
CS224d
Deep	Learning	

for	Natural	Language	Processing

Lecture	3:	
More	Word	Vectors

Richard	Socher

Refresher:	The	simple	word2vec	model

• Main	cost	function	J:

• With	probabilities	defined	as:

• We	derived	the	gradient	for	the	internal	vectors	vc

4/5/16Richard	SocherLecture	1,	Slide	 2

Calculating	all	gradients!

• We	went	through	gradients	for	each	center	vector	v	in	a	window
• We	also	need	gradients	for	outside	vectors	u	
• Derive	at	home!	

• Generally	in	each	window	we	will	compute	updates	for	all	
parameters	that	are	being	used	in	that	window.

• For	example	window	size	c	=	1,	sentence:	
“I	like	learning	.”

• First	window	computes	gradients	for:	
• internal	vector	vlike and	external	vectors	uI and	ulearning

• Next	window	in	that	sentence?

4/5/16Richard	SocherLecture	1,	Slide	 3

Compute	all	vector	gradients!

• We	often	define	the	set	of	ALL	parameters	in	a	model	in	terms	
of	one	long	vector	

• In	our	case	with	
d-dimensional	vectors
and
V	many	words:

4/5/16Richard	SocherLecture	1,	Slide	 4

Gradient	Descent

• To	minimize														over	the	full	batch	(the	entire	training	data)	
would	require	us	to	compute	gradients	for	all	windows

• Updates	would	be	for	each	element	of	µ :

• With	step	size	®
• In	matrix	notation	for	all	parameters:

4/5/16Richard	SocherLecture	1,	Slide	 5

Vanilla	Gradient	Descent	Code

4/5/16Richard	SocherLecture	1,	Slide	 6

Intuition

4/5/16Richard	SocherLecture	1,	Slide	 7

• For	a	simple	convex	function	over	two	parameters.

• Contour	lines	show	levels	of	objective	function
•

Stochastic	Gradient	Descent

• But	Corpus	may	have	40B	tokens	and	windows
• You	would	wait	a	very	long	time	before	making	a	single	update!

• Very	bad	idea	for	pretty	much	all	neural	nets!
• Instead:	We	will	update	parameters	after	each	window	t	

à Stochastic	gradient	descent	(SGD)

4/5/16Richard	SocherLecture	1,	Slide	 8

Stochastic	gradients	with	word	vectors!

• But	in	each	window,	we	only	have	at	most	2c	-1	words,	
so																		is	very	sparse!

4/5/16Richard	SocherLecture	1,	Slide	 9

Stochastic	gradients	with	word	vectors!

• We	may	as	well	only	update	the	word	vectors	that	actually	
appear!

• Solution:	either	keep	around	hash	for	word	vectors	or	only	
update	certain	columns	of	full	embedding	matrix	U and	V

• Important	if	you	have	millions	of	word	vectors	and	do	
distributed	computing	to	not	have	to	send	gigantic	updates	
around.

4/5/16Richard	SocherLecture	1,	Slide	 10

[]d

|V|

Approximations:	PSet 1

• The	normalization	factor	is	too	computationally	expensive

• Hence,	in	PSet1	you	will	implement	the	skip-gram	model	

• Main	idea:	train	binary	logistic	regressions	for	a	true	pair	(center	
word	and	word	in	its	context	window)	and	a	couple	of	random	
pairs	(the	center	word	with	a	random	word)

4/5/16Richard	SocherLecture	1,	Slide	 11

PSet 1:	The	skip-gram	model	and	negative	sampling

• From	paper:	“Distributed	Representations	of	Words	and	Phrases	
and	their	Compositionality”	(Mikolovet	al.	2013)

• Overall	objective	function:	

• Where	k	is	the	number	of	negative	samples	and	we	use,

• The	sigmoid	function!	
(we’ll	become	good	friends	soon)

• So	we	maximize	the	probability	
of	two	words	co-occurring	in	first	log
à

4/5/16Richard	SocherLecture	1,	Slide	 12

PSet 1:	The	skip-gram	model	and	negative	sampling

• Slightly	clearer	notation:

• Max.	probability	that	real	outside	word	appears,	
minimize	prob.	that	random	words	appear	around	center	word

• P(w)=U(w)3/4/Z,
the	unigram	distribution	U(w)	raised	to	the	3/4rd	power
(We	provide	this	function	in	the	starter	code).	

• The	power	makes	less	frequent	words	be	sampled	more	often

4/5/16Richard	SocherLecture	1,	Slide	 13

PSet 1:	The	continuous	bag	of	words	model

• Main	idea	for	continuous	bag	of	words	(CBOW):	Predict	center	
word	from	sum	of	surrounding	word	vectors	instead	of	
predicting	surrounding	single	words	from	center	word	as	in	skip-
gram	model

• To	make	PSet slightly	easier:

The	implementation	for	the	CBOW	model	is	not	required	and	for	
bonus	points!

