
CS 6101 Week #4 Notes: Actor-Critic Introduction,
Value Functions and Q-Learning

Note taking: Alexandre Gravier, Joel Lee
LATEX transcription: Alexandre Gravier <al.gravier@gmail.com>

Contents

1 Recap about policy gradients

We define J(θ) .= Eτ∼pθ(τ) [
∑
t r (st,at)] so that the objective of RL can be defined as an optimiza-

tion exercise consisting in finding an assignment of policy parameters θ? = argmaxθ Eτ∼pθ(τ)J(θ).

J(θ) is not usually optimizable as such due to f.e. dimensionality issues, so we use a sample-based
unbiased estimate: J(θ) ≈ 1

N

∑
i

∑
t r (si,t,ai,t). Taking the gradient of J(θ) along θ allows

maximizing the expected reward as per the policy.

1.1 Policy differentiation with a “convenient identity”

Let r(τ) .=
∑T
t=1 r (st,at) the total reward of a trajectory τ .

∇θJ(θ) = ∇θEτ∼pθ(τ)[r(τ)] (1a)

= ∇θ
∫
πθ(τ)r(τ) dτ by definition of expectation (1b)

=

∫
∇θπθ(τ)r(τ) dτ by linearity (1c)

At this point, the expression
∫
∇θπθ(τ)r(τ)dτ seems rather intractable. This is where the following

“convenient identity” can be used to derive a tractable expression of∇θJ(θ).

A convenient identiy

πθ(τ)∇θ log πθ(τ) = πθ(τ)
∇θπθ(τ)
πθ(τ)

= ∇θπθ(τ) (2)

Furthermore, we can expand the definition of πθ (τ) and take its logarithm:

πθ (τ) = p (s1)

T∏
t=1

πθ (at | st) p (st+1 | st,at) (3a)

⇔ log πθ (τ) = log p (s1) +

T∑
t=1

log πθ (at | st) + log p (st+1 | st,at) (3b)

Exploration in Computer Science Research: Deep Reinforcement Learning (CS 6101, 2019), National University
of Singapore.

Using (??) and (??) in (??), the gradient of the objective becomes:

∇θJ(θ) =
∫
πθ(τ)∇θ log πθ(τ)r(τ)dτ using (??) (4a)

= Eτ∼pθ(τ) [∇θ log πθ(τ)r(τ)] by definition of expectation (4b)

= Eτ∼pθ(τ)

[
∇θ

[
log p (s1) +

T∑
t=1

log πθ (at | st) + log p (st+1 | st,at)

]
r(τ)

]
(4c)

We note that in the expression ∇θ
[
log p (s1) +

∑T
t=1 log πθ (at | st) + log p (st+1 | st,at)

]
of the

gradient w.r.t. θ in (??), the terms log p (s1) and log p (st+1 | st,at) are independent of θ, so we are
left with:

∇θJ(θ) = Eτ∼pθ(τ)

[
∇θ

[
T∑
t=1

log πθ (at | st)

]
r(τ)

]
(5a)

= Eτ∼pθ(τ)

[(
T∑
t=1

∇θ log πθ (at | st)

)
r(τ)

]
by linearity (5b)

= Eτ∼pθ(τ)

[(
T∑
t=1

∇θ log πθ (at | st)

)
T∑
t=1

r (st,at)

]
by definition of r(τ) (5c)

In Equation (??), the gradient of J is now a computable function of πθ only.

We earlier mentioned the sample estimate of J(θ) ≈ 1
N

∑
i

∑
t r (si,t,ai,t); similarly ∇θJ(θ) is

approximated with samples, leading us to the algorithm:

REINFORCE algorithm:


sample

{
τ i
}

from πθ (at | st)

∇θJ(θ) ≈ 1
N

∑N
i=1

((∑T
t=1∇θ log πθ (at | st)

)∑T
t=1 r (st,at)

)
θ ← θ + α∇θJ(θ)

(6)

In (??), there is no use of the Markov property, so the algorithm can be used as such on POMDPs.

1.2 The bad news

We introduce some simplifying notation:

∇θJ(θ) ≈
1

N

N∑
i=1

((
T∑
t=1

∇θ log πθ (at | st)

)
T∑
t=1

r (st,at)

)
(7a)

≈ 1

N

N∑
i=1

∇θ log πθ (τ) r (τ) (7b)

The big problem with vanilla REINFORCE lies in variance: if you were to repeatedly collect a small
finite number N of samples, estimating each time the gradient based on these samples, you would
observe that these estimates of the gradient vary a lot.

That means that the gradient descent step will likely take us away from the goal, and convergence
will be very slow, or may not happen.

2

Additionally, given two sets of sample trajectories differing only by a constant factor, but differently
centered around a total reward of 0, the basic policy gradient algorithm in (??) may change the
parameters very differently.

There are two tricks that help with the large variance of the samples, both of which should always be
used because they have no drawbacks.

1.3 Variance reduction with causality: the “rewards to go” trick

In (??), the gradient approximation can be improved by making use of causality: the policy at time t′
cannot affect the reward at time t when t < t′.

