CS6101-1910 / DYC1401 Deep Unsupervised Learning - Scribe Notes from Week 5

Lecture 5: Latent Variable Models 2 and Bits-back Coding

Scribed by: Terence Neo, Eloise Lim, Xueqi, Rishav Chourasia Lecture presented by: David Yam, Hitoshi, Song Kai

Lecture 4a: Latent Variable Models 2

Variational Inference

• Evaluate marginal likelihood to train the latent variable model

$$p(x) = \sum_{z} p(z, x)$$

VI as Importance Sampling

- If z is high dimension and probability mass concentrated over one z (eg. car in an image, only the car is important)
 - Use Importance Sampling to sample high density regions
 - The lower bound of log (p(x)) computed via importance sampling is

$$\mathbb{E}_{z \sim q(z|x)} \left[\log \frac{p(z,x)}{q(z|x)} \right]$$

• Importance ratio for some sample of z, zi:

$$w_i = \frac{p(z_i, x)}{q(z_i | x)}$$

• The lower bound of log p(x) can be tightened by taking k samples:

$$\mathcal{L}_k = \mathbb{E}\left[\log\frac{1}{k}\sum_{i=1}^k w_i\right]$$

• Theorem: For all k, the lower bounds satisfy

$$\log p(\mathbf{x}) \geq \mathcal{L}_{k+1} \geq \mathcal{L}_k.$$

Moreover, if $p(\mathbf{h}, \mathbf{x})/q(\mathbf{h}|\mathbf{x})$ is bounded, then \mathcal{L}_k approaches $\log p(\mathbf{x})$ as k goes to infinity.

- Implications:
 - 1st inequality:

CS6101-1910 / DYC1401 Deep Unsupervised Learning - Scribe Notes from Week 5

- 2nd inequality: If you have more samples, you will not be worse off (lower bound increases as k increases)
- •

Improving VAEs

- Reducing Variational Gap:
 - Result of mismatch between approx posterior and true posterior
 - Use importance sampling: IWAE (Importance Weighted Autoencoder)

Lecture 4b: Bits-Back Coding

Challenges from previous encodings: Continuous data and high dimension data

Use multiple Gaussian to encode many distributions that the original distribution cannot decode

Scheme 1: "Max-mode" Coding

To code x: Find i that maximises p(i|x)Send i --- cost: log1/p(i)Send x --- cost:log 1/p(x|i)Limitation: may not be the max a gaussian can encode, cost = H(x) + KL(P||Q)

Scheme 2: Posterior-Mode Sampling Coding

Optimal? Yes if we like to send (i,x) b/c we use log 1/p(x,i)BUT: we are looking to send just x, so the overhead of log 1/(pi|x)

Scheme 3: Bits-Back Coding (the best)

Recipient decodes i,x + knows p(i|x) -> can reconstruct the random bits used to sample p(i|x) -> those random bits were also sent -> these are log1/p(i|x) random bits, which we now don't have to count -> the cost is the lowest -> Optimal!!!

BB-ANS

How well does BB-ANS work? Assumptions to investigate:

- Finite precision approximation of log 1/p
- Inefficiency in encoding the first data point
- VAE has **continuous** latent variables

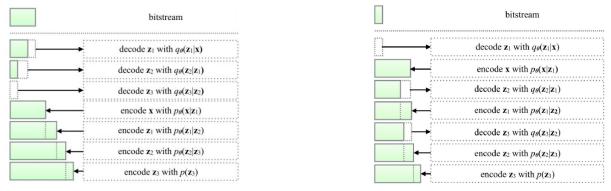
CS6101-1910 / DYC1401 Deep Unsupervised Learning - Scribe Notes from Week 5

- Expected encoding length is given by KL(continuous distribution || discrete distribution)
- Are the bits clean

Can we do even better?

Quality of encoding depends on quality ELBO

Latent variable models with multiple latent layers tend to achieve better ELBO than with a single latent layer


Bit-Swap

Bit-Swap Encoding

-treat information as whole

-By doing all decoding at first \rightarrow larger information bits

- require fewer initial bits than ANS

Asymmetric Numeral System (ANS)

Assign natural numbers to a and b, a and b are unique sets, a union b is the universal set Eg. if $p(a) = \frac{1}{4}$, a contains every 4th number, eg $a = \{0,4,8,12,16,...\}$, $b = \{1,2,3,5,6,7,...\}$ We have information stored in a number **x** and want to add information of symbol s=0,1: **asymmetrize** ordinary/symmetric **binary system**: optimal for Pr(0)=Pr(1)=1/2

0	most significant position $x' = x + s \cdot 2^n$ 2^n 2^{n+1} $s = 0$ $s = 1$ 00 01 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		e.g. $x = 1 \xrightarrow{5-0} 2 \xrightarrow{1} 5 \xrightarrow{1} 11 \xrightarrow{1} 23 \xrightarrow{1} 47$
	range/arithmetic coding: rescale ranges	some asymmetric binary system for Pr(0) = 1/4, Pr(1) = 3/4 redefine even/odd numbers - modify their densities:
0	$N \cdot Pr(0)$ N $s = 0$ $s = 1$ 00 01 10 11	$x' \approx x/\Pr(s)$ $x' \approx \frac{s=0}{x}$ $x' = 0$ $x' = 0$ $x' = 0$ $x = 1$ $x $

Some helpful links:

- 1. Importance weighted autoencoders tutorial <u>http://dustintran.com/blog/importance-weighted-autoencoders</u>
- 2. Asymmetric numeral systems: entropy coding combining speed of Huffman coding with compression rate of arithmetic coding: <u>https://arxiv.org/pdf/1311.2540.pdf</u>
- 3. Importance sampling tutorial <u>https://www.roe.ac.uk/ifa/postgrad/pedagogy/2010_grocutt.pdf</u>
- 4. Importance weighted autoencoder paper https://arxiv.org/abs/1509.00519
- 5. Bits-back coding https://www.cs.helsinki.fi/u/ahonkela/papers/infview.pdf
- 6. 2019 paper, exceptional performance with just one VAE bits-back coding, BB-ANS https://arxiv.org/pdf/1901.04866.pdf
- 7. Asymmetric numeral system https://en.wikipedia.org/wiki/Asymmetric_numeral_systems