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Lecture   2:   Autoregressive   Models   and  
Flow   Models  
Scribed   by:   Shao   Yang   Hong,   Kan   Min-Yen,   Joni   Ngo,   Who   else??  

Lecture   presented   by:   Ang   Ming   Liang   and   Eugene   Lim   

Toy   Autoregressive   Models   (Recap)  
Learn   a   NN   to   output   a   probabilistic   density   function.   
Use   conditional   dependence   to   model   the   joint   distribution.   

Recurrent   Neural   Networks  
● RNN   can   be   framed   as   an   AR   model  

Autoencoders  
● Take   original   image   i,   “squeeze”   features   into   a   small   feature   space,   and   “decompress”   it  

to   match   input  
● Autoencoder   learns   a   good   underlying   representation   of   images   i1   -   iN  
● Why   represent   the   inputs   in   less   no.   of   neurons   when   autoencoding :   If   the   size   of  

the   hidden   layers   is   the   same   as   the   input,   the   “squeeze”   won’t   happen   and   it’ll   learn   an  
identity   matrix.   The   squeezing   exists   to   force   the   model   to   generalize   and   compress   the  
information   into   a   small   number   of   neurons   in   the   hidden   layer.  

● Slight   digression   to   Colah’s   blog:  
https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/  

MADE:   Masked   Autoencoder   for   Distribution    Estimation  
● Allows   calculation   of   likelihood   in   a   single   pass  

○ Masked   are   defined   based   on   Bayesian   Beliefs   (i.e.   “don’t   see   into   the   future”)  
○ Masked   Autoencoder   can   be   implemented   simply   as   a   matrix   multiplication  

(autoencoder   *   masks)  
○ The   whole   point   is   to   do   one   forward   pass   to   calculate   the   probability   of   each  

variable;   the   likelihood   of   any   data   point.  
● Sampling   is   slow   because   you   have   iteratively   do   forward   passes   until   you   have   the  

entire   distribution   for   all   of   the   variables.  
● References   and   links  

○ https://arxiv.org/abs/1502.03509  
○ A   PyTorch   MADE   from   the   great   Karpathy  
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● Mask   is   usually   created   as   an   upper   triangular   matrix   or   can   just   be   at   random   (?)   as  
long   as   any   variable   is   not   dependent   on   future   variable  

● Fast   for   influence,   but   slow   for   sampling  
 

Masked   Convolution  

1D   convolution   -   WaveNet  
WaveNet   -   State   of   the   Art   for   speech   synthesis   (eg   generating   Donald   Trump’s   voice!)  

● Based   on   Temporal   (1D)   Convolution.   Inputs   are   eg   the   volume   samples   of   the   input  
audio   

● Receptive   Field :   All   inputs   that   the   output   sees  
● Dilated   convolution :   exponentially   sample   “less   and   less”  

 
Question:    how   does   padding   work   on   TensorFlow   (slide   25   of   53)  
See    https://www.kaggle.com/alvations/padding-slide-25  

2D   convolution   -   PixelCNN   (2016)  
● Impose   an   AR   ordering   on   pixels  
● Gated   PixelCNN   -   Horizontal   stack   +   Vertical   stack  

○ Used   a   modified   ResNet   Block   -   which   they   call   a   Gated   ResNet   Block  
● PixelCNN++  

 

Masked   Attention  
● Originally   applied   to   seq2seq   models.   See   for   example:  

http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/  
● Importance   weights   (\alpha):    Importance   measures   for   hidden   state  
● Self-attention   has   unlimited   receptive   field  
● Masked   Attention   +   Convolution   =>   Good   receptive   fields  
● Speedups   by   caching   activations   
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Second   Half:   Flow   Models  
Recap   of   Gaussian   Mixture   Models  

● Usually   trained   using   expectation   maximization  
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm  

 
Inference:   

- Given   a   datapoint,   tell   me   the   probability   of   the   datapoint  
 
Sampling:   

- Hallucinate   datapoint,   given   that   you   can   estimate   the   probabilities   of   datapoint  
 
 
Keywords   definitions:  

● Jacobian    =   the   matrix   gradient  

 
● Determinant    =   transformation   of   function   to   another  
● Jacobian   determinant  
● Affine    =   fancy   word   for   linear   with   a   bias   (sometimes   known   as    “wx   +b”,   aka   simple  

feedforward)  
● Monotonic   function:    Strictly   increasing/decreasing   function.   

 
Question:    Must   the   inverse   f’_theta(x)   in   the   elementwise   flows   be   the   same   function?   Or   can   it  
be   different?  
 
RealNVP:    https://arxiv.org/abs/1605.08803  
 
This   is   pretty   nice   and   related:    https://blog.evjang.com/2018/01/nf1.html   
 

Related   Links  
 


