

# Deep Learning for Natural Language Processing

# Lecture 3: More Word Vectors

**Richard Socher** 

### **Refresher: The simple word2vec model**

• Main cost function J:

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log p(w_{t+j} | w_t)$$

• With probabilities defined as: 
$$p(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w=1}^W \exp(u_w^T v_c)}$$

• We derived the gradient for the internal vectors v<sub>c</sub>

Lecture 1, Slide 2

**Richard Socher** 

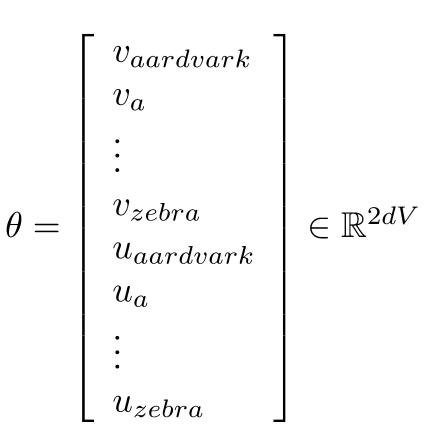
# **Calculating all gradients!**

- We went through gradients for each center vector v in a window
- We also need gradients for outside vectors u
- Derive at home!
- Generally in each window we will compute updates for all parameters that are being used in that window.
- For example window size c = 1, sentence:
   "I like learning."
- First window computes gradients for:
  - internal vector v<sub>like</sub> and external vectors u<sub>l</sub> and u<sub>learning</sub>
- Next window in that sentence?

#### **Compute all vector gradients!**

- We often define the set of ALL parameters in a model in terms of one long vector  $\boldsymbol{\theta}$
- In our case with d-dimensional vectors and

V many words:



#### **Gradient Descent**

- To minimize  $J(\theta)$  over the full batch (the entire training data) would require us to compute gradients for all windows
- Updates would be for each element of  $\mu$  :

$$\theta_j^{new} = \theta_j^{old} - \alpha \frac{\partial}{\partial \theta_j^{old}} J(\theta)$$

- With step size ®
- In matrix notation for all parameters:

$$\theta^{new} = \theta^{old} - \alpha \frac{\partial}{\partial \theta^{old}} J(\theta)$$
$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$

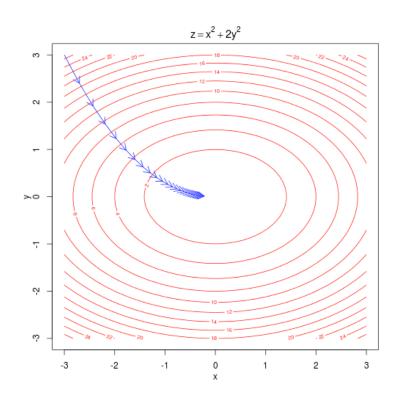
#### Vanilla Gradient Descent Code

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$

```
while True:
    theta_grad = evaluate_gradient(J,corpus,theta)
    theta = theta - alpha * theta_grad
```

#### Intuition

- For a simple convex function over two parameters.
- Contour lines show levels of objective function



#### **Stochastic Gradient Descent**

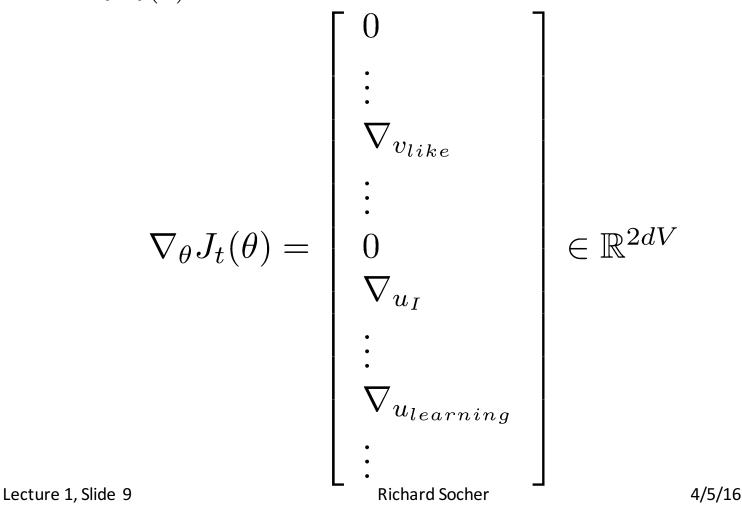
- But Corpus may have 40B tokens and windows
- You would wait a very long time before making a single update!
- Very bad idea for pretty much all neural nets!
- Instead: We will update parameters after each window t
   → Stochastic gradient descent (SGD)