4/5/16Richard	SocherLecture	1,	Slide	 14

Count	based	vs direct	prediction

4/5/16Richard	Socher15

LSA, HAL (Lund & Burgess),
COALS (Rohde et al),
Hellinger-PCA (Lebret & Collobert)

• Fast training
• Efficient usage of statistics

• Primarily used to capture word
similarity

• Disproportionate importance
given to large counts

• NNLM, HLBL, RNN, Skip-
gram/CBOW, (Bengio et al; Collobert
& Weston; Huang et al; Mnih & Hinton;
Mikolov et al; Mnih & Kavukcuoglu)

• Scales with corpus size

• Inefficient usage of statistics

• Can capture complex patterns
beyond word similarity

• Generate improved performance
on other tasks

Combining	the	best	of	both	worlds:	GloVe

4/5/16Richard	Socher16

•Fast	training

•Scalable	to	huge	corpora

•Good	performance	even	with	small	corpus,	and	small	
vectors

Glove	results

4/5/16Richard	Socher17

1.	frogs
2.	toad
3.	litoria
4.	leptodactylidae
5.	rana
6.	lizard
7.	eleutherodactylus

litoria leptodactylidae

rana eleutherodactylus

Nearest	words	to
frog:

What	to	do	with	the	two	sets	of	vectors?

• We	end	up	with	U	and	V	from	all	the	vectors	u	and	v	(in	
columns)

• Both	capture	similar	co-occurrence	information.	It	turns	out,	the	
best	solution	is	to	simply	sum	them	up:

Xfinal =	U	+	V

• One	of	many	hyperparameters explored	in	GloVe:	Global	
Vectors	for	Word	Representation	 (Pennington	et	al.	(2014)

4/5/16Richard	SocherLecture	1,	Slide	 18

How	to	evaluate	word	vectors?

• Related	to	general	evaluation	in	NLP:	Intrinsic	vs extrinsic
• Intrinsic:

• Evaluation	on	a	specific/intermediate	subtask
• Fast	to	compute
• Helps	to	understand	that	system
• Not	clear	if	really	helpful	unless	correlation	to	real	task	is	established

• Extrinsic:
• Evaluation	on	a	real	task
• Can	take	a	long	time	to	compute	accuracy
• Unclear	if	the	subsystem	is	the	problem	or	its	interaction	or	other	
subsystems

• If	replacing	one	subsystem	with	another	improves	accuracy	àWinning!

4/5/16Richard	SocherLecture	1,	Slide	 19

Intrinsic	word	vector	evaluation

• Word	Vector	Analogies

• Evaluate	word	vectors	by	how	well	
their	cosine	distance	after	addition	
captures	intuitive	semantic	and	
syntactic	analogy	questions

• Discarding	the	input	words	from	the	
search!

• Problem:	What	if	the	information	is	
there	but	not	linear?

4/5/16Richard	SocherLecture	1,	Slide	 20

man:woman::	king:?

a:b	::	c:?

king

man
woman

Glove	Visualizations

4/5/16Richard	Socher21

Glove	Visualizations:	Company	- CEO

4/5/16Richard	Socher22

Glove	Visualizations:	Superlatives

4/5/16Richard	Socher23

Details	of	intrinsic	word	vector	evaluation

• Word	Vector	Analogies:	Syntactic	and	Semantic examples	from	
http://code.google.com/p/word2vec/source/browse/trunk/questions-
words.txt

:	city-in-state problem:	different	cities	
Chicago	Illinois	Houston	Texas may	have	same	name
Chicago	Illinois	Philadelphia	Pennsylvania
Chicago	Illinois	Phoenix	Arizona
Chicago	Illinois	Dallas	Texas
Chicago	Illinois	Jacksonville	Florida
Chicago	Illinois	Indianapolis	Indiana
Chicago	Illinois	Austin	Texas
Chicago	Illinois	Detroit	Michigan
Chicago	Illinois	Memphis	Tennessee
Chicago	Illinois	Boston	Massachusetts

4/5/16Richard	SocherLecture	1,	Slide	 24

Details	of	intrinsic	word	vector	evaluation

• Word	Vector	Analogies:	Syntactic	and	Semantic examples	from

:	capital-world problem:	can	change
Abuja	Nigeria	Accra	Ghana
Abuja	Nigeria	Algiers	Algeria
Abuja	Nigeria	Amman	Jordan
Abuja	Nigeria	Ankara	Turkey
Abuja	Nigeria	Antananarivo	Madagascar
Abuja	Nigeria	Apia	Samoa
Abuja	Nigeria	Ashgabat	Turkmenistan
Abuja	Nigeria	Asmara	Eritrea
Abuja	Nigeria	Astana	Kazakhstan

4/5/16Richard	SocherLecture	1,	Slide	 25

Details	of	intrinsic	word	vector	evaluation

• Word	Vector	Analogies:	Syntactic and	Semantic	examples	from

:	gram4-superlative
bad	worst	big	biggest
bad	worst	bright	brightest
bad	worst	cold	coldest
bad	worst	cool	coolest
bad	worst	dark	darkest
bad	worst	easy	easiest
bad	worst	fast	fastest
bad	worst	good	best
bad	worst	great	greatest

4/5/16Richard	SocherLecture	1,	Slide	 26

Details	of	intrinsic	word	vector	evaluation

• Word	Vector	Analogies:	Syntactic and	Semantic	examples	from

:	gram7-past-tense
dancing	danced	decreasing	decreased
dancing	danced	describing	described
dancing	danced	enhancing	enhanced
dancing	danced	falling	fell
dancing	danced	feeding	fed
dancing	danced	flying	flew
dancing	danced	generating	generated
dancing	danced	going	went
dancing	danced	hiding	hid
dancing	danced	hitting	hit

