
CS6101-1910 / DYC1401 Deep Unsupervised Learning - Scribe Notes from Week 3

Lecture 3: Compression and Flows

Scribed by: Eugene Lim, Ang Ming Liang, Ng Wen Xian
Lecture presented by: Daniel Maung, Terence Neo, Eloise Lim

Lossless Compression (by Daniel Maung and Terence Neo)
● Universal Compression Scheme

○ No algorithm can compress every bitstream
○ Can be proven by pigeonhole principle and the fact that lossless compression

must be bijection (i.e. one to one).
○ Another argument is that if every bitstream can be compressed we can

recursively compress each bitstream to 0 which is absurd.
● Coding Symbols

○ Naive coding: cannot exploit structure.
○ Variable-length codes: need to disambiguate. Can be done by stopword (e.g.

Morse) or prefix-free code (e.g. Binary Tries).
○ However prefix-free code is sensitive to errors.
○ Huffman coding: optimal prefix-free code

● Theoretical Limits
○ Shannon entropy: expected negative log probability (see [1, 2] for intuition.

■ Why take log in entropy?
● https://www.quora.com/Why-is-there-a-logarithmic-function-in-the-

entropy-formula
● https://stats.stackexchange.com/questions/87182/what-is-the-role-

of-the-logarithm-in-shannons-entropy
● We can take out the inverse, since negative log is its reciprocal

log, hence often entropy is presented as

■ Shannon theorem: The length of the code is equal or larger than the

entropy of the message.
● Proof uses Jensen’s inequality[3]

○ Kraft McMilan Inequality:

- For any uniquely decodable code C, we have that ∑ (s,w) E C 2^(-l(w)) <= 1,
l(w) is the length of codeword w for symbol s.

- For any set of lengths L, if ∑ l E L 2^(-l) <= 1, there is a prefix code C of
same size such that l(wi) = li (i=1,..., |L|)

CS6101-1910 / DYC1401 Deep Unsupervised Learning - Scribe Notes from Week 3

- The same proof on the slide is on Wikipedia (a little more verbose)
https://en.wikipedia.org/wiki/Kraft%E2%80%93McMillan_inequality

● Cross entropy and proof on how it is related to KL-divergence (visual intuition at [2])
● Conditional entropy and conditional entropy has a lower entropy than the original

entropy.
● Coding Considerations

○ High entropy - long code length
○ Conditional entropy: Decrease the entropy by using context as a constraint

● Arithmetic Coding
○ Encode a sequence of characters with an interval between 0 and 1
○ Naive attempt: use binary fractional notation and use them as code
○ The probability distribution we use can be obtained from a generative model like

an autoregressive model
○ Issues: might straddle, assumes infinite precision

● LZ77

○ Adaptive model
○ Use a sliding window of the history of message to compress
○ Bad if there's no pattern
○ Pseudo code:

while input is not empty do
 prefix := longest prefix of input that begins in window

 if prefix exists then
 i := distance to start of prefix
 l := length of prefix
 c := char following prefix in input
 else
 i := 0
 l := 0

CS6101-1910 / DYC1401 Deep Unsupervised Learning - Scribe Notes from Week 3

 c := first char of input
 end if

 output (i, l, c)

 s := pop l+1 chars from front of input
 discard l+1 chars from front of window
 append s to back of window
repeat

Cut-aways:

● This is a nice explanation of the compression method, “Byte-Pair Encoding” to
compress no. of “words” in the vocabulary used for modern deep learning based NLP
tasks)
https://pdfs.semanticscholar.org/1e94/41bbad598e181896349757b82af42b6a6902.pdf

● http://www.infinitepartitions.com/art001.html
● One way of making the LZ77 encoding more effective is to first do a BWT transform[4]

then apply the LZ77 compression algorithm. This is trick is often used by computational
biologist to compress large genomic data file.

● Visualization of different compressions:
○ https://people.ok.ubc.ca/ylucet/DS/Huffman.html

Related Links
[1] https://math.stackexchange.com/questions/331103/intuitive-explanation-of-entropy
[2] https://colah.github.io/posts/2015-09-Visual-Information/
[3] https://www.quora.com/What-is-an-intuitive-explanation-of-Jensens-Inequality
[4] https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform

Normalizing Flow (by Eloise Lim and Amit Prusty)
● AR cannot use for continuous distributions
● Naive: Discretize the space and use AR
● Can use GMM, but doesn't work for high dimensional data
● Think in CDF to make sampling simple.

○ Sample from Uni(0, 1)
○ Put it through the inverse CDF

● Mapping to z(noise)
○ Called ‘noise’ because it doesn’t make sense without the mapping from the

original data

CS6101-1910 / DYC1401 Deep Unsupervised Learning - Scribe Notes from Week 3

● Need a formula relating p(x) and p(z). Unfortunately, it involves the determinant of the
Jacobian. Thus, need to make sure determinant of the Jacobian of f is easy (i.e. take an
upper or/and lower triangular matrix) to calculate and differentiate.

● The model is learnt using maximum likelihood.
● One interesting feature of flow is the ability to stack flows together and compose flow

models to form larger flow models. This allows you to break up a complex flow model
and learn them each input feature at a time, allowing you to capture non-linearities
better. However you lose the “O(1)” sample and inference features of flows.

○ Might be relevant: https://en.wikipedia.org/wiki/Universal_approximation_theorem
(talks about the expressive power of networks and the ability to represent a wide
variety of functions with universal approximators)

● In order to make the model learn using any arbitrary neural network model one way is to
split the input data i.e. RealNVP [1,2]

Keywords Definitions:

- Quantization (into different bins):
- sort of compression nearby information to the same point

- Gaussian distribution, aka. Normal distribution.
- Known as Gaussian because it’s discovered by Carl Friedrich Gauss

Related Links
[1] https://arxiv.org/abs/1605.08803
[2] https://lyusungwon.github.io/generative-models/2018/07/18/realnvp.html
https://www.shortscience.org/paper?bibtexKey=journals/corr/1605.08803#hlarochelle

