Generative Adversarial Networks

Takanori Aoki
19 Sep 2019

UC Berkeley -- Spring 2019 -- Deep Unsupervised Learning -- Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas -- L5¢c GANs / Implicit Models 22

Generative Adversarial Networks

Generative Adversarial Nets

Ian J. Goodfellow; Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair} Aaron Courville, Yoshua Bengio$
Département d’informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC H3C 3J7

Abstract

We propose a new framework for estimating generative models via an adversar-
ial process, in which we simultaneously train two models: a generative model G
that captures the data distribution, and a discriminative model D that estimates
the probability that a sample came from the training data rather than G. The train-
ing procedure for G is to maximize the probability of D making a mistake. This
framework corresponds to a minimax two-player game. In the space of arbitrary
functions GG and D, a unique solution exists, with G recovering the training data
distribution and D equal to % everywhere. In the case where G and D are defined
by multilayer perceptrons, the entire system can be trained with backpropagation.
There is no need for any Markov chains or unrolled approximate inference net-
works during either training or generation of samples. Experiments demonstrate
the potential of the framework through qualitative and quantitative evaluation of
the generated samples.

So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

n
pg(x) = Hpo(:cikcl, ey xz’—l)
1=1

VAEs define intractable density function with latent z:

po(z) = [poeIpo(alz)dz
Cannot optimize directly, derive and optimize lower bound on likelihood instead
What if we give up on explicitly modeling density, and just want ability to sample?
GANSs: don’t work with any explicit density function!

Instead, take game-theoretic approach: learn to generate from training distribution
through 2-player game

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

G ene rat|ve Ad versa rl a I N etWO rkS lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to Output: Sample from
represent this complex training distribution
transformation? f
A: A neural network! Generator
Network
2
Input: Random noise yA

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

lan Goodfellow et al., “Generative

Tralnlng GANS TWO-pIayer game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

f

Discriminator Network

Fake Images Real Images
(from generator) | d"' (from training set)
4
Generator Network
4
Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

5

Tra|n|ng GANS TWO-p|ayer game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max []Emdiam log Dy, (z) + E,~p(z) log(1l — Dy, (Go, (Z)))]
0y 04 — ' T !

Discriminator output Discriminator output for
for real data x generated fake data G(z)

- Discriminator (64) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

- Generator (6,) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

8

Tra|n|ng GANS TWO-p|ayer game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014
Minimax objective function:

n%in I%ax [Emdiata]'Og Dod (x) + Esz(z)]'Og(]' - Ded (Ggg (Z)))]
g d
Alternate between:

1. Gradient ascent on

discriminator

nleax [Em’vpdata]'Og Ded (m) + EZNP(Z)]'Og(]' _ Dod(Ggg ('z)))]
d

2. Gradient descent on
generator r%in]Ezwp(z) log(l — Dad (Ggg (z)))

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

9

lan Goodfellow et al., “Generative

Tralnlng GANS TWO-pIayer game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

f

Discriminator Network

Fake Images | Real Images
(from generator) | d"' (from training set)
' -

Generator Network
A After training, use generator network to

generate new images

Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

5

Generative Adversarial Networks

min max Byp,,, (108 D(2)] + Eznp(z) [log(l — D(G(2)))]

« Two player minimax game between generator (G) and
discriminator (D)

= (D) tries to maximize the log-likelihood for the binary
classification problem [data: real (1), generated: fake (0)]

« (G) tries to minimize the log-probability of its samples being
classified as “fake” by the discriminator (D)

Generative Adversarial Networks

D tries to make
D(G(z)) near 0,
D(x) tries to be G tries to make
near 1 D(G(z)) near 1
leferentlable D

function D

7 sampled from T sampled from
data model
Differentlable
function G

?

I . Figure taken from NeurlIPS 2016
Dputinolse;s GAN Tutorial (Goodfellow)

(N N)

Generative Adversarial Networks
Illustration of GANs

. 7L T

JP) = Eappia(@log D(@)] + By (2 [log(1 — D(G(2)))]

http://wnzhang.net/tutorials/siqir2018/docs/siqir18-irgan-full-tutorial.pdf

Generative Adversarial Networks

ldeal Final Equilibrium

* Generator generates
perfect data
distribution

e Discriminator cannot

distinguish the true
and generated data ////‘\\\\

http://wnzhang.net/tutorials/siqir2018/docs/sigir18-irgan-full-tutorial.pdf

Generative Adversarial Networks

s What’s the optimal discriminator given generated and true distributions?
V(G, D) = Eznpyara 108 D(2)] + E,op(z) [log(1 — D(G(2)))]