4/5/16Richard	SocherLecture	1,	Slide	 27

Analogy	evaluation	and	hyperparameters

• Very	careful	analysis:	Glove	word	vectors	

4/5/16Richard	SocherLecture	1,	Slide	 28

The total number of words in the corpus is pro-
portional to the sum over all elements of the co-
occurrence matrix X ,

|C | ⇠
X

i j

X
i j

=

|X |X

r=1

k
r↵
= kH|X |,↵ , (18)

where we have rewritten the last sum in terms of
the generalized harmonic number H

n,m . The up-
per limit of the sum, |X |, is the maximum fre-
quency rank, which coincides with the number of
nonzero elements in the matrix X . This number is
also equal to the maximum value of r in Eqn. (17)
such that X

i j

� 1, i.e., |X | = k1/↵ . Therefore we
can write Eqn. (18) as,

|C | ⇠ |X |↵ H|X |,↵ . (19)

We are interested in how |X | is related to |C | when
both numbers are large; therefore we are free to
expand the right hand side of the equation for large
|X |. For this purpose we use the expansion of gen-
eralized harmonic numbers (Apostol, 1976),

H
x,s =

x1�s

1 � s
+ ⇣ (s) + O(x�s) if s > 0, s , 1 ,

(20)
giving,

|C | ⇠ |X |
1 � ↵ + ⇣ (↵) |X |↵ + O(1) , (21)

where ⇣ (s) is the Riemann zeta function. In the
limit that X is large, only one of the two terms on
the right hand side of Eqn. (21) will be relevant,
and which term that is depends on whether ↵ > 1,

|X | =
(O(|C |) if ↵ < 1,
O(|C |1/↵) if ↵ > 1. (22)

For the corpora studied in this article, we observe
that X

i j

is well-modeled by Eqn. (17) with ↵ =
1.25. In this case we have that |X | = O(|C |0.8).
Therefore we conclude that the complexity of the
model is much better than the worst case O(V 2),
and in fact it does somewhat better than the on-line
window-based methods which scale like O(|C |).
4 Experiments

4.1 Evaluation methods
We conduct experiments on the word analogy
task of Mikolov et al. (2013a), a variety of word
similarity tasks, as described in (Luong et al.,
2013), and on the CoNLL-2003 shared benchmark

Table 2: Results on the word analogy task, given
as percent accuracy. Underlined scores are best
within groups of similarly-sized models; bold
scores are best overall. HPCA vectors are publicly
available2; (i)vLBL results are from (Mnih et al.,
2013); skip-gram (SG) and CBOW results are
from (Mikolov et al., 2013a,b); we trained SG†

and CBOW† using the word2vec tool3. See text
for details and a description of the SVD models.

Model Dim. Size Sem. Syn. Tot.
ivLBL 100 1.5B 55.9 50.1 53.2
HPCA 100 1.6B 4.2 16.4 10.8
GloVe 100 1.6B 67.5 54.3 60.3

SG 300 1B 61 61 61
CBOW 300 1.6B 16.1 52.6 36.1
vLBL 300 1.5B 54.2 64.8 60.0
ivLBL 300 1.5B 65.2 63.0 64.0
GloVe 300 1.6B 80.8 61.5 70.3
SVD 300 6B 6.3 8.1 7.3

SVD-S 300 6B 36.7 46.6 42.1
SVD-L 300 6B 56.6 63.0 60.1
CBOW† 300 6B 63.6 67.4 65.7

SG† 300 6B 73.0 66.0 69.1
GloVe 300 6B 77.4 67.0 71.7
CBOW 1000 6B 57.3 68.9 63.7

SG 1000 6B 66.1 65.1 65.6
SVD-L 300 42B 38.4 58.2 49.2
GloVe 300 42B 81.9 69.3 75.0

dataset for NER (Tjong Kim Sang and De Meul-
der, 2003).

Word analogies. The word analogy task con-
sists of questions like, “a is to b as c is to ?”
The dataset contains 19,544 such questions, di-
vided into a semantic subset and a syntactic sub-
set. The semantic questions are typically analogies
about people or places, like “Athens is to Greece
as Berlin is to ?”. The syntactic questions are
typically analogies about verb tenses or forms of
adjectives, for example “dance is to dancing as fly
is to ?”. To correctly answer the question, the
model should uniquely identify the missing term,
with only an exact correspondence counted as a
correct match. We answer the question “a is to b
as c is to ?” by finding the word d whose repre-
sentation w

d

is closest to w
b

� w
a

+ w
c

according
to the cosine similarity.4

2http://lebret.ch/words/
3http://code.google.com/p/word2vec/
4Levy et al. (2014) introduce a multiplicative analogy

evaluation, 3COSMUL, and report an accuracy of 68.24% on

Analogy	evaluation	and	hyperparameters

• Asymmetric	context	(only	words	to	the	left)	are	not	as	good

• Best	dimensions	~300,	slight	drop-off	afterwards	
• But	this	might	be	different	for	downstream	tasks!