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J_t(\theta)$$

```
while True:
    window = sample_window(corpus)
    theta_grad = evaluate_gradient(J,window,theta)
    theta = theta - alpha * theta_grad
```

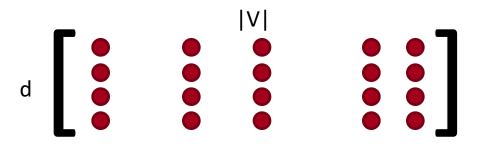
#### **Stochastic gradients with word vectors!**

• But in each window, we only have at most 2c -1 words, so  $\nabla_{\theta} J_t(\theta)$  is very sparse!



### **Stochastic gradients with word vectors!**

- We may as well only update the word vectors that actually appear!
- Solution: either keep around hash for word vectors or only update certain columns of full embedding matrix U and V



 Important if you have millions of word vectors and do distributed computing to not have to send gigantic updates around.

**Richard Socher** 

# **Approximations: PSet 1**

• The normalization factor is too computationally expensive

$$p(o|c) = \frac{\exp\left(u_o^T v_c\right)}{\sum_{w=1}^{W} \exp\left(u_w^T v_c\right)}$$

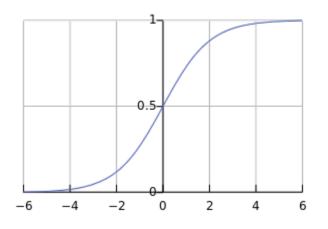
- Hence, in PSet1 you will implement the skip-gram model
- Main idea: train binary logistic regressions for a true pair (center word and word in its context window) and a couple of random pairs (the center word with a random word)

#### PSet 1: The skip-gram model and negative sampling

- From paper: "Distributed Representations of Words and Phrases and their Compositionality" (Mikolov et al. 2013)
- Overall objective function:  $J(\theta) = \frac{1}{T} \sum_{t=1}^{T} J_t(\theta)$

$$J_t(\theta) = \log \sigma \left( u_o^T v_c \right) + \sum_{i=1}^k \mathbb{E}_{j \sim P(w)} \left[ \log \sigma \left( -u_j^T v_c \right) \right]$$

- Where k is the number of negative samples and we use,
- The sigmoid function!  $\sigma(x) = \frac{1}{1+e^{-x}}$ (we'll become good friends soon)
- So we maximize the probability of two words co-occurring in first log



Lecture 1, Slide 12

**Richard Socher** 

4/5/16

#### PSet 1: The skip-gram model and negative sampling

• Slightly clearer notation:

$$J_t(\theta) = \log \sigma \left( u_o^T v_c \right) + \sum_{j \sim P(w)} \left[ \log \sigma \left( -u_j^T v_c \right) \right]$$

- Max. probability that real outside word appears, minimize prob. that random words appear around center word
- P(w)=U(w)<sup>3/4</sup>/Z, the unigram distribution U(w) raised to the 3/4rd power (We provide this function in the starter code).
- The power makes less frequent words be sampled more often

### PSet 1: The continuous bag of words model

 Main idea for continuous bag of words (CBOW): Predict center word from sum of surrounding word vectors instead of predicting surrounding single words from center word as in skipgram model

• To make PSet slightly easier:

The implementation for the CBOW model is not required and for bonus points!

