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. Vanishingand exploding gradient problems

RNNs for other sequence tasks
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Feedback

Pace of lectures? (52 responses)

N

Difficulty of material? (51 responses)

>

@ Just right
@ Too fast
@ Too slow

@ Just right
@ Too difficult
@ Too easy



Feedback = Super useful 2 Thanks!

Explain theintuition behindthe math and models more

- some today :)

Give more examples, more toy examples and recap slides can help us
understand faster

- Some toy examples today. Recap of main concepts next week
Consistencyissuesin dimensionality, row vs column, etc.

- All vectors should be column vectors ... unless | messed up, please send
errata

| like the quality of the problem sets and especially the starter code. It would be
nice to include ballpark values we should expect

- Will add in future Psets and on Piazza. We’ll also add dimensionality.
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Feedback on Project

Please give list of proposed projects
9

* Great feedback, | asked research groups at Stanford
and will compile a list for next Tuesday.

 We’'ll move project proposal deadline to next week
Thursday.

e Extra credit deadline for dataset + first baseline is for
project milestone.
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Language Models
A language model computes a probability for a sequence
of words: P(w,...,wr)

e Useful for machine translation

*  Word ordering:
p(the cat is small) > p(small the is cat)

*  Word choice:
p(walking home after school) > p(walking house after

school)
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Traditional Language Models

* Probability is usually conditioned on window of n
previous words

* Anincorrect but necessary Markov assumption!

m m

P(w17"'7wm) — HP(U}% | wla"'7wi—1) ~ HP(wZ | wi—(n—l)a"wwi—l)
=1 =1

* To estimate probabilities, compute for unigrams and
bigrams (conditioning on one/two previous word(s):

count(wy, ws) count(wy, wa, w3)

p(wa|wy) = p(ws|wy, we) =

count(wy ) count(wy, ws)
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Traditional Language Models

* Performance improves with keeping around higher n-
grams counts and doing smoothing and so-called
backoff (e.g. if 4-gram not found, try 3-gram, etc)

* Thereare ALOT of n-grams!
- Gigantic RAM requirements!

* Recent state of the art: Scalable Modified Kneser-Ney

Language Model Estimation by Heafield et al.:
“Using one machine with 140 GB RAM for 2.8 days,

we built an unpruned model on 126 billion tokens”
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Recurrent Neural Networks!

 RNNs tie the weights at each time step
* Condition the neural network on all previous words

* RAM requirement only scales with number of words

hta
W

>

Xt-1 r Xt Xt+1 r

vV

0000 —>
=
0000 —>~
0000 — -
x
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Recurrent Neural Network language model

Given list of word vectors: 1,---,Zt—1,%t, Tt41,- -, T

At a single time step: he = o (W(hh>ht_1 + W(h%[t])
UJy = softmax (W(S>ht)
p(.CEH_l = ’Uj | Lty-.- .,.2131) = ?)t,j
© |
o O
() s
® o
@ -
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Recurrent Neural Network language model

Main idea: we use the same set of W weights at all time
steps!

Everything else is the same:  h, = o (Wh, y + W)ay)
Uy = softmax (W(S)ht)
P(th Z?}j | CBt,...,CIjl) = @t,j

ho € RP» is some initialization vector for the hidden layer
at time step O

Z[¢] is the column vector of L at index [t] at time step t
W(hh) c RDhXDh W(ha:) c RDh X d W(S) c R|V|XDh



Recurrent Neural Network language model

U € RVl isa probability distribution over the vocabulary

Same cross entropy loss function but predicting words
instead of classes

v
T (6 Zyt j1og i
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Recurrent Neural Network language model

Evaluation could just be negative of average log
probability over dataset of size (number of words) T:

T |V

1
J = i S: S:yt,j log Ut

t=1 j=1

But more common: Perplexity: ZJ

Lower is better!
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Training RNNs is hard

e Multiplythe same matrix at each time step during forward prop

Vi1 Vi Vir1
T M A
ht—l ht ht+1
: W O " O
O [ )
=i > —> ——
O - @ [ )
® @) [ )

Xt-1 r Xt Xis1 r

e |deallyinputs from many time steps ago can modify outputy

e Take % for an example RNN with 2 time steps! Insightful!
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The vanishing/exploding gradient problem

e Multiplythe same matrix at each time step during backprop

Vi Vi Vir
ht—l T ht T ht+1 T
® W o W [
—> o 5“‘ —> ® —
0 e e
—>| @ O O
Xt-1 Xt Xt+1
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The vanishing gradient problem - Details

e Similar but simpler RNN formulation:

