Latent Variable Models (Part 3)

Shen Ting Ang
19 Sep 2019
Outline

● Warm-up on Variational Inference
 ○ Recap
 ○ An importance sampling view
 ○ Variational Mutual Information Estimation/Maximization
 ○ Variational Dequantization

● Improving VAEs
 ○ Reducing variational gap
 ○ More flexible decoder & posterior collapse problem
 ○ More expressive architectures
Mutual Information

- Mutual Information between two random variables X, Y: $I(X;Y)$ is defined as:

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$
Mutual Information and Dependency

- Mutual Information: General way to measure dependency between two random variables.
- Don’t we already have correlation? Why dependency over correlation?
Correlation vs Dependency

Does lack of correlation imply lack of dependence? No
Mutual Information

- Useful in a lot of settings where one wants to maximize dependency between two variables or estimate their dependencies:
 - [Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning](https://github.com/jefflai108/Contrastive-Predictive-Coding-PyTorch)
 - [InfoGan](https://github.com/jefflai108/Contrastive-Predictive-Coding-PyTorch)
 - [Contrastive Predictive Coding](https://github.com/jefflai108/Contrastive-Predictive-Coding-PyTorch)
Outline

● Warm-up on Variational Inference
 ○ Recap
 ○ An importance sampling view
 ○ Variational Mutual Information Estimation/Maximization
 ○ Variational Dequantization

● Improving VAEs
 ○ Reducing variational gap
 ○ More flexible decoder & posterior collapse problem
 ○ More expressive architectures
Uniform Dequantization (Recap)

- Idea: Add noise to data
 - E.g. Image data: $x \in \{0, 1, 2, \ldots, 255\}$
 - Add noise $u \sim \text{Uniform} [0,1)^D$

$$
\mathbb{E}_{y \sim p_{\text{data}}} \left[\log p_{\text{model}}(y) \right] = \sum_x P_{\text{data}}(x) \int_{[0,1)^D} \log p_{\text{model}}(x + u) \, du
$$

$$
\leq \sum_x P_{\text{data}}(x) \log \int_{[0,1)^D} p_{\text{model}}(x + u) \, du
$$

$$
= \mathbb{E}_{x \sim p_{\text{data}}} \left[\log P_{\text{model}}(x) \right]
$$

[Theis, Oord, Bethge, 2016]
Uniform Dequantization (Recap)

- Idea: Add noise to data
 - E.g. Image data: $x \in \{0, 1, 2, \ldots, 255\}$
 - Add noise $u \sim \text{Uniform } [0,1)^D$

Problems:

- P_{model} assigns uniform density to unit hypercubes - unnatural!
- Neural networks are usually smooth functions
Variable Dequantization

Idea: Learn noise q using Variational Inference

$$\mathbb{E}_{x \sim P_{\text{data}}} \left[\log P_{\text{model}}(x) \right] = \mathbb{E}_{x \sim P_{\text{data}}} \left[\log \int_{[0,1]^D} q(u|x) \frac{p_{\text{model}}(x + u)}{q(u|x)} \, du \right]$$

$$\geq \mathbb{E}_{x \sim P_{\text{data}}} \left[\int_{[0,1]^D} q(u|x) \log \frac{p_{\text{model}}(x + u)}{q(u|x)} \, du \right]$$

$$= \mathbb{E}_{x \sim P_{\text{data}}} \mathbb{E}_{u \sim q(\cdot|x)} \left[\log \frac{p_{\text{model}}(x + u)}{q(u|x)} \right]$$

[Ho et al., 2019]
Variable Dequantization

Intuition:

- Learn easy to fit dequantization noise
- “Find points in the interval which is easy for model to maximize”
- $u \sim q(u|x)$ is analogous to VAE

How to train: Train both models jointly.
Outline

● Warm-up on Variational Inference
 ○ Recap
 ○ An importance sampling view
 ○ Variational Mutual Information Estimation/Maximization
 ○ Variational Dequantization

● Improving VAEs
 ○ Reducing variational gap
 ○ More flexible decoder & posterior collapse problem
 ○ More expressive architectures
Hierarchical Latent Variables

Idea: Chain latent variables (Markov Chain or autoregressive)

\[
p(x, z) = p(x|z)p(z) \quad \quad \quad p(x, z_{1:L}) = p(x|z_{1:L}) \left(\prod_{i=1}^{L-1} p(z_i|z_{i+1:L}) \right) p(z_L)
\]
Hierarchical Latent Variables

Idea: “Nested” VAEs

- More latent variables -> More powerful distributions
- More modelling capacity
Training multiple latent variables

Idea: Treat latent variables as one latent variable

Generation:

\[p(x, z_{1:L}) = p(x|z_{1:L}) \left(\prod_{i=1}^{L-1} p(z_i|z_{i+1:L}) \right) p(z_L) \]

Variational Lower Bound:

\[\log p(x) \geq \mathbb{E}_{z_{1:L} \sim q(z_{1:L}|x)} \left[\log \frac{p(x, z_{1:L})}{q(z_{1:L}|x)} \right] \]

- Evaluating/Differentiating \(p(x,z) \) is fast
- Deepest models are about 20 latent variables, so slower sampling isn’t so much of an issue (as compared to sampling thousands)
Inference networks for hierarchical models

- $q(z_{1:L}|x)$ should be as flexible as possible, yet fast to sample for fast training.
- Examples:
 - **IAF-VAE (Kingma et al. 2016)** - IAF for each z, stitched together autoregressively over layers.
 - **Bi-directional Inference Variational Autoencoder (BIVA) (Maaløe et al. 2019)** - uses autoregressive flows over $1:L$; Very effective, SOTA on many benchmarks.
 - Autoregressive structure is over layers (not dimensions of data), hence sampling speed is still acceptable.