# **Count based vs direct prediction**

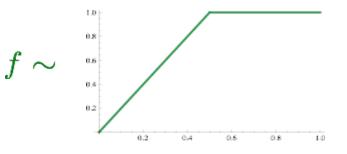
LSA, HAL (Lund & Burgess), COALS (Rohde et al), Hellinger-PCA (Lebret & Collobert)

- Fast training
- Efficient usage of statistics
- Primarily used to capture word similarity
- Disproportionate importance
   given to large counts

- NNLM, HLBL, RNN, Skipgram/CBOW, (Bengio et al; Collobert & Weston; Huang et al; Mnih & Hinton; Mikolov et al; Mnih & Kavukcuoglu)
- Scales with corpus size
- Inefficient usage of statistics
- Generate improved performance on other tasks
- Can capture complex patterns
   beyond word similarity

# **Combining the best of both worlds: GloVe**

$$J(\theta) = \frac{1}{2} \sum_{i,j=1}^{W} f(P_{ij}) (u_i^T v_j - \log P_{ij})^2$$



- Fast training
- Scalable to huge corpora
- Good performance even with small corpus, and small vectors

### **Glove results**

# Nearest words to frog:

- 1. frogs
- 2. toad
- 3. litoria
- 4. leptodactylidae
- 5. rana
- 6. lizard
- 7. eleutherodactylus



litoria



rana



#### leptodactylidae



#### eleutherodactylus

**Richard Socher** 

4/5/16

#### What to do with the two sets of vectors?

We end up with U and V from all the vectors u and v (in columns)

• Both capture similar co-occurrence information. It turns out, the best solution is to simply sum them up:

$$X_{final} = U + V$$

• One of many hyperparameters explored in *GloVe: Global Vectors for Word Representation* (Pennington et al. (2014)

#### How to evaluate word vectors?

- Related to general evaluation in NLP: Intrinsic vs extrinsic
- Intrinsic:
  - Evaluation on a specific/intermediate subtask
  - Fast to compute
  - Helps to understand that system
  - Not clear if really helpful unless correlation to real task is established
- Extrinsic:
  - Evaluation on a real task
  - Can take a long time to compute accuracy
  - Unclear if the subsystem is the problem or its interaction or other subsystems
  - If replacing one subsystem with another improves accuracy → Winning!

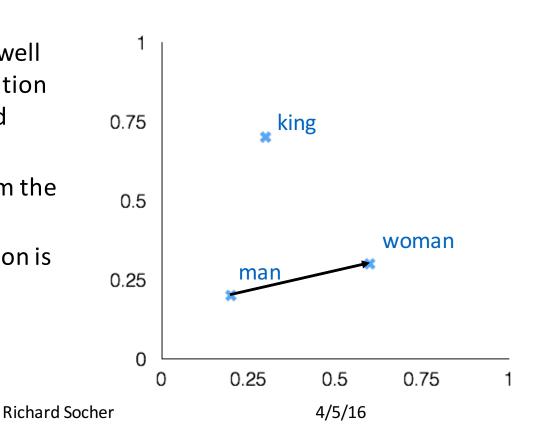
# **Intrinsic word vector evaluation**

• Word Vector Analogies

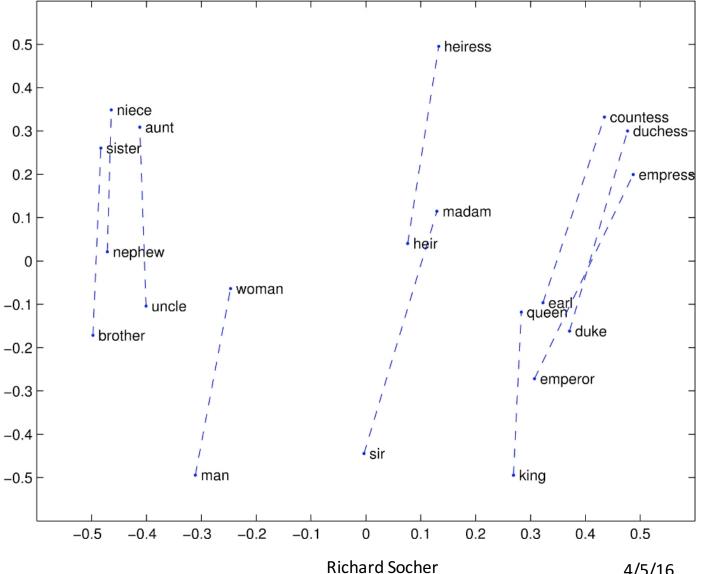
man:woman::king:?