— /pdata(a:) logD(:c)da:—l—/p(Z) log(1 — D(G(z)))d=

x z

— [passa(a)log D@z + [p,(@)1og(1 ~ D(a))d

x

= / [Pdata () log D(z) 4 py(x) log(1 — D(z))] d

a

Vylalogy +blog(l—y)] =0 = y* = Y [a,b] € R?\[0,0]
pdata(x)

— D) = @) + 2o

Generative Adversarial Networks

m Whatis the generator objective given the optimal discriminator?

pdata<x) o Pg (CC)
Pameal®) +pg<x>] + Berry [1 8 tera(®) +pg<a:>]

ata + she i
= —log(4) + KL (pdataH (pd : 9 pg)) it (ng (pd t 2 pg))

-~

(Jensen-Shannon Divergence (JSD) of pgata and pg) > 0
V(G*,D") = —log(4) when p, = pdata

— IE:UNPd ata |:10g

Generative Adversarial Networks

m What is the generator objective given the optimal discriminator?

UC Berkeley -- Spring 2019 -- Deep Unsupervised Learning -- Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas -- L5¢ GANs / Implicit Models 28

Behaviors across divergence measures

Data KLD MMD JSD

Figure 1: An isotropic Gaussian distribution was fit to data drawn from a mixture of Gaussians
by either minimizing Kullback-Leibler divergence (KLD), maximum mean discrepancy (MMD), or

Jensen-Shannon divergence (JSD). The different fits demonstrate different tradeoffs made by the
three measures of distance between distributions.

A note on the evaluation of generative models (Theis, Van den Oord, Bethge 2015)

Direction of KL divergence

Probability Density

q" = argmin, Dk (pl|q)

— p(x)

- q"(x)

Probability Density

8

Maximum likelihood

q" = argmin, Dk, (q||p)

a\ —

p(z)
- q¢"(x)

Reverse KL

Deep Learning Textbook (Goodfellow 2016)- Chapter 3

Mode covering vs Mode seeking: Tradeoffs

For compression, one would prefer to ensure all points in the data
distribution are assigned probability mass.

For generating good samples, blurring across modes spoils
perceptual quality because regions outside the data manifold are
assigned non-zero probability mass.

Picking one mode without assigning probability mass on points
outside can produce “better-looking” samples.

Caveat: More expressive density models can place probability
mass more accurately. Example: Using mixture of gaussians as
opposed to a single isotropic gaussian.

Back to GANs

Recall

0 X B, 108 D(2)] + By o (1 — D(G()))

N ————————————————————— ————————————————————————————

Discriminator
Mini-Exercise:
m Isit feasible to run the inner optimization to completion?
m For this specific objective, would it create problems if we were able to do

SO?

Back to GANs

=« Generator samples confidently classified as fake by the
discriminator receive no gradient for the generator update.
« Referred to as the ‘Discriminator Saturation’ problem.

10 = sgmoid

—— derivative of sig

Vs log(1 — D(G(2))) where D(z) = sigmoid(z;0) = o(z;0)

Vo (z) = o(x)(1 —o(z))

Back to GANs

m Alternate between optimizing (taking gradient descent steps on) the

discriminator and generator objectives

L(D) (HDa QG) == _Emwpd.dta [log D(I, HD)] -]E’ZNp(Z) [log(l o D(G(Z, QG)a HD))]

L 0p,06) = E.pz) log(1 — D(G(2;0c),0p))]

0p ==0p —a'PIVy, L) (0p,00)
O =0 — 9V, L9 p,0c)
Balancing these two updates is hard for the zero-sum game

Goodfellow suggests modifying the generator objective to make the adversarial
game non-zero sum and help address the saturation problem

lan Goodfellow et al., “Generative

Tralnlng GANS TWO-pIayer game Adversarial Nets”, NIPS 2014
Putting it together: GAN training algorithm

for number of training iterations do

forl: sieps o
e Sample minibatch of m noise samples {z(), ..., 2(™)} from noise prior p,(2).

.« . (1) (m)

Some find k=1 ;dS:(t:nDI))le minibatch of m examples {z'!),... , 2\™)} from data generating distribution
al .

more stable, e Update the discriminator by ascending its stochastic gradient:
others use k > 1, 1 — . :

Vo, > | 10g Do, (¢) + log(1 — Do, (G, (21")))|
no best rule. m —]
R t K end for

ecentwork (e.g. Sample minibatch of m noise samples {z(%), ..., 2(™)} from noise prior p,(2).