∇θJ(θ) ≈
1

N

N∑
i=1

((
T∑
t=1

∇θ log πθ (at | st)

)
T∑
t=1

r (st,at)

)
(8a)

≈ 1

N

N∑
i=1

(
T∑
t=1

(
∇θ log πθ (at | st)︸ ︷︷ ︸

gradient at t

T∑
t′=1

r (st′ ,at′)︸ ︷︷ ︸
this total reward should be computed from time t

))
by distributivity (8b)

≈ 1

N

N∑
i=1

(
T∑
t=1

(
∇θ log πθ (at | st)

T∑
t′=t

r (st′ ,at′)︸ ︷︷ ︸
reward to go

))
by causality (8c)

Intuitively, the “rewards to go” trick comes from the observation that at time t, all past rewards
cannot be affected by policy decisions.

We define the “reward to go” function Q̂ : [[1, N]]× [[1, T]] 7→ R as:

Q̂i,t
.
=

T∑
t′=t

r (st′ ,at′) (9)

Therefore, the gradient of the objective function approximation with rewards to go is:

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∇θ log πθ (at | st) Q̂i,t (10)

We should note that most often, in policy gradient, we search the optimal policy within a class of
policy functions that is time-invariant. However, to get the optimal policy in a finite horizon problem
(T <∞), we may need a time-dependent policy (e.g. in the last time step, there is no more need to
care about energy preservation).

1.4 Variance reduction with baselines

Ideally, policy gradients should only depend on the relative values of the trajectory samples under the
policy. But in REINFORCE, policy gradients dependent on the value of the total rewards of the policy
samples: given the same set of samples shifted by a constant reward, the gradient direction and norm
may change drastically. This is very undesirable.

The intuition behind the baseline trick is to subtract a constant “average reward” baseline from the
trajectory rewards, so as to make trajectories that are less rewarding than average less likely, and
those more rewarding more likely.

∇θJ(θ) ≈
1

N

N∑
i=1

∇θ log πθ (τ) (r (τ)− b) where b =
1

N

N∑
i=1

r(τ) (11)

3

Regardless of the baseline b used in computing the gradient, and the policy gradient defined in (??)
remains an unbiased estimator of the gradient of the objective.

Proof that the gradient estimator in Eq. (??) is unbiased for any b. To prove that the expression in
(??) is an unbiased estimator of ∇θJ(θ), we need to prove that E [∇θ log πθ (τ) (r (τ)− b)]

?
=

E [∇θ log πθ (τ) r (τ)], which — by linearity of expectation — is equivalent to:

E [∇θ log πθ (τ) b]
?
= 0 (12)

We expand the left-hand side:

E [∇θ log πθ (τ) b] =
∫
πθ(τ)∇θ log πθ(τ)b dτ by definition of expectation (13a)

=

∫
∇θπθ(τ)b dτ by substitution with (??) (13b)

= b∇θ
∫
πθ(τ) dτ by linearity (13c)

= b∇θ
∫

1 as πθ is a probability distribution (13d)

= 0 (13e)

Hence, any baseline b may be added to Eq. (??), and it will remain an unbiased estimator of the
gradient of J(θ).

Therefore, after subtracting an average reward baseline from the trajectories’ reward, Eq. (??) remains
an unbiased estimate of the gradient of the objective, but with a lower variance.

Choosing b = 1
N

∑N
i=1 works well, but it is not the baseline that results in the lowest variance

estimator. To derive the best baseline, we can express that at its minimum, the derivative of the
variance in function of the baseline is null.

The variance of the gradient of the objective is, by definition:

Var = E
[
(∇θJ(θ))2

]
− E[∇θJ(θ)]2 (14a)

= Eτ∼πθ(τ)

[
(∇θ log πθ(τ)(r(τ)− b))2

]
− Eτ∼πθ(τ) [∇θ log πθ(τ)(r(τ)− b)]

2︸ ︷︷ ︸
as shown in Eqs. (??), this term is independent of b

(14b)

As we observe that only the first term depends on b,

dVar

db
=

d

db
Eτ∼πθ(τ)

[
(∇θ log πθ(τ)(r(τ)− b))2

]
(15a)

=
d

db
E
[
(∇θ log πθ(τ))2 (r(τ)− b)2

]
(15b)

=
d

db
E
[
g(τ)2(r(τ)− b)2

]
(we introduce g(τ) .= ∇θ log πθ(τ)) (15c)

=
d

db

(
E
[
g(τ)2r(τ)2

]
− 2bE

[
g(τ)2r(τ)

]
+ b2E

[
g(τ)2

])
(15d)

=
d

db

(
−2bE

[
g(τ)2r(τ)

]
+ b2E

[
g(τ)2

])
(15e)

= −2E
[
g(τ)2r(τ)

]
+ 2bE

[
g(τ)2

]
(15f)

4

We want to find b s.t. dVar
db = 0:

dVar

db
= 0 (16a)

=⇒ − 2E
[
g(τ)2r(τ)

]
+ 2bE

[
g(τ)2

]
= 0 (16b)

=⇒ b =
E
[
g(τ)2r(τ)

]
E [g(τ)2]

(16c)

We have derived the baseline that minimizes the variance of the objective function:

The optimal baseline

b̂ =
E
[
(∇θ log πθ(τ))2 r(τ)

]
E
[
(∇θ log πθ(τ))2

] (17)

This the expected reward weighted by the square of the gradient magnitude, element-wise: the
baseline b̂ is also defined per element of the vector of parameters, and the g(τ)2 is an element-wise
square of the gradient vector. Each scalar in the gradient baseline vector is weighted by its contribution
to the gradient.

It is possible to implement b̂, and it is guaranteed to be the optimal baseline w.r.t variance reduction.
However, researchers often choose the simpler solution of the expected reward baseline, as it is easier
to implement.

2 On-policy and off-policy algorithms

5