- Evaluate word vectors by how well their cosine distance after addition captures intuitive semantic and syntactic analogy questions
- Discarding the input words from the search!
- Problem: What if the information is there but not linear?

$$d = \arg \max_{i} \frac{(x_{b} - x_{a} + x_{c})^{T} x_{i}}{||x_{b} - x_{a} + x_{c}||}$$

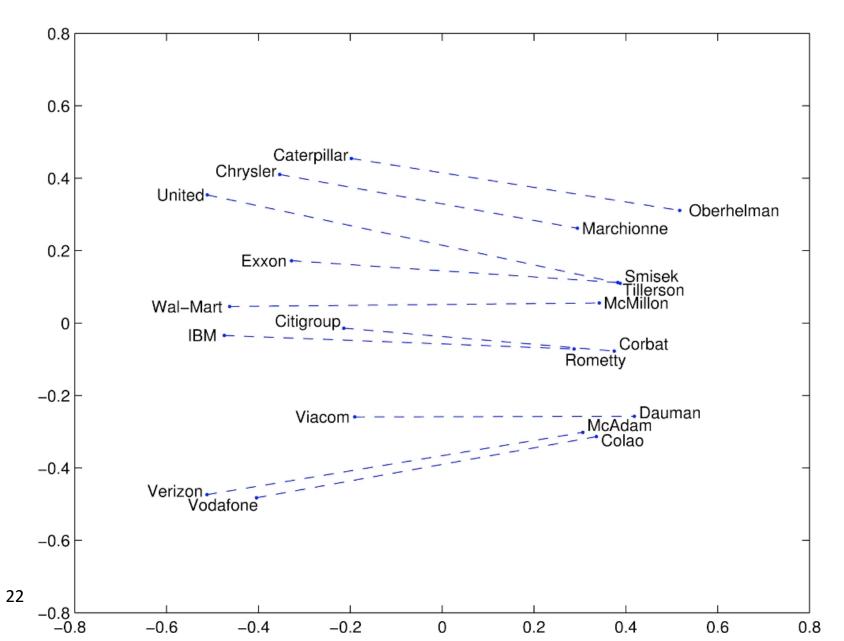


#### **Glove Visualizations**

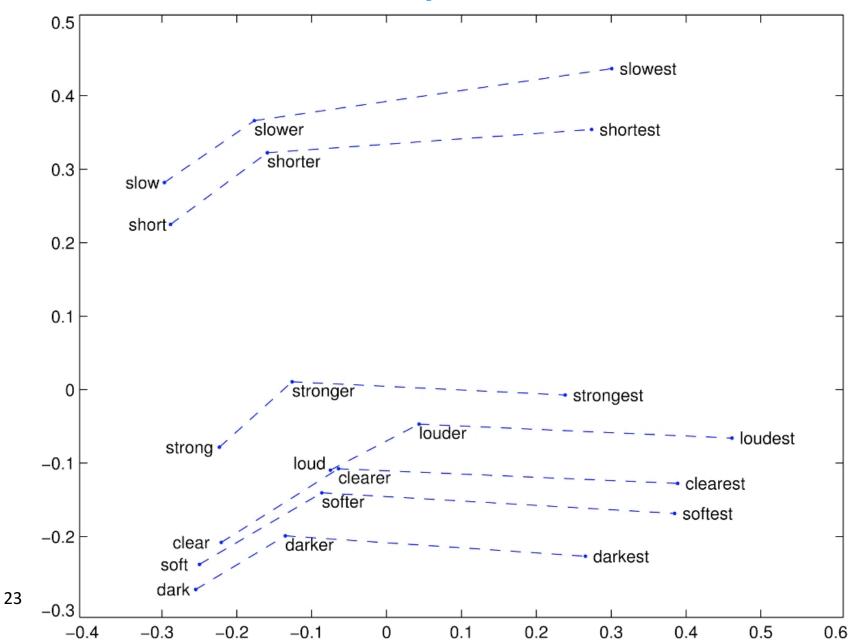




#### **Glove Visualizations: Company - CEO**



#### **Glove Visualizations: Superlatives**



 Word Vector Analogies: Syntactic and Semantic examples from <u>http://code.google.com/p/word2vec/source/browse/trunk/questions-</u> <u>words.txt</u>