• Window	size	of	8	around	each	center	word	is	good	for	Glove	vectors

4/5/16Richard	SocherLecture	1,	Slide	 29

0 100 200 300 400 500 60020

30

40

50

60

70

80

Vector Dimension

Ac
cu

ra
cy

 [%
]

Semantic
Syntactic
Overall

(a) Symmetric context

2 4 6 8 1040

50

55

60

65

70

45

Window Size

Ac
cu

ra
cy

 [%
]

Semantic
Syntactic
Overall

(b) Symmetric context

2 4 6 8 1040

50

55

60

65

70

45

Window Size

Ac
cu

ra
cy

 [%
]

Semantic
Syntactic
Overall

(c) Asymmetric context

Figure 2: Accuracy on the analogy task as function of vector size and window size/type. All models are
trained on the 6 billion token corpus. In (a), the window size is 10. In (b) and (c), the vector size is 100.

Word similarity. While the analogy task is our
primary focus since it tests for interesting vector
space substructures, we also evaluate our model on
a variety of word similarity tasks in Table 3. These
include WordSim-353 (Finkelstein et al., 2001),
MC (Miller and Charles, 1991), RG (Rubenstein
and Goodenough, 1965), SCWS (Huang et al.,
2012), and RW (Luong et al., 2013).
Named entity recognition. The CoNLL-2003
English benchmark dataset for NER is a collec-
tion of documents from Reuters newswire articles,
annotated with four entity types: person, location,
organization, and miscellaneous. We train mod-
els on CoNLL-03 training data on test on three
datasets: 1) ConLL-03 testing data, 2) ACE Phase
2 (2001-02) and ACE-2003 data, and 3) MUC7
Formal Run test set. We adopt the BIO2 annota-
tion standard, as well as all the preprocessing steps
described in (Wang and Manning, 2013). We use a
comprehensive set of discrete features that comes
with the standard distribution of the Stanford NER
model (Finkel et al., 2005). A total of 437,905
discrete features were generated for the CoNLL-
2003 training dataset. In addition, 50-dimensional
vectors for each word of a five-word context are
added and used as continuous features. With these
features as input, we trained a conditional random
field (CRF) with exactly the same setup as the
CRFjoin model of (Wang and Manning, 2013).

4.2 Corpora and training details

We trained our model on five corpora of varying
sizes: a 2010 Wikipedia dump with 1 billion to-
kens; a 2014 Wikipedia dump with 1.6 billion to-
kens; Gigaword 5 which has 4.3 billion tokens; the
combination Gigaword5 + Wikipedia2014, which

the analogy task. This number is evaluated on a subset of the
dataset so it is not included in Table 2. 3COSMUL performed
worse than cosine similarity in almost all of our experiments.

has 6 billion tokens; and on 42 billion tokens of
web data, from Common Crawl5. We tokenize
and lowercase each corpus with the Stanford to-
kenizer, build a vocabulary of the 400,000 most
frequent words6, and then construct a matrix of co-
occurrence counts X . In constructing X , we must
choose how large the context window should be
and whether to distinguish left context from right
context. We explore the effect of these choices be-
low. In all cases we use a decreasing weighting
function, so that word pairs that are d words apart
contribute 1/d to the total count. This is one way
to account for the fact that very distant word pairs
are expected to contain less relevant information
about the words’ relationship to one another.

For all our experiments, we set xmax = 100,
↵ = 3/4, and train the model using AdaGrad
(Duchi et al., 2011), stochastically sampling non-
zero elements from X , with initial learning rate of
0.05. We run 50 iterations for vectors smaller than
300 dimensions, and 100 iterations otherwise (see
Section 4.6 for more details about the convergence
rate). Unless otherwise noted, we use a context of
ten words to the left and ten words to the right.

The model generates two sets of word vectors,
W and W̃ . When X is symmetric, W and W̃ are
equivalent and differ only as a result of their ran-
dom initializations; the two sets of vectors should
perform equivalently. On the other hand, there is
evidence that for certain types of neural networks,
training multiple instances of the network and then
combining the results can help reduce overfitting
and noise and generally improve results (Ciresan
et al., 2012). With this in mind, we choose to use

5To demonstrate the scalability of the model, we also
trained it on a much larger sixth corpus, containing 840 bil-
lion tokens of web data, but in this case we did not lowercase
the vocabulary, so the results are not directly comparable.

6For the model trained on Common Crawl data, we use a
larger vocabulary of about 2 million words.

Analogy	evaluation	and	hyperparameters

• More	training	time	helps

4/5/16Richard	SocherLecture	1,	Slide	 30

1 2 3 4 5 6

60

62

64

66

68

70

72

5 10 15 20 25

1357 10 15 20 25 30 40 50

Ac
cu

ra
cy

 [%
]

Iterations (GloVe)

Negative Samples (CBOW)

Training Time (hrs)

GloVe
CBOW

(a) GloVe vs CBOW

3 6 9 12 15 18 21 24

60

62

64

66

68

70

72

20 40 60 80 100

1 2 3 4 5 6 7 10 12 15 20

GloVe
Skip-Gram

Ac
cu

ra
cy

 [%
]

Iterations (GloVe)

Negative Samples (Skip-Gram)

Training Time (hrs)

(b) GloVe vs Skip-Gram

Figure 4: Overall accuracy on the word analogy task as a function of training time, which is governed by
the number of iterations for GloVe and by the number of negative samples for CBOW (a) and skip-gram
(b). In all cases, we train 300-dimensional vectors on the same 6B token corpus (Wikipedia 2014 +
Gigaword 5) with the same 400,000 word vocabulary, and use a symmetric context window of size 10.

it specifies a learning schedule specific to a single
pass through the data, making a modification for
multiple passes a non-trivial task. Another choice
is to vary the number of negative samples. Adding
negative samples effectively increases the number
of training words seen by the model, so in some
ways it is analogous to extra epochs.

