until creepwave

*time since enemy courier last
seen

*time until night
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enchanted mangoes, town
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penAl Five Network Architecture 1. 6]
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w OpenAl Five Model Structure !

* Each OpenAl Five network contain a single-layer, 1024-unit 2048-unit 4096-units LSTM:

» Sees the current game state (extracted from Valve’s Bot API).
* Emits actions through several possible action heads.

* Each head has semantic meaning (e.g., no. of ticks to delay this action, which action to select, the Xor Y
coordinate of this action in a grid around the unit, ...).

» Action heads are computed independently.

* Interactive demonstration of the observation space and action space used by OpenAl Five:
https://openai.com/blog/openai-five/#modelstructure

* Views the world as a list of 20,000 numbers.
» Takes an action by emitting a list of 8 enumeration values.
* OpenAl Five can react to missing pieces of state that correlate with what it does see.

* E.g.,shrapnel zones (areas where projectiles rain down on enemies) were not modelled. Yet, OpenAl Five
learnt to walk out of (though not avoid entering) active shrapnel zones, as it could see its health decreasing.
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https://openai.com/blog/openai-five/#modelstructure

w OpenAl Five Exploration 1]
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 Combinatorially-vast space to explore!
* Even with restrictions: Hundreds of items, dozens of buildings, spells, and unit types, and a long tail of game mechanics.
* OpenAl Five learns from (guided) self-play (starting from random weights) = natural curriculum for
exploring the environment.
* To avoid “strategy collapse”, the agent trains 80% of its games against itself and the other 20% against its past selves.

* “In the first games, the heroes walk aimlessly around the map. After several hours of training, concepts such as laning,
farming, or fighting over mid emerge. After several days, they consistently adopt basic human strategies: attempt to steal
Bounty runes from their opponents, walk to their tier one towers to farm, and rotate heroes around the map to gain lane
advantage. And with further training, they become proficient at high-level strategies like 5-hero push.”

» To force exploration in strategy space, during training (and only during training) = randomized units’
properties.
—> OpenAl Five began beating humans.

» Exploration is also helped by a good reward.
* Reward = Metrics humans track: net worth, kills, deaths, assists, last hits, and the like.

* Each agent’s reward is post-processed by subtracting the other team’s average reward to prevent the agents from finding
positive-sum situations.



w OpenAI Ra pld [1] .. a general-purpose RL training system
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* OpenAl Five is implemented using Rapid, which can be applied to any Gym environment.
* OpenAl Five training system:

* Rollout workers, which run a copy of the game and an agent gathering experience.

* Sync their experience through Redis to the optimizers.

e Optimizer nodes, which perform synch ronous Optimizer + Connected Rollout Workers (x256)
gradient descent across a fleet of GPUs. Rollout Workers
~ S
* Each GPU computes a gradient on its part of the batch, and ~ Runcpisodes '~ ~ e -
then the gradients are globally averaged. TR il L g s ST Compute Gradients use NCOL2 o
Randomized game settings Salﬁ::,'es 2 Zritt);i;r:ja;rl:lolicv Optimization ::Zr\:{s Fg’tr:;ilients
* Evaluation workers, which evaluate the trained Push data every 60s of gameplay - Batches of 4096 observations
« Discount rewards across the 60s using « BPTT over 16 chservations
agent versus reference agentS. generalized advantage estimation
* Monitoring software (TensorBoard, Sentry & Grafana). \
* The latencies for synchronizing model parameters " Gontiant
is low enough to be masked by GPU computation,
o 3 . . Eval Work
which runs in parallel with it. ~2500 CPUs.
: Play in various environments Model
- Runs PPO at previously unprecedented scale. Ve hardsoded "scripted bot parameters

« vs previous similar bots (used to
compute Trueskill)

« vs self (for humans to watch
and analyze)


https://github.com/openai/gym

WB Proximal Policy Optimization |14 5]

* OpenAl: “Proximal Policy Optimization (PPO), which perform comparably or better than
state-of-the-art approaches while being much simpler to implement and tune.”
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* Policy Gradient methods have convergence problem (= natural policy gradient).
 In practice: Natural policy gradient involves a second-order derivative matrix = not scalable.
* The computational complexity is too high for real tasks.
* Intensive research to reduce the complexity by approximate the second-order method.
How can we optimize a policy to maximize the rewards?

Minorize-Maximization 5 f 4]
(MM) algorithm: 7

- Find a lower bound
M that is easier to
optimize.




WB Proximal Policy Optimization |14 5]
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* Two major optimization methods:
Line search (e.g., the gradient
descent) vs. Trust region.

» Gradient descent is easy, fast and
simple in optimizing an objective
function.

* PPO: Limit how far we can change a policy in each iteration through the KL-divergence.
» KL-divergence measures the difference between two data distributions p and q.

