Lecture #9: Probability and Variational Inference
Primer

Weixin Wang, Joo Gek Lim

1 Introduction

In this lecture, we mainly study latent variable models, variational inference, amortized variational
inference and generative models. The goal is to understand latent variable models and how to use

variational inference.
2 Probabilistic Latent Model
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Figure 1: The description of Latent variable models.
Figure[T] shows an example of Gaussian mixture model where z is the latent.
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Figure 2: The description of Latent variable models.
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3 Variational Inference

However, it is quite tough to train such latent variable models as described in Figure[2] Alternatively,
we use approximate learning to learn the model. Here we first introduce KL-divergence, which is
used to measure the difference between two distributions, as follows:
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The variational inference is as follows: Our objective is to minimize KL-divergence.
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Figure 3: The variational inference.

for each ; (or mini-batch):

calculate Vo L;(p, q;): let’s say qi(2) = N (i, 0i)
sample z ~ ¢;(x;) use gradient V,,, L;(p, ¢;) and Vo, L;(p, q;)
VoLi(p,qi) = Veologpy(wi|2) gradient ascent on ;, o;

0+ 0+aVeLli(p,qi)
update ¢; to maximize £;(p, ¢;)

How many parameters are there? 10] + (|| + |oi]) x N

intuition: ¢;(z) should approximate p(z|z;)  what if we learn a network q;(z) = q(z|z;) ~ p(z|z;)?
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Figure 4: The problem with variational inference.

Amortized Variational Inference However, there will be a practical problem with varaiational
inference as discussed in Figure El Amortized variational inference is to, for example, a neural
network that accepts the observation as input, and outputs the mean and variance parameter for the
latent variable instead of optimizing a set of free parameters. We then optimize the parameters of the
neural network.



for each z; (or mini-batch):

calculate VoL(pg(zi|2), gp(2|2:)): look up formula for
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can just use policy gradient!

What's wrong with this gradient?
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Figure 5: Amartized varitional inference.

Is there a better
way?
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estimating VJ(¢):

sample €1, ...,€ep from N(0,1) (a single sample works well!) e~ N(0,1)
1 .

V(/)J((/)) ~ ﬁ Z v(/)r(wiv /l'(/)(:l;i,) + €JU</)(»L:)) Low variance :) IIldeCndCIlt of ¢'
S Because now we are directly computing grad r

instead of sampling
most autodiff software (e.g., TensorFlow) will compute this for
you!

Figure 6: The reparameterization trick.

Reparameterization Trick To solve the high variance problem as discussed in Figure 3} we
introduce the reparameterization trick. Compared with policy gradient, the reparameterization is very
simple to implement and has low variance. However, it only works for continuous latent variables.
While the policy gradient can handle both discrete and continuous variables. However, policy gradient
has high variance and requires multiple samples and small learning rates.



4 Variational Autoencoder
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Figure 7: The illustration of Varitional Autoencoder.

A variational autoencoder comprises an encoder, a decoder, and a loss function. As shown in Figure
the encoder g4 (z|x) takes as input z, and encodes z into a latent representation z. While the decoder
po(x|z) takes as input the latent representation z and predicts x. The training objective consists of

two parts where the first part is the expected log-likelihood and the second part is KL-divergence for
measuring the information loss.
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