We set any unspecified parameters to their de-
fault values, assuming that they are close to opti-
mal, though we acknowledge that this simplifica-
tion should be relaxed in a more thorough analysis.

In Fig. 4, we plot the overall performance on
the analogy task as a function of training time.
The two x-axes at the bottom indicate the corre-
sponding number of training iterations for GloVe
and negative samples for word2vec. We note
that word2vec’s performance actually decreases
if the number of negative samples increases be-
yond about 10. Presumably this is because the
negative sampling method does not approximate
the target probability distribution well.9

For the same corpus, vocabulary, window size,
and training time, GloVe consistently outperforms
word2vec. It achieves better results faster, and
also obtains the best results irrespective of speed.

5 Conclusion

Recently, considerable attention has been focused
on the question of whether distributional word
representations are best learned from count-based

9In contrast, noise-contrastive estimation is an approxi-
mation which improves with more negative samples. In Ta-
ble 1 of (Mnih et al., 2013), accuracy on the analogy task is a
non-decreasing function of the number of negative samples.

methods or from prediction-based methods. Cur-
rently, prediction-based models garner substantial
support; for example, Baroni et al. (2014) argue
that these models perform better across a range of
tasks. In this work we argue that the two classes
of methods are not dramatically different at a fun-
damental level since they both probe the under-
lying co-occurrence statistics of the corpus, but
the efficiency with which the count-based meth-
ods capture global statistics can be advantageous.
We construct a model that utilizes this main ben-
efit of count data while simultaneously capturing
the meaningful linear substructures prevalent in
recent log-bilinear prediction-based methods like
word2vec. The result, GloVe, is a new global
log-bilinear regression model for the unsupervised
learning of word representations that outperforms
other models on word analogy, word similarity,
and named entity recognition tasks.

Acknowledgments

We thank the anonymous reviewers for their valu-
able comments. Stanford University gratefully
acknowledges the support of the Defense Threat
Reduction Agency (DTRA) under Air Force Re-
search Laboratory (AFRL) contract no. FA8650-
10-C-7020 and the Defense Advanced Research
Projects Agency (DARPA) Deep Exploration and
Filtering of Text (DEFT) Program under AFRL
contract no. FA8750-13-2-0040. Any opinions,
findings, and conclusion or recommendations ex-
pressed in this material are those of the authors and
do not necessarily reflect the view of the DTRA,
AFRL, DEFT, or the US government.

Analogy	evaluation	and	hyperparameters

• More	data	helps,	Wikipedia	is	better	than	news	text!

4/5/16Richard	SocherLecture	1,	Slide	 31

Table 4: F1 score on NER task with 50d vectors.
Discrete is the baseline without word vectors. We
use publicly-available vectors for HPCA, HSMN,
and CW. See text for details.

Model Dev Test ACE MUC7
Discrete 91.0 85.4 77.4 73.4

SVD 90.8 85.7 77.3 73.7
SVD-S 91.0 85.5 77.6 74.3
SVD-L 90.5 84.8 73.6 71.5
HPCA 92.6 88.7 81.7 80.7
HSMN 90.5 85.7 78.7 74.7

CW 92.2 87.4 81.7 80.2
CBOW 93.1 88.2 82.2 81.1
GloVe 93.2 88.3 82.9 82.2

shown for neural vectors in (Turian et al., 2010).

4.4 Model Analysis: Vector Length and
Context Size

In Fig. 2, we show the results of experiments that
vary vector length and context window. A context
window that extends to the left and right of a tar-
get word will be called symmetric, and one which
extends only to the left will be called asymmet-
ric. In (a), we observe diminishing returns for vec-
tors larger than about 200 dimensions. In (b) and
(c), we examine the effect of varying the window
size for symmetric and asymmetric context win-
dows. Performance is better on the syntactic sub-
task for small and asymmetric context windows,
which aligns with the intuition that syntactic infor-
mation is mostly drawn from the immediate con-
text and can depend strongly on word order. Se-
mantic information, on the other hand, is more fre-
quently non-local, and more of it is captured with
larger window sizes.

4.5 Model Analysis: Corpus Size
In Fig. 3, we show performance on the word anal-
ogy task for 300-dimensional vectors trained on
different corpora. On the syntactic subtask, there
is a monotonic increase in performance as the cor-
pus size increases. This is to be expected since
larger corpora typically produce better statistics.
Interestingly, the same trend is not true for the se-
mantic subtask, where the models trained on the
smaller Wikipedia corpora do better than those
trained on the larger Gigaword corpus. This is
likely due to the large number of city- and country-
based analogies in the analogy dataset and the fact
that Wikipedia has fairly comprehensive articles
for most such locations. Moreover, Wikipedia’s

50

55

60

65

70

75

80

85
OverallSyntacticSemantic

Wiki2010
1B tokens

Ac
cu

ra
cy

 [%
]

Wiki2014
1.6B tokens

Gigaword5
4.3B tokens

Gigaword5 +
Wiki2014
6B tokens

Common Crawl
42B tokens

Figure 3: Accuracy on the analogy task for 300-
dimensional vectors trained on different corpora.

entries are updated to assimilate new knowledge,
whereas Gigaword is a fixed news repository with
outdated and possibly incorrect information.

