CS6101 Deep Unsupervised Learning Recess Week

WGAN, WGAN-GP, Progressive GAN

Ang Yi Zhe

Wasserstein

Problems with Vanilla GANs

- Unstable training hard to achieve Nash Equilibrium
- Low dimensional supports
- Vanishing gradient
- Mode Collapse
- Lack of a proper evaluation metric
- Not robust to architectures and hyperparameter choices

Problems with GANs - Low Dimensional Supports

Problem arises when supports of Pr and Pg lie on low dimensional manifolds

 \rightarrow Disjoint Supports

- \rightarrow Easily find perfect discriminator
- \rightarrow No gradient signal during training

Wasserstein GAN

A new GAN training algorithm

- Good empirical results backed up by theory
- Able to train the discriminator to **convergence**
 - Removing the need to balance discriminator/generator updates.
- Correlation between **discriminator loss** and **perceptual quality**
 - Easier to gauge training progress and determine stopping criteria.

Wasserstein Distance - An Alternative Divergence Measure

$$W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(x,y) \sim \gamma} [\|x - y\|]$$

Minimum energy cost of **moving and transforming** a pile of dirt in the shape of one probability distribution, to the shape of the other distribution, where

Energy cost = Amount of Dirt * Moving Distance

Transport Plan

Transport Plan

		7	8	9	10
/	1				
	2				
	3				

Transport Plan

		7	8	9	10
\sim	1				
1	2				
	3			2	

 $Energy \ Cost = Amount \ of \ Dirt \times Moving \ Distance$

Transport Plan

		7	8	9	10
\sim	1	1	0	0	2
/	2	0	1	0	0
	3	0	0	2	0

Total Energy Cost =
$$\sum_{x,y} \gamma(x,y) \|x - y\|$$

= $\mathbb{E}_{(x,y)\sim\gamma} \|x - y\|$

 P_r

$$W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(x,y) \sim \gamma} [\|x - y\|]$$

Find the smallest value among all valid transport plans

Sum of distance moved, weighted by the amount of mass moved

Minimum energy cost of **moving and transforming** a pile of dirt in the shape of one probability distribution, to the shape of the other distribution, where

Energy cost = Amount of Dirt * Moving Distance

Comparison of Distance Measures

KL-Divergence
$$D_{KL}(P||Q) = \int_{x} P(x) \log \frac{P(x)}{Q(x)} dx$$

JS-Divergence
$$D_{JS}(P||Q) = \frac{1}{2}D_{KL}(P||\frac{P+Q}{2}) + \frac{1}{2}D_{KL}(Q||\frac{P+Q}{2})$$

Wasserstein Distance
$$W(P,Q) = \inf_{\gamma \in \Pi(P,Q)} \mathbb{E}_{(x,y) \sim \gamma}[\|x-y\|]$$

How do these various **measures perform** when both the real and generator's data lie on **low dimensional manifolds**?

Comparison of Distance Measures

 $\begin{aligned} \forall (x,y) \in P, x &= 0 \text{ and } y \sim U(0,1) \\ \forall (x,y) \in Q, x &= \theta, 0 \leq \theta \leq 1 \text{ and } y \sim U(0,1) \end{aligned}$

Comparison of Distance Measures

$$\begin{split} D_{KL}(P \| Q) &= D_{KL}(Q \| P) = \begin{cases} +\infty & \text{if } \theta \neq 0, \\ 0 & \text{if } \theta = 0, \end{cases} \\ D_{JS}(P \| Q) &= \begin{cases} \log 2 & \text{if } \theta \neq 0, \\ 0 & \text{if } \theta = 0, \end{cases} \end{split}$$

$$W(P,Q) = |\theta|$$

There exist cases for KL and JS where,

- The distributions don't converge
- The gradient is always 0

 \rightarrow WD is best; Provides a smooth measure

$$W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(x,y) \sim \gamma}[\|x - y\|]$$

is intractable, so the paper shows how we can compute an approximation:

Find the largest value among all K-Lipschitz continuous functions $\begin{bmatrix} \sup_{\|f\|_{L} \leq K} \mathbb{E}_{x \sim P_{r}}[f(x)] - \mathbb{E}_{x \sim P_{g}}[f(x)] \\ \|f\|_{L} \leq K \end{bmatrix}$

Suppose f comes from a family of K-Lipschitz continuous functions, $\{f_w\}_{w \in W}$, parameterized by w,

$$\geq \max_{w \in W} \mathbb{E}_{x \sim P_r}[f_w(x)] - \mathbb{E}_{x \sim P_g}[f_w(x))]$$

To learn w to find a good f_w to approximate the Wasserstein Distance between P_r and $P_g \rightarrow$ use a neural network!

WGAN Training

To train $P_g = g_\theta(Z)$ to match P_r using the Wasserstein Distance,

$$W(P_r, P_g) = \max_{w \in W} \mathbb{E}_{x \sim P_r}[f_w(x)] - \mathbb{E}_{z \sim Z}[f_w(g_\theta(z))]$$

For a fixed generator, sample from real data and generator to train \mathbf{f}_{w} to convergence using gradient ascent, in order to approximate the Wasserstein Distance.

$$\nabla W(P_r, P_g) = -\mathbb{E}_{z \sim Z}[\nabla_{\theta} f_w(g_{\theta}(z))]$$

O2 Sample from the generator, and use the approximate Wasserstein Distance to train the generator using gradient descent.