: city-in-state Chicago Illinois Houston Texas Chicago Illinois Philadelphia Pennsylvania Chicago Illinois Phoenix Arizona Chicago Illinois Dallas Texas Chicago Illinois Jacksonville Florida Chicago Illinois Indianapolis Indiana Chicago Illinois Austin Texas Chicago Illinois Detroit Michigan Chicago Illinois Memphis Tennessee Chicago Illinois Boston Massachusetts

problem: different cities may have same name

• Word Vector Analogies: Syntactic and **Semantic** examples from

: capital-world Abuja Nigeria Accra Ghana Abuja Nigeria Algiers Algeria Abuja Nigeria Amman Jordan Abuja Nigeria Ankara Turkey Abuja Nigeria Antananarivo Madagascar Abuja Nigeria Apia Samoa Abuja Nigeria Ashgabat Turkmenistan Abuja Nigeria Ashgabat Turkmenistan Abuja Nigeria Ashgabat Samara Eritrea problem: can change

• Word Vector Analogies: Syntactic and Semantic examples from

: gram4-superlative bad worst big biggest bad worst bright brightest bad worst cold coldest bad worst cool coolest bad worst dark darkest bad worst easy easiest bad worst fast fastest bad worst good best bad worst great greatest

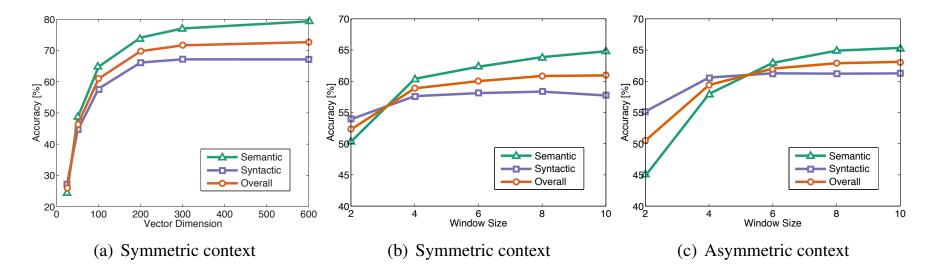
• Word Vector Analogies: **Syntactic** and Semantic examples from

: gram7-past-tense dancing danced decreasing decreased dancing danced describing described dancing danced enhancing enhanced dancing danced falling fell dancing danced feeding fed dancing danced flying flew dancing danced generating generated dancing danced poing went dancing danced hiding hid dancing danced hitting hit

• Very careful analysis: Glove word vectors

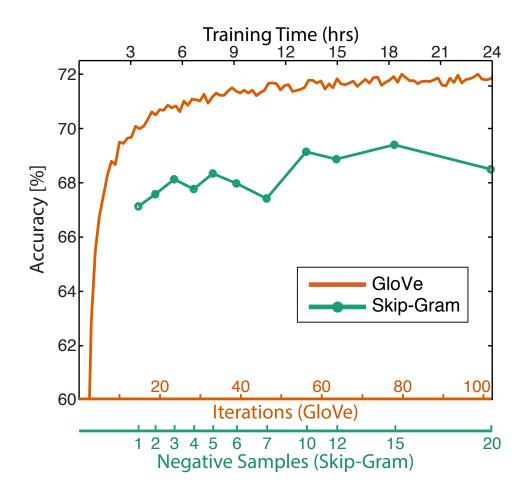
| F                     |      |      |             |             |             |
|-----------------------|------|------|-------------|-------------|-------------|
| Model                 | Dim. | Size | Sem.        | Syn.        | Tot.        |
| ivLBL                 | 100  | 1.5B | 55.9        | 50.1        | 53.2        |
| HPCA                  | 100  | 1.6B | 4.2         | 16.4        | 10.8        |
| GloVe                 | 100  | 1.6B | <u>67.5</u> | <u>54.3</u> | <u>60.3</u> |
| SG                    | 300  | 1B   | 61          | 61          | 61          |
| CBOW                  | 300  | 1.6B | 16.1        | 52.6        | 36.1        |
| vLBL                  | 300  | 1.5B | 54.2        | <u>64.8</u> | 60.0        |
| ivLBL                 | 300  | 1.5B | 65.2        | 63.0        | 64.0        |
| GloVe                 | 300  | 1.6B | <u>80.8</u> | 61.5        | <u>70.3</u> |
| SVD                   | 300  | 6B   | 6.3         | 8.1         | 7.3         |
| SVD-S                 | 300  | 6B   | 36.7        | 46.6        | 42.1        |
| SVD-L                 | 300  | 6B   | 56.6        | 63.0        | 60.1        |
| $CBOW^{\dagger}$      | 300  | 6B   | 63.6        | <u>67.4</u> | 65.7        |
| $\mathrm{SG}^\dagger$ | 300  | 6B   | 73.0        | 66.0        | 69.1        |
| GloVe                 | 300  | 6B   | <u>77.4</u> | 67.0        | <u>71.7</u> |
| CBOW                  | 1000 | 6B   | 57.3        | 68.9        | 63.7        |
| SG                    | 1000 | 6B   | 66.1        | 65.1        | 65.6        |
| SVD-L                 | 300  | 42B  | 38.4        | 58.2        | 49.2        |
| GloVe                 | 300  | 42B  | <u>81.9</u> | <u>69.3</u> | <u>75.0</u> |