4.6 Model Analysis: Run-time

The total run-time is split between populating X
and training the model. The former depends on
many factors, including window size, vocabulary
size, and corpus size. Though we did not do so,
this step could easily be parallelized across mul-
tiple machines (see, e.g., Lebret and Collobert
(2014) for some benchmarks). Using a single
thread of a dual 2.1GHz Intel Xeon E5-2658 ma-
chine, populating X with a 10 word symmetric
context window, a 400,000 word vocabulary, and
a 6 billion token corpus takes about 85 minutes.
Given X , the time it takes to train the model de-
pends on the vector size and the number of itera-
tions. For 300-dimensional vectors with the above
settings (and using all 32 cores of the above ma-
chine), a single iteration takes 14 minutes. See
Fig. 4 for a plot of the learning curve.

4.7 Model Analysis: Comparison with
word2vec

A rigorous quantitative comparison of GloVe with
word2vec is complicated by the existence of
many parameters that have a strong effect on per-
formance. We control for the main sources of vari-
ation that we identified in Sections 4.4 and 4.5 by
setting the vector length, context window size, cor-
pus, and vocabulary size to the configuration men-
tioned in the previous subsection.

The most important remaining variable to con-
trol for is training time. For GloVe, the rele-
vant parameter is the number of training iterations.
For word2vec, the obvious choice would be the
number of training epochs. Unfortunately, the
code is currently designed for only a single epoch:

Intrinsic	word	vector	evaluation

• Word	vector	distances	and	their	correlation	with	human	judgments
• Example	dataset:	WordSim353	

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Word	1 Word	2 Human	(mean)
tiger cat 7.35
tiger tiger 10.00
book paper 7.46
computer internet 7.58
plane car 5.77
professor doctor 6.62
stock phone 1.62
stock CD 1.31
stock jaguar 0.92

4/5/16Richard	SocherLecture	1,	Slide	 32

Correlation	evaluation

• Word	vector	distances	and	their	correlation	with	human	judgments

• Some	ideas	from	Glove	paper	have	been	shown	to	improve	skip-gram	(SG)	
model	also	(e.g.	sum	both	vectors)

4/5/16Richard	SocherLecture	1,	Slide	 33

the sum W +W̃ as our word vectors. Doing so typ-
ically gives a small boost in performance, with the
biggest increase in the semantic analogy task.

We compare with the published results of a va-
riety of state-of-the-art models, as well as with
our own results produced using the word2vec

tool and with several baselines using SVDs. With
word2vec, we train the skip-gram (SG†) and
continuous bag-of-words (CBOW†) models on the
6 billion token corpus (Wikipedia 2014 + Giga-
word 5) with a vocabulary of the top 400,000 most
frequent words and a context window size of 10.
We used 10 negative samples, which we show in
Section 4.6 to be a good choice for this corpus.

For the SVD baselines, we generate a truncated
matrix Xtrunc which retains the information of how
frequently each word occurs with only the top
10,000 most frequent words. This step is typi-
cal of many matrix-factorization-based methods as
the extra columns can contribute a disproportion-
ate number of zero entries and the methods are
otherwise computationally expensive.

The singular vectors of this matrix constitute
the baseline “SVD”. We also evaluate two related
baselines: “SVD-S” in which we take the SVD ofp

Xtrunc, and “SVD-L” in which we take the SVD
of log(1+ Xtrunc). Both methods help compress the
otherwise large range of values in X .7

4.3 Results
We present results on the word analogy task in Ta-
ble 2. The GloVe model performs significantly
better than the other baselines, often with smaller
vector sizes and smaller corpora. Our results us-
ing the word2vec tool are somewhat better than
most of the previously published results. This is
due to a number of factors, including our choice to
use negative sampling (which typically works bet-
ter than the hierarchical softmax), the number of
negative samples, and the choice of the corpus.

We demonstrate that the model can easily be
trained on a large 42 billion token corpus, with a
substantial corresponding performance boost. We
note that increasing the corpus size does not guar-
antee improved results for other models, as can be
seen by the decreased performance of the SVD-

7We also investigated several other weighting schemes for
transforming X ; what we report here performed best. Many
weighting schemes like PPMI destroy the sparsity of X and
therefore cannot feasibly be used with large vocabularies.
With smaller vocabularies, these information-theoretic trans-
formations do indeed work well on word similarity measures,
but they perform very poorly on the word analogy task.

Table 3: Spearman rank correlation on word simi-
larity tasks. All vectors are 300-dimensional. The
CBOW⇤ vectors are from the word2vec website
and differ in that they contain phrase vectors.

Model Size WS353 MC RG SCWS RW
SVD 6B 35.3 35.1 42.5 38.3 25.6

SVD-S 6B 56.5 71.5 71.0 53.6 34.7
SVD-L 6B 65.7 72.7 75.1 56.5 37.0
CBOW† 6B 57.2 65.6 68.2 57.0 32.5

SG† 6B 62.8 65.2 69.7 58.1 37.2
GloVe 6B 65.8 72.7 77.8 53.9 38.1
SVD-L 42B 74.0 76.4 74.1 58.3 39.9
GloVe 42B 75.9 83.6 82.9 59.6 47.8

CBOW⇤ 100B 68.4 79.6 75.4 59.4 45.5

L model on this larger corpus. The fact that this
basic SVD model does not scale well to large cor-
pora lends further evidence to the necessity of the
type of weighting scheme proposed in our model.

