Lecture #8: Model-Based RL and Policy Learning

Nick, Nan and Halder

1 Introduction

Problems for backpropagating directly into policy

What’s the problem?

backprop backprop

 Similar parameter sensitivity problems as shooting methods

* But no longer have convenient second order LQR-like method, because policy
parameters couple all the time steps, so no dynamic programming

* Similar problems to training long RNNs with BPTT
* Vanishing and exploding gradients

* Unlike LSTM, we can’t just “choose” a simple dynamics, dynamics are chosen by
nature

Constraining trajectory optimization with dual
gradient descent

min¢(7) s.t. up = mo(xy)
7,0

T T

L(r,0,0) = o(r) + Y M(mo(xe) =) + D pul(mo(xr) — wp)?

t=1 t=1

1. Find 7 « argmin, £(7,0,\) (e.g. via iLQR)
2. Find 0 + argming £(7,0,\) (e.g. via SGD)
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Deterministic case
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2. Optimize € with respect to supervised objective

3. Increment or modify dual variables A
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Dagger does not care about how the actions are generated, it needs to make sure that actions are
optimal with respect to the real reward function

Imitating MPC: PLATO algorithm

. train mg(w;|o;) from human data D = {o1,u1,...,0x,un}
. run 7(uy|oy) to get dataset Dy = {o1,...,0np}

. Ask computer to label D, with actions ug

. Aggregate: D« DUD,

S N

simple stochastic policy: 7 (ug|x¢) = N (Kixe + ke, Zy, )
T
#(we|xe) = arg 1117,3112 Bile(xy, up)] + ADkL(F(uelxe) |7 (uefor))
t—t

mg(uz|02)

ﬂ ' (uz 02)\‘

DAgger vs GPS

DAgger vs GPS

* DAgger does not require an adaptive expert
» Any expert will do, so long as states from learned policy can be labeled

» Assumes it is possible to match expert’s behavior up to bounded loss
* Not always possible (e.g. partially observed domains)

* GPS adapts the “expert” behavior
» Does not require bounded loss on initial expert (expert will change)

Why imitate?

e It combines supervised learning and control and planning, which are stable and reliable to
use

e Input is o, instead of x; for handling real observation

e get rid of numerical instability



Why imitate?

* Relatively stable and easy to use
* Supervised learning works very well
+ Control/planning (usually) works very well
» The combination of the two (usually) works very well

* Input remapping trick: can exploit availability of additional information at
training time to learn policy from raw observations

* Overcomes optimization challenges of backpropagating into policy
directly

* Usually sample-efficient and viable for real physical systems

Dyna Algorithm

Dyna online Q-learning algorithm that performs model-free RL with a model
. given state s, pick action a using exploration policy

. observe s’ and r, to get transition (s,a,s’,r)

. update model p(s'|s,a) and 7(s,a) using (s,a,s’)

. Q-update: Q(s,a) + Q(s,a) + aEy ,[r + maxy Q(s',a") — Q(s,a)]

. repeat K times:
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6. sample (s,a) ~ B from buffer of past states and actions

7. Q-update: Q(s,a) < Q(s,a) + aEy .[r + maxy, Q(s',a’') — Q(s,a)]

Comparison: Model-Based RL VS Integrated Architecture (Dyna)

value/policy value/policy
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Figures are taken from Richard Sutton’s book: Reinforcement Learning: An Introduction
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General “Dyna-style” model-based RL recipe

1. collect some data, consisting of transitions (s, a, s’,r)

2. learn model p(s’|s,a) (and optionally, 7(s,a)) /'/
3. repeat K times: \
4. sample s ~ B from buffer
5. choose action a (from B, from 7, or random) ~

T~

6. simulate s’ ~ p(s'|s,a) (and r = 7 (s, a)) K
7. train on (s,a,s’,r) with model-free RL

8. (optional) take N more model-based steps
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2 Summary

Model-based RL algorithms summary

7.
* Learn model and plan (without policy) s :
« Iteratively collect more data to overcome distribution mismatch ((Gg
* Replan every time step (MPC) to mitigate small model errors O/V/YLV
£/

* Learn policy
« Backpropagate into policy (e.g., PILCO) — simple but potentially unstable
 Imitate optimal control in a constrained optimization framework (e.g., GPS)
* Imitate optimal control via DAgger-like process (e.g., PLATO)
* Use model-free algorithm with a model (Dyna, etc.)



Limitations of model-based RL
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* Need some kind of model o
* Not always available 1

* Sometimes harder to learn than the policy

* Learning the model takes time & data
» Sometimes expressive model classes (neural nets) are not fast
» Sometimes fast model classes (linear models) are not expressive

* Some kind of additional assumptions
* Linearizability/continuity
* Ability to reset the system (for local linear models)
* Smoothness (for GP-style global models)
* Etc.

m Model-Free RL

= No model
m Learn value function (and/or policy) from real experience

m Model-Based RL (using Sample-Based Planning)

m Learn a model from real experience
m Plan value function (and/or policy) from simulated experience

m Dyna
® Learn a model from real experience

m Learn and plan value function (and/or policy) from real and
simulated experience

3  Questions

1. Why quadratic loss in the second term

Deterministic case
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2. Is iLQR a shooting method or a collocation method

https://people.eecs.berkeley.edu/ pabbeel/cs287-fal1/slides/NonlinearOptimizationForOptimal Control-
part2.pdf