CCC Repeat.

Similar to original minimax GAN setup!

WGAN vs GAN

Vanilla GAN
$$\min_{G} \max_{D} \mathbb{E}_{x \sim P_{r}}[\log D(x)] + \mathbb{E}_{z \sim Z}[\log(1 - D(G(z)))]$$

WGAN
$$\min_{G} \max_{D} \mathbb{E}_{x \sim P_{r}}[D(x)] - \mathbb{E}_{z \sim Z}[D(G(z))]$$

- Uses Wasserstein Loss
- Predictions no longer constrained to [0, 1], but can be any real number
- Critic must be K-Lipschitz continuous (by clipping the weights)
- Train the critic multiple times for each update of generator

functions

K-Lipschitz Continuity

There exists a real constant $K \geq 0$ s.t. for all $x_1, x_2 \in \mathbb{R}$,

$$|f(x_1) - f(x_2)| \le K|x_1 - x_2|,$$

$$\left|\frac{f(x_1) - f(x_2)}{x_1 - x_2}\right| \le K$$

We require a **limit** on the rate at which the **predictions** can change between any **two images**

Enforce the Lipschitz constraint by **clipping the weights** of the critic to lie within a small range, after each training batch.

Results - Nice Gradients

Taken from: Wasserstein GAN

Results - Correlates with Image Quality

Taken from: Wasserstein GAN

Results - Robust to Architectural Changes

WGAN

Vanilla GAN

Taken from: Wasserstein GAN

Problems with WGAN

"Weight clipping is clearly a terrible way to enforce a Lipschitz constraint" - Authors

Weight Clipping - Instability in Training

Weights concentrated at lower/upper bounds of clipping interval

Vanishing / Exploding Gradients

Weight Clipping - Reduced Capacity of Model

8 Gaussians

25 Gaussians

Swiss Roll

A differentiable function f is 1-Lipschitz if and only if it has gradients with norm at most 1 everywhere.

$$\max_{D} \mathbb{E}_{x \sim P_{r}} [D(x)] - \mathbb{E}_{\tilde{x} \sim P_{g}} [D(\tilde{x})] + \lambda \mathbb{E}_{\hat{x} \sim P_{\hat{x}}} [(\|\nabla_{\hat{x}} D(\hat{x})\|_{2} - 1)^{2}]$$
Sample from a linear interpolation between real and fake samples
$$\widehat{x} \leftarrow \epsilon x + (1 - \epsilon) \widetilde{x}$$
Penalise when value is away from 1
Penalise when value is away from 1

WGAN-GP vs WGAN

- Include a gradient penalty term in the critic loss function
- Don't clip the weights of the critic
- Don't use batch normalization layers in the critic
- More computationally intensive

Results - Enhanced Training Stability

Results - Enhanced Training Stability

Unsupervised

Supervised

Method	Score	Method	Score
ALI [8] (in [27])	$5.34 \pm .05$	SteinGAN [26]	6.35
BEGAN [4]	5.62	DCGAN (with labels, in [26])	6.58
DCGAN [22] (in [11])	$6.16 \pm .07$	Improved GAN [23]	$8.09 \pm .07$
Improved GAN (-L+HA) [23]	$6.86 \pm .06$	AC-GAN [20]	$8.25\pm.07$
EGAN-Ent-VI [7]	$7.07 \pm .10$	SGAN-no-joint [11]	$8.37\pm.08$
DFM [27]	$7.72\pm.13$	WGAN-GP ResNet (ours)	$8.42 \pm .10$
WGAN-GP ResNet (ours)	$7.86 \pm .07$	SGAN [11]	$8.59\pm.12$

Progressive GAN

Key Innovations of ProGAN

- Progressively growing and smoothly fading in higher-resolution layers
- Mini-batch standard deviation
- Equalized learning rate
- Pixel-wise feature normalization
- 1024x1024 images (or even more)!

Progressive Growing

Instead of training all the layers of the generator and discriminator at once, we gradually grow the GAN, **one layer at a time**, to handle progressively higher resolution images

Start off with an easy to traverse loss landscape, and then gradually increase the complexity as we get closer to the objective

Smooth Progressive Growing

Introduce 2 new pathways:

- 1. Nearest Neighbour Upscaling
 - a. Upscale old output

2. NNU + Convolution Layer

a. Learned upscaling

Introduce new layer but also retain some of the previous output, **smoothly** (linearly) fading in the new layer Introduce a "minibatch standard deviation" layer near the end of the discriminator - computes the standard deviations of the feature map pixels across the batch, and appends as an extra channel.

- A way for the Discriminator to tell whether the samples it is getting are varied enough
- If SD is low \rightarrow fake
- Encourage Generator to increase variance of generated samples

Normalize the feature vector in each pixel to have unit norm in the generator after each convolutional layer.

- Stability of training
- Less memory intensive than batch-norm
- Prevent feature map magnitudes from getting too large