Wasserstein GAN) e Update the generator by ascending its stochastic gradient (improved objective):
alleviates this 1™ '

— log(D (%)
problem, better Vo, — ; 0g(De,(Go, (2*)))

e
stability! ———

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

4

GANSs - Non Saturating version

L) = —Egrpyaa 108 D(@)] — Ep(z) [log(1 — D(G(2)))]

L@ = —L” = minE. .., log(1 — D(G(=)))

, / Not zero-sum

L") = —Egrpyo. log D(2)] — E.np(z) [log(1 — D(G(2)))]

L) = —E,) log(D(G(2)) = max .,z log(D(G(2))

Figure from Goodfellow et al 2014

Mode Collapse

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

Standard GAN training collapses when the true distribution is a mixture of
gaussians (Figure from Metz et al 2016)

UC Berkeley -- Spring 2019 -- Deep Unsupervised Learning -- Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas -- L5¢ GANs / Implicit Models 36

How to evaluate?

= Evaluation for GANs is still an open problem
« Unlike density models, you cannot report explicit
likelihood estimates on test sets.

Parzen-Window density estimator

Also known as Kernel Density Estimator (KDE)
An estimator with kernel K and bandwidth h:

Ph(z) = % ZK (x _hx>

In generative model evaluation, K is usually density function
of standard Normal distribution

Bishop 2006

Parzen-Window density estimator

« Bandwidth h matters
= Bandwidth h chosen according to validation set

efeence

0
o
— 0.3 I
SH4—01 I
> ™M 4!
2 o7 '
S N | \
A O]
—
o U
o
o I | lllllll‘ T TR T A |r|

X Bishop 2006

Evaluation

Model MNIST TFD
DBN [3] 138 + 2 1909 + 66
Stacked CAE [3] | 121 +1.6 | 2110 =50
Deep GSN [5] 214 == 1.1 1890 £ 29
Adversarial nets 225+ 2 | 2057 = 26

Parzen Window density estimates (Goodfellow et al)

Parzen-Window density estimator

Parzen Window estimator can be unreliable

= | 0g-likelihood =@== Estimate

240 » Model Parzen est. [nat]
= 200 Stacked CAE 121
E 4en DBN 138
8 GMMN 147
= = Deep GSN 214
"—fm 80 Diffusion 220
S 40 /M GAN 225
. \ True distribution 243
101102103 10% 105106107 GMMN + AE 282
k-means 313

Number of samples

A note on the evaluation of generative models (Theis, Van den Oord, Bethge 2015)

Inception Score

Can we side-step high-dim density estimation?
One idea: good generators generate samples that are
semantically diverse
Semantics predictor: trained Inception Network v3
= Pp(y|x), yis one of the 1000 ImageNet classes

Considerations:
. each image x should have distinctly recognizable object -> p(y|x)
should have low entropy
« there should be as many classes generated as possible -> p(y) should
have high entropy

Inception Score

« Inception model: p(yl|x)

= Marginal label distribution: p(y) :/p(y|x)pg(x)
= Inception Score: r

IS(x) :eXp(EmNPQ Dk p(y|z) || p()]])
:exp(EmNpg,pr(ym log p(y|z) — log p(y)])
=exp(H (y) — H(y|z))

Improved Gan (Salimans et al 2016)

Inception Score

Samples

Model Real data Our methods -VBN+BN -L+HA

Score =+ std. 11.24 =& .12 8.09 £ .07 7.54 = .07 6.86 + .06

Fréchet Inception Distance

= Inception Score doesn’t sufficiently measure diversity: a list of
1000 images (one of each class) can obtain perfect Inception
Score

=« FID was proposed to capture more nuances

= Embed image x into some feature space (2048-dimensional
activations of the Inception-v3 pool3 layer), then compare
mean (m) & covariance (C) of those random features

2((m,C), (M, Cy)) = |m — myl2 + Tr(C + C,, — 2(CC,) ")

(Heusel et al, 2017)

Fréchet Inception Distance

400 -

350 1

300 -

250 4

FID

150

100 -

50 A

400

350

300 A

250 4

FID

150 A

100 -

50 A

200 4

1 2
disturbance level

200 1

o

1 2
disturbance level

IND

IND

1 2
disturbance level

1 2
disturbance level

017)

UC Berkeley -- Spring 2019 -- Deep Unsupervised Learning -- Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas -- L5¢c GANs / Implicit Models

Fréchet Ince

lon Distance

FID

FID

600

500

400

300

200

100

300

250

200

150

100

50

1 2 3
disturbance level

1

—

2 [

o 1 2

+ T T

wH

disturbance level

IND

IND

2

1
disturbance level

*

—

=

‘.—.

=S

£d

40 -

30 A

20

10

1

2

disturbance level

17)

Generative Adversarial Networks

= Key pieces of GAN
= Fast sampling

= No inference
= Goodfellow suggests building inference by reversing / inverting a

GAN - not really shown to work so far
= Notion of optimizing directly for what you care about - perceptual

samples