• Asymmetric context (only words to the left) are not as good

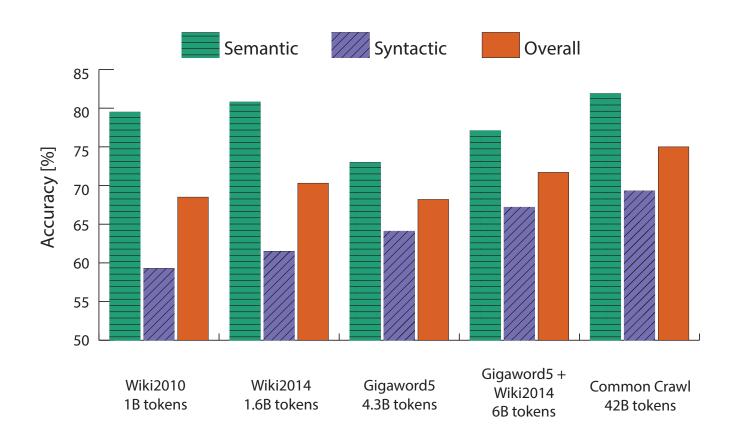


- Best dimensions ~300, slight drop-off afterwards
- But this might be different for downstream tasks!
- Window size of 8 around each center word is good for Glove vectors

• More training time helps



• More data helps, Wikipedia is better than news text!



#### **Intrinsic word vector evaluation**

- Word vector distances and their correlation with human judgments
- Example dataset: WordSim353
   <u>http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/</u>

| Word 2 | Human (mean)                                            |  |  |
|--------|---------------------------------------------------------|--|--|
| cat    | 7.35                                                    |  |  |
| tiger  | 10.00                                                   |  |  |
| paper  | 7.46                                                    |  |  |
| er     | internet 7.58                                           |  |  |
| car    | 5.77                                                    |  |  |
| or     | doctor 6.62                                             |  |  |
| phone  | 1.62                                                    |  |  |
| CD     | 1.31                                                    |  |  |
| jaguar | 0.92                                                    |  |  |
|        | cat<br>tiger<br>paper<br>er<br>car<br>or<br>phone<br>CD |  |  |

## **Correlation evaluation**

• Word vector distances and their correlation with human judgments

| Model             | Size | WS353       | MC          | RG          | SCWS        | RW          |
|-------------------|------|-------------|-------------|-------------|-------------|-------------|
| SVD               | 6B   | 35.3        | 35.1        | 42.5        | 38.3        | 25.6        |
| SVD-S             | 6B   | 56.5        | 71.5        | 71.0        | 53.6        | 34.7        |
| SVD-L             | 6B   | 65.7        | 72.7        | 75.1        | 56.5        | 37.0        |
| CBOW <sup>†</sup> | 6B   | 57.2        | 65.6        | 68.2        | 57.0        | 32.5        |
| $SG^{\dagger}$    | 6B   | 62.8        | 65.2        | 69.7        | <u>58.1</u> | 37.2        |
| GloVe             | 6B   | <u>65.8</u> | <u>72.7</u> | 77.8        | 53.9        | 38.1        |
| SVD-L             | 42B  | 74.0        | 76.4        | 74.1        | 58.3        | 39.9        |
| GloVe             | 42B  | <u>75.9</u> | <u>83.6</u> | <u>82.9</u> | <u>59.6</u> | <u>47.8</u> |
| CBOW*             | 100B | 68.4        | 79.6        | 75.4        | 59.4        | 45.5        |

