
Lecture #6: Advanced Policy Gradients

Chong Yihui, Shen Ting, Dongyang
Department of Computer Science
National University of Singapore

Singapore, S117417
{ychong, STUDENT2, etc.}@u.nus.edu

1 Policy gradient as policy iteration

First, we try to show that we can use the advantage of the previous policy to get a better policy and
the result method looks like policy gradient.

To do so, we try to maximise the difference in the returns: J(θ′)− J(θ)
We claim the following equivalence:

Recall that J(θ) = Es0∼p(s1)[V
πθ (s0)]

The following derivation tricks are used:

1. Initial state distribution is the same for all policy.

2. Expanding out V πθ (s0) to a telescoping sum

V πθ (s0) =
∑∞
t=0 γ

tV πθ (st)−
∑∞
t=1 γ

tV πθ (st)

= V πθ (s0) + γ1V πθ (s1) + γ2V πθ (s2)...− [γ1V πθ (s1) + γ2V πθ (s2) + ...]

3. Correction: t=0 instead of t=1 for J(θ)

J(θ′) = Eτ∼pθ′ (τ)[
∑∞
t=0 γ

tr(st, at)]

instead of

Eτ∼pθ′ (τ)[
∑∞
t=1 γ

tr(st, at)]]

After using the above trick, we would have proofed our claim. Next, we instead of taking expectation
over our new policy(which we do not have yet and is what we are trying to find), we would like to
take the expectation over the old policy.

Exploration in Computer Science Research: Deep Reinforcement Learning (CS 6101, 2019), National University
of Singapore.

2 Ignoring distribution mismatch

Eτ∼pθ′ (τ)[
∑
t γ

tAπθ (st, at)] =
∑
tEst ∼ pθ′(st)[Eat ∼ πθ′(at|st)[γtAπθ (st, at)]]

Using importance sampling we are able to switch the inside expectation to get the following equation:
=

∑
tEst ∼ pθ′(st)[Eat ∼ πθ(at|st)[

πθ′ (at,st)
πθ(at,st)

γtAπθ (st, at)]]

However, we are not able to do this for the outer expectation as πθ′ (at,st)
πθ(at,st)

< 1 and the probability of
state is a series of multiplication. Therefore, the importance sampling weight decays to 0 as the time
horizon gets longer.

Main Takeaway: we can use our existing policy to approx our cost if they are similar (ignore the
distribution mismatch) Next, under what conditions are they similar?

3 Bounding the distribution change

Important notation: |pθ′(st)− pθ(st)| =
∑
x(|p(x)− q(x)|)

Also note that |pθ′(st)− pθ(st)| <= 2.

A possible worst case: Consider 2 different points x1, x2 such that p(x1) = 1 and q(x1) = 0

p(x2) = 1 and q(x2) = 0

|pθ′(st)− pθ(st)| = |1− 0|+ |0− 1| = 2

When can we change pθ′ to pθ?

[Case 1: Assume policy is deterministic] Claim: pθ(st) is close to p′θ(st) when πθ is close to π′θ
Definition of close for deterministic distribution:

If the above bound holds,

|pθ′(st)− pθ(st)| ≤ 2εt

[Case 2: Assume policy is stochastic]

Definition of close for general case:

πθ′ is close to πθ if |πθ′(at|st)− πθ(at|st)| ≤ ε for all st
If the above bound holds and using the useful lemma,

|pθ′(st)− pθ(st)| ≤ 2εt

4 Bounding with KL-divergence

Instead of using ε in the above bound, we can also bound the policy using KL-divergence

|πθ′(at|st)− πθ(at|st)| ≤
√

1
2DKL(πθ′(at|st)||πθ(at|st))

2

With this, we get the following objective function

To optimize the above objective,

[Method 1] Enforce the constraint on the KL divergence use Lagrangian method.

This is an example of dual gradient descent (on both θ and λ)

[Method 2] Use natural policy gradient (for further reading).

[Method 3] Use natural policy gradient with learning rate (Trust region policy optimization)

5 Further Readings

Going towards the trust region policy gradient algorithm:

https://medium.com/@jonathan_hui/rl-natural-policy-gradient-actor-critic-using-kronecker-factored-trust-region-acktr-58f3798a4a93

Trust Region Policy Optimization (TRPO) using Adam

https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-part-2-f51e3b2e373a

Natural Gradient and Fisher Information:

https://wiseodd.github.io/techblog/2018/03/11/fisher-information/

https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/

Natural Gradient Intuition

http://kvfrans.com/a-intuitive-explanation-of-natural-gradient-descent/

Intuitive explanation of Policy Gradients

http://karpathy.github.io/2016/05/31/rl/

3

https://medium.com/@jonathan_hui/rl-natural-policy-gradient-actor-critic-using-kronecker-factored-trust-region-acktr-58f3798a4a93
https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-part-2-f51e3b2e373a
https://wiseodd.github.io/techblog/2018/03/11/fisher-information/
https://wiseodd.github.io/techblog/2018/03/14/natural-gradient/
 http://kvfrans.com/a-intuitive-explanation-of-natural-gradient-descent/
http://karpathy.github.io/2016/05/31/rl/

