Semi-Supervised Learning

Eugene Lim

(z,y) ~ p(z,y)

What is Semi-Supervised Learning?

(z,y) ~ p(z,y)

x ~ p(z)

What is Semi-Supervised Learning?

Pi Model

Pi Model

M-model

S e s

stochastic
augmentation

network

»| with dropout

Zj

>

»

Iy

Z.

l

Cross-
entropy

squared
difference

w(t)
» weighted
o sum — [oss

Pi Model

M-model

w(t)
v

Vi Z """" > cross-
, 5 i »| entro
Xi stochastic 7| network < Sopy
augmentation »| with dropout squared
Zj difference

weighted
sum

—> loss

Algorithm 1 II-model pseudocode.

Require: z; = training stimuli

Require: L = set of training input indices with known labels
Require: y; = labels for labeled inputs ¢ € L
Require: w(t) = unsupervised weight ramp-up function

Require: fy(z) = stochastic neural network with trainable parameters 6

Require: g(z) = stochastic input augmentation function

for ¢ in [1, num_epochs| do

for each minibatch B do
zieB <+ fo(9(zieB))
ZieB < fo(9(xicB))

loss + — ﬁ Zie(BﬂL) log 2;[y;]
+w(t) gy Yo Nl — 5l

update 6 using, e.g., ADAM
end for
end for
return 6

> evaluate network outputs for augmented inputs
> again, with different dropout and augmentation

> supervised loss component
> unsupervised loss component
> update network parameters

Pi Model

Temporal Ensembling

Temporal Ensembling

Temporal ensembling

w(t)

) 000 » cross- %
i Zj entropy > weighted
i ausgtg'f::tsattlicon d wi:hefjvl\fg[r)l(()ut l > sﬂm loss
squared g
Z. »| difference
l \ P
#Zl'

Temporal Ensembling

Temporal ensembling

w(t)
s » cross- <
i Zj entropY [weighted
¥y ausg;%c::tsattlicon b wi?hefjvzg:;ut : | sgm loss
squared
Zj N »| difference
#Z,’

Algorithm 2 Temporal ensembling pseudocode. Note that the updates of Z and Z could equally
well be done inside the minibatch loop; in this pseudocode they occur between epochs for clarity.

Require: z; = training stimuli

Require: L = set of training input indices with known labels
Require: y; = labels for labeled inputs ¢ € L
Require: o =ensembling momentum, 0 < a < 1

Require: w(t) = unsupervised weight ramp-up function

Require: fy(z) = stochastic neural network with trainable parameters
Require: g(z) = stochastic input augmentation function

Z < Ovxa
2 0[N><C]

for ¢ in [1, num_epochs]| do

for each minibatch B do
zieB < fo(9(zieB,t))

ol
loss « — 7 >,

ie(BnL) 108 Zi [ys]

< w(t)ﬁ ZieB ||z — 21“2

update 6 using, e.g., ADAM

end for

Z+—aZ+(1—a)z
Z« Z/(1—-ab)

end for
return 6

> initialize ensemble predictions
> initialize target vectors

> evaluate network outputs for augmented inputs
> supervised loss component

> unsupervised loss component
> update network parameters

> accumulate ensemble predictions
> construct target vectors by bias correction

Temporal Ensembling

How to do better?

Temporal ensembling

w(t)

) 000 » cross- %
i Zj entropy > weighted
i ausgtg'f::tsattlicon d wi:hefjvl\fg[r)l(()ut l > sﬂm loss
squared g
Z. »| difference
l \ P
#Zl'

How to do better?

N

~.

better "targets"

How to do better?

better randomization

| stochastic
augmentation

How to do better?

Mean Teacher

N

~.

better "targets"

Mean Teacher

Mean Teacher

SE I'NUAN/AVERAGE
LMY PASTISTUDENTS

Mean Teacher

prediction prediction

....... A f
< ’ : >
classification consistency
cost cost
! f f
— =
= | _-
= ——
H 3
I | —— 6——0 ——) 1]
_ exponential)
[— =] moving _—
s avneegn —
L | L]
label input student model teacher model

Mean Teacher

Virtual Adversarial Training

better randomization

| stochastic
augmentation

Virtual Adversarial Training

Virtual Adversarial Training

Ladv(xla 9) =D [Q(y‘xl)ap(y‘xl + Tadv s (9)]

where Tadv = arg max [[q(nyz),p(y|xl + T, 9)])
ri||r|l<e

Virtual Adversarial Training

@ no closed form @

radv ‘= arg max D [q(y|z;), p(y|x; + 7, 0)]

il <e

Virtual Adversarial Training

Pady = ar% r”naxD q(y|z1), p(y|xs 4 7,0)]
r;lr|<e

Tala where g = Vo, D [h(y;y1), p(y| 21, 0)]

Virtual Adversarial Training

Adversarial training is a successful method that works for
many supervised problems. However, full label information
is not available at all times. Let x, represent either x; or z,;.
Our objective function is now given by

D [q(ylz.), p(ylzs + Tqadv, 0)]
where rqadv 1= arg max D [q(y|z«), p(y|z« + 7,0)],

rillrl| <e

Virtual Adversarial Training

@ we don't have this @

q(y|Ts)

Virtual Adversarial Training

@ we don't have this replace with

A

q(ylw.) ' p(ylz.,0)

Virtual Adversarial Training

LDS(z.,0) := D [p(y|x*, 0), p(y|zs + rvady, 9)]

I'vadv -=— aI'g max [{p(y‘x*a é)ap(y’x* T 7“)} 3

ri||r]|l2<e

Virtual Adversarial Training

1
Readv (D1, Doy) = LDS(z. .
dv(D1, D, 0) N TN E%:D | S(xx,0)

K(Dly 9) + aRV&dV (Dla Dul, 9)

Virtual Adversarial Training

