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Lecture   3:   Compression   and   Flows  
 
Scribed   by:   Eugene   Lim,   Ang   Ming   Liang,   Ng   Wen   Xian  
Lecture   presented   by:   Daniel   Maung,   Terence   Neo,   Eloise   Lim  

Lossless   Compression   (by   Daniel   Maung   and   Terence   Neo)  
● Universal   Compression   Scheme  

○ No   algorithm   can   compress   every   bitstream  
○ Can   be   proven   by   pigeonhole   principle   and   the   fact   that   lossless   compression  

must   be   bijection   (i.e.   one   to   one).  
○ Another   argument   is   that   if   every   bitstream   can   be   compressed   we   can  

recursively   compress   each   bitstream   to   0   which   is   absurd.   
● Coding   Symbols  

○ Naive   coding:   cannot   exploit   structure.   
○ Variable-length   codes:   need   to   disambiguate.   Can   be   done   by   stopword   (e.g.  

Morse)   or   prefix-free   code   (e.g.   Binary   Tries).  
○ However   prefix-free   code   is   sensitive   to   errors.   
○ Huffman   coding:   optimal   prefix-free   code  

● Theoretical   Limits  
○ Shannon   entropy:   expected   negative   log   probability   (see   [1,   2]   for   intuition.   

■ Why   take   log   in   entropy?  
● https://www.quora.com/Why-is-there-a-logarithmic-function-in-the- 

entropy-formula   
● https://stats.stackexchange.com/questions/87182/what-is-the-role- 

of-the-logarithm-in-shannons-entropy  
● We   can   take   out   the   inverse,   since   negative   log   is   its   reciprocal  

log,   hence   often   entropy   is   presented   as  

   
■ Shannon   theorem:   The   length   of   the   code   is   equal   or   larger   than   the  

entropy   of   the   message.   
● Proof   uses   Jensen’s   inequality[3]  

  
○ Kraft   McMilan   Inequality:   

- For   any   uniquely   decodable   code   C,   we   have   that   ∑ (s,w)   E   C    2^(-l(w))   <=   1,  
l(w)   is   the   length   of   codeword   w   for   symbol   s.  

- For   any   set   of   lengths   L,   if   ∑ l   E   L    2^(-l)   <=   1,   there   is   a   prefix   code   C   of  
same   size   such   that   l(wi)   =   li   (i=1,...,   |L|)  
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- The   same   proof   on   the   slide   is   on   Wikipedia   (a   little   more   verbose)  
https://en.wikipedia.org/wiki/Kraft%E2%80%93McMillan_inequality  

● Cross   entropy   and   proof   on   how   it   is   related   to   KL-divergence   (visual   intuition   at   [2])   
● Conditional   entropy   and   conditional   entropy   has   a   lower   entropy   than   the   original  

entropy.   
● Coding   Considerations  

○ High   entropy   -   long   code   length  
○ Conditional   entropy:   Decrease   the   entropy   by   using   context   as   a   constraint  

● Arithmetic   Coding  
○ Encode   a   sequence   of   characters   with   an   interval   between   0   and   1  
○ Naive   attempt:   use   binary   fractional   notation   and   use   them   as   code  
○ The   probability   distribution   we   use   can   be   obtained   from   a   generative   model   like  

an   autoregressive   model  
○ Issues:   might   straddle,   assumes   infinite   precision  

 
● LZ77  

○ Adaptive   model  
○ Use   a   sliding   window   of   the   history   of   message   to   compress  
○ Bad   if   there's   no   pattern  
○ Pseudo   code:  

while    input   is   not   empty    do  
     prefix   :=   longest   prefix   of   input   that   begins   in   window  
  
      if    prefix   exists    then  
         i   :=   distance   to   start   of   prefix  
         l   :=   length   of   prefix  
         c   :=   char   following   prefix   in   input  
      else  
         i   :=   0  
         l   :=   0  
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         c   :=   first   char   of   input  
      end   if  
  
      output    (i,   l,   c)  
  
     s   :=   pop   l+1   chars   from   front   of   input  
     discard   l+1   chars   from   front   of   window  
     append   s   to   back   of   window  
repeat  

 
 
Cut-aways:  

● This   is   a   nice   explanation   of   the   compression   method,   “Byte-Pair   Encoding”    to  
compress   no.   of   “words”   in   the   vocabulary   used   for   modern   deep   learning   based   NLP  
tasks)  
https://pdfs.semanticscholar.org/1e94/41bbad598e181896349757b82af42b6a6902.pdf   

● http://www.infinitepartitions.com/art001.html  
● One   way   of   making   the   LZ77   encoding   more   effective   is   to   first   do   a   BWT   transform[4]  

then   apply   the   LZ77   compression   algorithm.   This   is   trick   is   often   used   by   computational  
biologist   to   compress   large   genomic   data   file.   

● Visualization   of   different   compressions:  
○ https://people.ok.ubc.ca/ylucet/DS/Huffman.html  

 

Related   Links  
[1]    https://math.stackexchange.com/questions/331103/intuitive-explanation-of-entropy  
[2]    https://colah.github.io/posts/2015-09-Visual-Information/  
[3]     https://www.quora.com/What-is-an-intuitive-explanation-of-Jensens-Inequality  
[4]    https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform  
 

Normalizing   Flow   (by   Eloise   Lim   and   Amit   Prusty)   
● AR   cannot   use   for   continuous   distributions  
● Naive:   Discretize   the   space   and   use   AR  
● Can   use   GMM,   but   doesn't   work   for   high   dimensional   data  
● Think   in   CDF   to   make   sampling   simple.  

○ Sample   from   Uni(0,   1)  
○ Put   it   through   the   inverse   CDF   

● Mapping   to   z(noise)  
○ Called   ‘noise’   because   it   doesn’t   make   sense   without   the   mapping   from   the  

original   data  
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● Need   a   formula   relating   p(x)   and   p(z).   Unfortunately,   it   involves   the   determinant   of   the  
Jacobian.   Thus,   need   to   make   sure   determinant   of   the   Jacobian   of   f   is   easy   (i.e.   take   an  
upper   or/and   lower   triangular   matrix)   to   calculate   and   differentiate.   

● The   model   is   learnt   using   maximum   likelihood.   
● One   interesting   feature   of   flow   is   the   ability   to   stack   flows   together   and   compose   flow  

models   to   form   larger   flow   models.   This   allows   you   to   break   up   a   complex   flow   model  
and   learn   them   each   input   feature   at   a   time,   allowing   you   to   capture   non-linearities  
better.   However   you   lose   the   “O(1)”   sample   and   inference   features   of   flows.   

○ Might   be   relevant:    https://en.wikipedia.org/wiki/Universal_approximation_theorem  
(talks   about   the   expressive   power   of   networks   and   the   ability   to   represent   a   wide  
variety   of   functions   with   universal   approximators)  

● In   order   to   make   the   model   learn   using   any   arbitrary   neural   network   model   one   way   is   to  
split   the   input   data   i.e.   RealNVP   [1,2]  

 
 
Keywords   Definitions:  

- Quantization   (into   different   bins):   
- sort   of   compression   nearby   information   to   the   same   point  

- Gaussian   distribution,   aka.   Normal   distribution.   
- Known   as   Gaussian   because   it’s   discovered   by   Carl   Friedrich   Gauss  

 

Related   Links  
[1]    https://arxiv.org/abs/1605.08803  
[2]    https://lyusungwon.github.io/generative-models/2018/07/18/realnvp.html  
https://www.shortscience.org/paper?bibtexKey=journals/corr/1605.08803#hlarochelle  
 