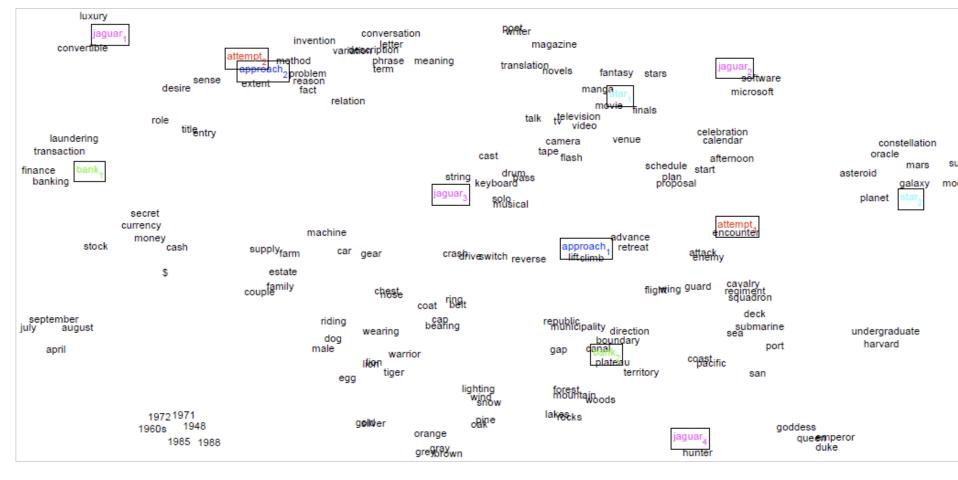
• Some ideas from Glove paper have been shown to improve skip-gram (SG) model also (e.g. sum both vectors)

#### **But what about ambiguity?**

- You may hope that one vector captures both kinds of information (run = verb and noun) but then vector is pulled in different directions
- Alternative described in: *Improving Word Representations Via Global Context And Multiple Word Prototypes* (Huang et al. 2012)
- Idea: Cluster word windows around words, retrain with each word assigned to multiple different clusters bank<sub>1</sub>, bank<sub>2</sub>, etc

#### But what about ambiguity?

• Improving Word Representations Via Global Context And Multiple Word Prototypes (Huang et al. 2012)



**Richard Socher** 

4/5/16

#### **Extrinsic word vector evaluation**

- Extrinsic evaluation of word vectors: All subsequent tasks in this class
- One example where good word vectors should help directly: named entity recognition: finding a person, organization or location

| Model    | Dev  | Test | ACE  | MUC7 |
|----------|------|------|------|------|
| Discrete | 91.0 | 85.4 | 77.4 | 73.4 |
| SVD      | 90.8 | 85.7 | 77.3 | 73.7 |
| SVD-S    | 91.0 | 85.5 | 77.6 | 74.3 |
| SVD-L    | 90.5 | 84.8 | 73.6 | 71.5 |
| HPCA     | 92.6 | 88.7 | 81.7 | 80.7 |
| HSMN     | 90.5 | 85.7 | 78.7 | 74.7 |
| CW       | 92.2 | 87.4 | 81.7 | 80.2 |
| CBOW     | 93.1 | 88.2 | 82.2 | 81.1 |
| GloVe    | 93.2 | 88.3 | 82.9 | 82.2 |

• Next: How to use word vectors in neural net models!