Table 3 shows results on five different word
similarity datasets. A similarity score is obtained
from the word vectors by first normalizing each
feature across the vocabulary and then calculat-
ing the cosine similarity. We compute Spearman’s
rank correlation coefficient between this score and
the human judgments. CBOW⇤ denotes the vec-
tors available on the word2vec website that are
trained with word and phrase vectors on 100B
words of news data. GloVe outperforms it while
using a corpus less than half the size.

Table 4 shows results on the NER task with the
CRF-based model. The L-BFGS training termi-
nates when no improvement has been achieved on
the dev set for 25 iterations. Otherwise all config-
urations are identical to those used by Wang and
Manning (2013). The model labeled Discrete is
the baseline using a comprehensive set of discrete
features that comes with the standard distribution
of the Stanford NER model, but with no word vec-
tor features. In addition to the HPCA and SVD
models discussed previously, we also compare to
the models of Huang et al. (2012) (HSMN) and
Collobert and Weston (2008) (CW). We trained
the CBOW model using the word2vec tool8.
The GloVe model outperforms all other methods
on all evaluation metrics, except for the CoNLL
test set, on which the HPCA method does slightly
better. We conclude that the GloVe vectors are
useful in downstream NLP tasks, as was first

8We use the same parameters as above, except in this case
we found 5 negative samples to work slightly better than 10.

But	what	about	ambiguity?	

• You	may	hope	that	one	vector	captures	both	kinds	of	
information	(run	=	verb	and	noun)	but	then	vector	is	pulled	in	
different	directions

• Alternative	described	in:	Improving	Word	Representations	 Via	
Global	Context	And	Multiple	Word	Prototypes (Huang	et	al.	
2012)

• Idea:	Cluster	word	windows	around	words,	retrain	with	each	
word	assigned	to	multiple	different	clusters	bank1,	bank2,	etc

4/5/16Richard	SocherLecture	1,	Slide	 34

But	what	about	ambiguity?	

• Improving	Word	Representations	 Via	Global	Context	And	
Multiple	Word	Prototypes (Huang	et	al.	2012)

4/5/16Richard	SocherLecture	1,	Slide	 35

Extrinsic	word	vector	evaluation

• Extrinsic	evaluation	of	word	vectors:	All	subsequent	tasks	in	this	class

• One	example	where	good	word	vectors	should	help	directly:	named	entity	
recognition:	finding	a	person,	organization	or	location

• Next:	How	to	use	word	vectors	in	neural	net	models!

4/5/16Richard	SocherLecture	1,	Slide	 36

Table 4: F1 score on NER task with 50d vectors.
Discrete is the baseline without word vectors. We
use publicly-available vectors for HPCA, HSMN,
and CW. See text for details.

Model Dev Test ACE MUC7
Discrete 91.0 85.4 77.4 73.4

SVD 90.8 85.7 77.3 73.7
SVD-S 91.0 85.5 77.6 74.3
SVD-L 90.5 84.8 73.6 71.5
HPCA 92.6 88.7 81.7 80.7
HSMN 90.5 85.7 78.7 74.7

CW 92.2 87.4 81.7 80.2
CBOW 93.1 88.2 82.2 81.1
GloVe 93.2 88.3 82.9 82.2

shown for neural vectors in (Turian et al., 2010).

4.4 Model Analysis: Vector Length and
Context Size

In Fig. 2, we show the results of experiments that
vary vector length and context window. A context
window that extends to the left and right of a tar-
get word will be called symmetric, and one which
extends only to the left will be called asymmet-
ric. In (a), we observe diminishing returns for vec-
tors larger than about 200 dimensions. In (b) and
(c), we examine the effect of varying the window
size for symmetric and asymmetric context win-
dows. Performance is better on the syntactic sub-
task for small and asymmetric context windows,
which aligns with the intuition that syntactic infor-
mation is mostly drawn from the immediate con-
text and can depend strongly on word order. Se-
mantic information, on the other hand, is more fre-
quently non-local, and more of it is captured with
larger window sizes.

4.5 Model Analysis: Corpus Size
In Fig. 3, we show performance on the word anal-
ogy task for 300-dimensional vectors trained on
different corpora. On the syntactic subtask, there
is a monotonic increase in performance as the cor-
pus size increases. This is to be expected since
larger corpora typically produce better statistics.
Interestingly, the same trend is not true for the se-
mantic subtask, where the models trained on the
smaller Wikipedia corpora do better than those
trained on the larger Gigaword corpus. This is
likely due to the large number of city- and country-
based analogies in the analogy dataset and the fact
that Wikipedia has fairly comprehensive articles
for most such locations. Moreover, Wikipedia’s

50

55

60

65

70

75

80

85
OverallSyntacticSemantic

Wiki2010
1B tokens

Ac
cu

ra
cy

 [%
]

Wiki2014
1.6B tokens

Gigaword5
4.3B tokens

Gigaword5 +
Wiki2014
6B tokens

Common Crawl
42B tokens

Figure 3: Accuracy on the analogy task for 300-
dimensional vectors trained on different corpora.

entries are updated to assimilate new knowledge,
whereas Gigaword is a fixed news repository with
outdated and possibly incorrect information.