]’Lt = Wf(ht_l) + W(hw)l'[t]
g = WO f(hy)

e Total error isthe sum of each error at time stepst

OB _ <~ 0B,
OW &= oW

t=1

e Hardcore chain rule application°

8Et Z 8Et 8yt 8ht 8hk

Lecture 1, Slide 16 Richard Socher 4/21/16



The vanishing gradient problem - Details

Similar to backprop but less efficient formulation

Useful for analysis we’ll Iook at:
8Et Z 8Et é?yt aht ahk
8yt 8ht 8hk ow

e Remember: he = WF(hi—1) + W(’“”):c[t]
e More chain rule, remember:
Ohy ‘o Oh,

6hk ki1 8hj_1
* Each partial is a Jacobian: (o0 Of1T
o _for o) U
dx 0xq ox,, % 8]‘%
| 01 ox,,
4/21/16
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The vanishing gradient problem - Details

t

* From previousslide: % = (;Zhj
ko1 It
e Remember: h;, = Wf(ht—1)+W(hm)m[t]

e To computelacobian, derive each element of matrix:

t t

oy
Ohy

Oh,

(9hj_1 -

J:k+1 j:k:—|—1

L0

* Where: diag(z) =
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he

= = ][ w"diag[f'(h;-1)]

A 4
0000

Ohj.m

8hj_1,n

Check at home

that you understand
the diag matrix
formulation
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The vanishing gradient problem - Details

* Analyzing the norms of the Jacobians, yields:
Oh;
ahj_l
e Where we defined ‘s as upper bounds of the norms

< W ||| diag[f'(hj— ]Il < Bw Bn

e The gradient is a product of Jacobian matrices, each associated
with a step in the forward computation.

ohy
Ohy,

— || < (Bwpn) "

e This can become very small or very large quickly [Bengio et al
1994], and the locality assumption of gradient descent breaks
down. =2 Vanishing or exploding gradient
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Why is the vanishing gradient a problem?

e The error at a time step ideally can tell a previous time step
from many steps away to change during backprop

Yi-1 Vi Vir1

ht—l 1 Wht 1 ht+1 /1/
DA o W — @ .

e S e N

L o @

(0o00e| (0000| (0000
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The vanishing gradient problem for language models

* |nthe case of language modeling or question answering words
from time steps far away are not taken into consideration when
training to predict the next word

e Example:

Jane walked into the room. John walked in too. It was late in the
day. Jane said hito
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IPython Notebook with vanishing gradient example

e Example of simple and clean NNet implementation
e Comparison of sigmoid and ReLu units

e Alittle bit of vanishing gradient
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In [21]: plt.plot(np.array(relu array[:6000]),color="blue’)
plt.plot(np.array(sigm array[:6000]),color="green')
plt.title('Sum of magnitudes of gradients -- hidden layer neurons')

Out[21]: <matplotlib.text.Text at 0x10a331310>

10 Sum of magnitudes of gradients -- hidden layer neurons
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Trick for exploding gradient: clipping trick

e The solutionfirst introduced by Mikolov is to clip gradients
to a maximum value.

Algorithm 1 Pseudo-code for norm clipping the gra-

dients whenever they explode
88

g <
if ||g|] > threshold then
threshold ~
&< gl 8
end if

e Makes a bigdifference in RNNs.

24



Gradient clipping intuition

25

Figure from paper:
On the difficulty of
'0.35 training Recurrent Neural
'0.30 Networks, Pascanu et al.
'0.25 L 2013
'0.20 £
Q
0.15

'0.10
'0.05

Error surface of a single hidden unit RNN,

High curvature walls

Solid lines: standard gradient descent trajectories

Dashed lines gradients rescaled to fixed size
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For vanishing gradients: Initialization + RelLus!

Pixel-by—pixel permuted MNIST
100 T T T T T

—‘LSTM‘
e 1 *)e Pl T A ot

* I|nitialize W")'s to wol| —— i
identity matrix |
and

f(z) =rect(z)=max(z,0) &

e = Huge difference! i’[;?‘““" '

0 1 2 3 4 5 6 7 8 9 10

* |Initializationidea first introduced in Parsing with Compositional
Vector Grammars, Socher et al. 2013

 New experiments with recurrent neural nets 2 weeks ago (!) in
A Simple Way to Initialize Recurrent Networks of Rectified
Linear Units, Le et al. 2015
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Perplexity Results

KN5 = Count-based language model with Kneser-Ney
smoothing & 5-grams

Table 2. Comparison of different neural network architectures on
Penn Corpus (1M words) and Switchboard (4M words).