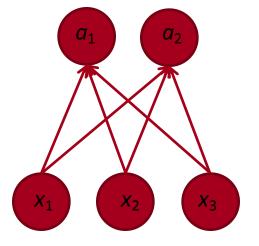
# Simple single word classification

- What is the major benefit of deep learned word vectors?
  - Ability to also classify words accurately
    - Countries cluster together → classifying location words should be possible with word vectors
  - Incorporate **any** information into them other tasks
    - Project sentiment into words to find most positive/negative words in corpus

#### The softmax

Logistic regression = Softmax classification on word vector x to obtain probability for class y:

$$p(y|x) = \frac{\exp(W_y \cdot x)}{\sum_{c=1}^{C} \exp(W_c \cdot x)}$$



where:  $W \in \mathbb{R}^{C \times d}$ 

#### Generalizes >2 classes (for just binary sigmoid unit would suffice as in skip-gram)

#### The softmax - details

- Terminology: Loss function = cost function = objective function
- Loss for softmax: Cross entropy
- To compute p(y|x): first take the y'th row of W and multiply that with row with x:

$$W_{y} \cdot x = \sum_{i=1}^{d} W_{yi} x_i = f_y$$

- Compute all f<sub>c</sub> for c=1,...,C
- Normalize to obtain probability with softmax function:

$$p(y|x) = \frac{\exp(f_y)}{\sum_{c=1}^{C} \exp(f_c)}$$

**Richard Socher** 

#### The softmax and cross-entropy error

• The loss wants to maximize the probability of the correct class y

• Hence, we minimize the negative log probability of that class:

$$-\log p(y|x) = -\log\left(\frac{\exp(f_y)}{\sum_{c=1}^{C}\exp(f_c)}\right)$$

 As before: we sum up multiple cross entropy errors if we have multiple classifications in our total error function over the corpus (more next lecture)

#### **Background: The Cross entropy error**

Assuming a ground truth (or gold or target) probability distribution that is 1 at the right class and 0 everywhere else:
 p = [0,...,0,1,0,...0] and our computed probability is q, then the cross entropy is:

$$H(p,q) = -\sum_{c=1}^{C} p(c) \log q(c)$$

- Because of one-hot p, the only term left is the negative probability of the true class
- Cross-entropy can be re-written in terms of the entropy and Kullback-Leibler divergence between the two distributions:

$$H(p,q) = H(p) + D_{KL}(p||q)$$

**Richard Socher** 

### The KL divergence

- Cross entropy:  $H(p,q) = H(p) + D_{KL}(p||q)$
- Because p is zero in our case (and even if it wasn't it would be fixed and have no contribution to gradient), to minimize this is equal to minimizing the KL divergence
- The KL divergence is not a distance but a non-symmetric measure of the difference between two probability distributions p and q

$$D_{KL}(p||q) = \sum_{c=1}^{C} p(c) \log \frac{p(c)}{q(c)}$$

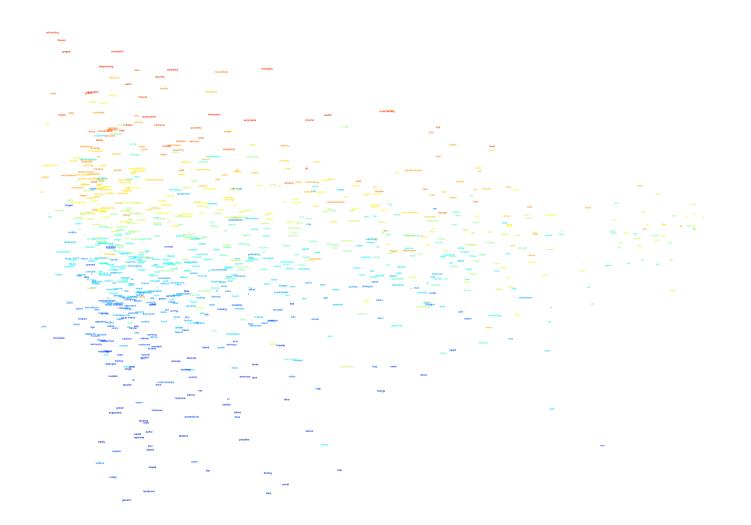


• Derive the gradient of the cross entropy error with respect to the input word vector x and the matrix W

# Simple single word classification

- Example: Sentiment
- Two options: train only *softmax* weights W and fix word vectors or also train word vectors
- Question: What are the advantages and disadvantages of training the word vectors?
- Pro: better fit on training data
- Con: Worse generalization because the words move in the vector space

#### **Visualization of sentiment trained word vectors**



### Next level up: Window classification

- Single word classification has no context!
- Let's add context by taking in windows and classifying the center word of that window!
- Possible: Softmax and cross entropy error or **max-margin loss**
- Next class!