4.6 Model Analysis: Run-time

The total run-time is split between populating X
and training the model. The former depends on
many factors, including window size, vocabulary
size, and corpus size. Though we did not do so,
this step could easily be parallelized across mul-
tiple machines (see, e.g., Lebret and Collobert
(2014) for some benchmarks). Using a single
thread of a dual 2.1GHz Intel Xeon E5-2658 ma-
chine, populating X with a 10 word symmetric
context window, a 400,000 word vocabulary, and
a 6 billion token corpus takes about 85 minutes.
Given X , the time it takes to train the model de-
pends on the vector size and the number of itera-
tions. For 300-dimensional vectors with the above
settings (and using all 32 cores of the above ma-
chine), a single iteration takes 14 minutes. See
Fig. 4 for a plot of the learning curve.

4.7 Model Analysis: Comparison with
word2vec

A rigorous quantitative comparison of GloVe with
word2vec is complicated by the existence of
many parameters that have a strong effect on per-
formance. We control for the main sources of vari-
ation that we identified in Sections 4.4 and 4.5 by
setting the vector length, context window size, cor-
pus, and vocabulary size to the configuration men-
tioned in the previous subsection.

The most important remaining variable to con-
trol for is training time. For GloVe, the rele-
vant parameter is the number of training iterations.
For word2vec, the obvious choice would be the
number of training epochs. Unfortunately, the
code is currently designed for only a single epoch:

Simple	single	word	classification

4/5/16Richard	SocherLecture	1,	Slide	 37

• What	is	the	major	benefit	of	deep	learned	word	
vectors?
• Ability	to	also	classify	words	accurately

• Countries	cluster	together	à classifying	location	words	
should	be	possible	with	word	vectors

• Incorporate	any	information	into	them	other	tasks

• Project	sentiment	into	words	to	find	most	
positive/negative	words	in	corpus

The	softmax

4/5/16Richard	SocherLecture	1,	Slide	 38

Logistic	regression	=	Softmax classification	on	word	
vector	x	to	obtain	probability	for	class	y:

where:

Generalizes	>2	classes	
(for	just	binary	sigmoid	unit	would	suffice	as	in	skip-gram)

x1 x2																x3

a1 a2

The	softmax - details

• Terminology:	Loss	function	=	cost	function	=	objective	function
• Loss	for	softmax:	Cross	entropy

• To	compute	p(y|x):	first	take	the	y’th row	of	W	and	multiply	that	
with	row	with	x:

• Compute	all	fc for	c=1,…,C
• Normalize	to	obtain	probability	with	softmax function:	

4/5/16Richard	SocherLecture	1,	Slide	 39

The	softmax and	cross-entropy	error

• The	loss	wants	to	maximize	the	probability	of	the	correct	class	y

• Hence,	we	minimize	the	negative	log	probability	of	that	class:

• As	before:	we	sum	up	multiple	cross	entropy	errors	if	we	have	
multiple	classifications	in	our	total	error	function	over	the	
corpus	(more	next	lecture)

4/5/16Richard	SocherLecture	1,	Slide	 40

Background:	The	Cross	entropy	error

• Assuming	a	ground	truth	(or	gold	or	target)	probability	
distribution	that	is	1	at	the	right	class	and	0	everywhere	else:
p	=	[0,…,0,1,0,…0]	and	our	computed	probability	is	q,	then	the	
cross	entropy	is:	

• Because	of	one-hot	p,	the	only	term	left	is	the	negative	
probability	of	the	true	class

• Cross-entropy	can	be	re-written	in	terms	of	the	entropy	and	
Kullback-Leibler divergence	between	the	two	distributions:

4/5/16Richard	SocherLecture	1,	Slide	 41

The	KL	divergence

• Cross	entropy:
• Because	p	is	zero	in	our	case	(and	even	if	it	wasn’t	it	would	be	

fixed	and	have	no	contribution	to	gradient),	to	minimize	this	is	
equal	to	minimizing	the	KL	divergence

• The	KL	divergence	is	not	a	distance	but	a	non-symmetric	
measure	of	the	difference	between	two	probability	distributions	
p and	q

4/5/16Richard	SocherLecture	1,	Slide	 42

PSet 1

• Derive	the	gradient	of	the	cross	entropy	error	with	respect	to	
the	input	word	vector	x	and	the	matrix	W

4/5/16Richard	SocherLecture	1,	Slide	 43

Simple	single	word	classification

• Example:	Sentiment

• Two	options:	train	only	softmax weights	W	and	fix	word	vectors	
or	also	train	word	vectors

• Question:	What	are	the	advantages	and	disadvantages	of	
training	the	word	vectors?

• Pro:	better	fit	on	training	data
• Con:	Worse	generalization	because	the	words	move	in	the	

vector	space

4/5/16Richard	SocherLecture	1,	Slide	 44

Visualization	of	sentiment	trained	word	vectors

4/5/16Richard	SocherLecture	1,	Slide	 45

Next	level	up:	Window	classification

• Single	word	classification	has	no	context!	

• Let’s	add	context	by	taking	in	windows	and	classifying	the	center	
word	of	that	window!

• Possible:	Softmax and	cross	entropy	error	or	max-margin	loss

• Next	class!

4/5/16Richard	SocherLecture	1,	Slide	 46

References

4/5/16Richard	Socher47