* Repurpose: Measure the difference between the two policies 2 any new policy shouldn’t be too different from the

current one. i1 2F 8
p(x )J ) q(x) [ A Du (PlO)

\
03
3 \

/

P(x)
Q)

D1 (P||Q) = E log

‘il




WB Proximal Policy Optimization |14 5]
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* Intuition:

L approximates the advantage function locally at the current policy.
It gets less accurate as it moves away from the old policy.
This inaccuracy has an upper bound - That is the second term in M.

After considering the upper bound of this error, we can guarantee that the calculated optimal policy within the
trust region is always better than the old policy.

If the policy is outside the trust region, even the calculated value may be better but the accuracy can be too off
and cannot be trusted - abandon.

maximize
0

Objective computationally very expensive!
.. ~ Wa(at | St) A

max!l)mlze ]Et |:7T001d(at | st)At] 5 ( az_f;l adz_);l P aaz—{; \

subject to Et[KL[ﬂ'g()]d(o | s¢), mo(- | st)]] < 6. 9 . 6 _I_ 2—F—1 ox; X1 0X2 X1 0Xy

k+1 = Uk T -1 g & &,
or g g F — sz — axlz dx; 0xz e x| 0x;,
(3 | 50) natural policy gradient : : y -

B[ 22 A - B KL |50, o L

7T9Um(at | st) k ax% dx1 0x;p e ax, oxp, )




WB Proximal Policy Optimization |14 5]

 Two approaches to address this problem:

1. Approximate some calculations involving the second order derivative and its inverse to lower the computational
complexity; or

TRPO & ACKTR follow this approach.

2. Make the first order derivative solution (e.g., gradient descent) closer to the second-order derivative solution by adding
soft constraints.

PPO follows this approach.

* PPO: Instead of imposing a hard constraint, it formalizes the constraint as a penalty in the objective
function.

* Use afirst-order optimizer like the Gradient Descent method to optimize the objective.
* Even we may violate the constraint once a while, the damage is far less and the computation is much simple.

» Offers a better insurance that we are optimizing within a trust region = The chance of a bad decision is smaller.
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WB Proximal Policy Optimization |14 5]
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 PPO with Adaptive KL Penalty:
» Re-formulate objective > Change the constraint to a penalty in the objective function.
* Penalizes the objective if the new policy is different from the old policy.

Algorithm 4 PPO with Adaptive KL Penalty

Input: initial policy parameters 6y, initial KL penalty [, target KL-divergence §
for k=0,1,2,... do

Collect set of partial trajectories Dy on policy 7, = 7(6k)

Estimate advantages AA’:“ using any advantage estimation algorithm

Compute policy update

9k+1 = arg mgx Eek(g) — ﬁkDK{_(QHQk)

by taking K steps of minibatch SGD (via Adam)
if DKL(9k+1H9k) > 1.54 then

Br+1 = 2k

else if Dk (0k+1]|0k) < 8/1.5 then
Br+1 = Pk/2

end if

end for




WB Proximal Policy Optimization |14 5]

* PPO with clipped objective (better performance):

* Maintain two policy networks (the policy to refine, and the policy last used to collect samples).

* Importance sampling: Evaluate a new policy with samples collected from an older policy.

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters 6y, clipping threshold €
for k=0,1,2,... do
Collect set of partial trajectories Dy on policy mx = 7(60k)
Estimate advantages Af“ using any advantage estimation algorithm
Compute policy update
Ok+1 = arg max EQC,(“P(O)

by taking K steps of minibatch SGD (via Adam), where

LiF (@) = E {Z [min(rt(Q)A;”‘, clip(r:(0),1 —€,1+¢) A;W)H

TAT L
t=0

end for
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WB Proximal Policy Optimization |14 5]

* OpenAl:

“Q-learning (with function approximation) fails on many simple problems and is
poorly understood,

vanilla policy gradient methods have poor data efficiency and robustness; and

trust region policy optimization (TRPO) is relatively complicated, and is not
compatible with architectures that include noise (such as dropout) or parameter
sharing (between the policy and value function, or with auxiliary tasks).”

- Simplicity Rules

S INWSIAN



w Transfer Learning for RL !

e The current (mid-April 2019) version of OpenAl Five has
been training continuously since June 2018!
* Despite changes to the model size and the game rules.

* For each change, the model was transferred over and training
continued — something that is an open challenge for RL in other
domains.

—First time an RL agent has been trained using such a
long-lived training run.

Trueskill
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102
Training PF/s Days

Current model training progress

® g o000

[Apr2019]
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w Open Challenges & Moving Forward

* OpenAl:

“We’ve seen rapid progress in the past two years on RL capabilities, and we think
that Dota 2 will continue to help us push forward what’s possible — whether with
achieving competent performance from less data or true human-Al cooperation.”

« R&D Challenges (some of many).
* Any explicit (or implicit) bridge between short-term and long-term planning.
* Abstract reasoning within models.
* More intuitive specification of objectives.
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