Penn Corpus Switchboard
Model NN | NN+KN || NN | NN+KN
KNS5 (baseline) - 141 - 92.9
feedforward NN 141 118 85.1 77.5
RNN trained by BP 137 113 81.3 75.4
RNN trained by BPTT || 123 106 77.5 72.5

Table from paper Extensions of recurrent neural network
language model by Mikolov et al 2011
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Problem: Softmax is huge and slow

Trick: Class-based word prediction

p(w,| history) = p(c, | history)p(w;|c,)

= p(c | hy)plw,|cy)

Table 3. Perplexities on Penn corpus with factorization of the output
layer by the class model. All models have the same basic configura-
tion (200 hidden units and BPTT=5). The Full model is a baseline
and does not use classes, but the whole 10K vocabulary.

The more Classesl | Classes || RNN | RNN+KN5 | Min/epoch | Sec/test |
1 30 134 112 12.8 8.8
the better perplexity 20 134 112 = 58
but also worse speed: o o . > P
400 134 112 10.9 8.1
1000 131 111 16.1 15.7
2000 128 109 25.3 28.7
4000 127 108 44 .4 57.8
6000 127 109 70 96.5
8000 124 107 107 148
28 Full 123 106 154 212




One last implementation trick

29

You only need to pass backwards through your
sequence once and accumulate all the deltas from
each E,
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Sequence modeling for other tasks

e C(Classify each word into:
* NER
* Entity level sentiment in context

* opinionated expressions

 Example application and slides from paper Opinion
Mining with Deep Recurrent Nets by Irsoy and Cardie
2014
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Opinion Mining with Deep Recurrent Nets

Goal: Classify each word as

direct subjective expressions (DSEs) and
expressive subjective expressions (ESEs).

DSE: Explicit mentions of private states or speech events
expressing private states

ESE: Expressions that indicate sentiment, emotion, etc.
without explicitly conveying them.
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Example Annotation

In BIO notation (tags either begin-of-entity (B_X) or

continuation-of-entity (I_X)):
The committee, [as usual]ge, [has refused to make any

statements] .

The committee . as usual has
O O O B_ESE I_ESE O B_DSE
refused to make any statements

I_DSE |_DSE |_DSE |_DSE |_DSE O
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Approach: Recurrent Neural Network

* Notation from paper (so you get used to different ones)

V e [ ° ®
A A A A

i h = f(Wx, +Vh_, +b)
A A A A yt — g(Uh, +C)

X o ) ° °

* x represents a token (word) as a vector.
* yrepresents the outputlabel (B, | or O) — g = softmax !

* histhe memory, computed from the past memory and current
word. It summarizes the sentence up to that time.
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Bidirectional RNNs

Problem: For classification you want to incorporate
information from words both preceding and following

Y e o o °
/K /A [ /‘ ;lt = f(th + ‘—/7)%—1 + l;)
" '-. '-. '-.
A A A

Zt = f(WXt + Vljml + (I;)

A . : . -
'\ ,\ \ \ y, =8WUlhihi]+c)

X o ° ° °

h=[h;h] now represents (summarizes) the past and future

around a single token.
34 Richard Socher 4/21/16



Deep Bidirectional RNNs

-

Y
S

o o
“‘Or .“‘.
AT B RO =) =) =)

ht=f(W ht(i_l)+V hi-i+b )

(i) — ) iy SO «0)
ht=f(W ht +V hw+b )

—(L) «(L)

Y, = g(U[ht ;ht ]+C)

X o o o o
Each memory layer passes an intermediate sequential
representation to the next.
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Data

e MPQA 1.2 corpus (Wiebe et al., 2005)
e consists of 535 news articles (11,111 sentences)

 manually labeled with DSE and ESEs at the phrase

level
. .. tp
e Evaluation: F1 precision =
tp+ fp
recall = tp
tp+ fn
—9. precision - recall

precision + recall
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Evaluation

74
72
o 70
o 68
66
64

37

1 2 3 4 S

# Layers

68
66
64
62
60

1 2 3 4 S

# Layers

W 24k
m 200k
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Recap

 Recurrent Neural Network is one of the best deepNLP
model families

* Training them is hard because of vanishing and
exploding gradient problems

* Theycan be extended in many ways and their training
improved with many tricks (more to come)

 Next week: Most important and powerful RNN
extensions with LSTMs and GRUs
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