
CS224d
Deep	NLP

Lecture	8:
Recurrent	Neural	Networks

Richard	Socher
richard@metamind.io

Overview

4/21/16Richard	Socher2

• Feedback

• Traditional	language	models

• RNNs

• RNN	language	models

• Important	training	problems	and	tricks

• Vanishing	and	exploding	gradient	problems

• RNNs	for	other	sequence	tasks

• Bidirectional	and	deep	RNNs

Feedback

4/21/16Richard	Socher3

Feedback	à Super	useful	à Thanks!

4/21/16Richard	Socher4

Explain	the	intuition	behind	the	math	and	models	more	

à some	today	:)

Give	more	examples,	more	toy	examples	and	recap	slides	can	help	us	
understand	faster

à Some	toy	examples	today.	Recap	of	main	concepts	next	week

Consistency	issues	in	dimensionality,	row	vs column,	etc.

à All	vectors	should	be	column	vectors	…	unless	I	messed	up,	please	send	
errata

I	like	the	quality	of	the	problem	sets	and	especially	the	starter	code.	It	would	be	
nice	to	include	ballpark	values	we	should	expect

àWill	add	in	future	Psets and	on	Piazza.	We’ll	also	add	dimensionality.

Feedback	on	Project

4/21/16Richard	Socher5

Please	give	list	of	proposed	projects

à

• Great	feedback,	I	asked	research	groups	at	Stanford	
and	will	compile	a	list	for	next	Tuesday.

• We’ll	move	project	proposal	deadline	to	next	week	
Thursday.

• Extra	credit	deadline	for	dataset	+	first	baseline	is	for	
project	milestone.

Language	Models

4/21/16Richard	Socher6

A	language	model	computes	a	probability	for	a	sequence	
of	words:

• Useful	for	machine	translation
• Word	ordering:

p(the	cat	is	small)	>	p(small	the	is	cat)

• Word	choice:
p(walking	home	after	school)	>	p(walking	house	after	
school)

Traditional	Language	Models

4/21/16Richard	Socher7

• Probability	is	usually	conditioned	on	window	of	n	
previous	words

• An	incorrect	but	necessary	Markov	assumption!

• To	estimate	probabilities,	compute	for	unigrams	and	
bigrams	(conditioning	on	one/two	previous	word(s):

Traditional	Language	Models

4/21/16Richard	Socher8

• Performance	improves	with	keeping	around	higher	n-
grams	counts	and	doing	smoothing	and	so-called	
backoff (e.g.	if	4-gram	not	found,	try	3-gram,	etc)

• There	are	A	LOT	of	n-grams!
à Gigantic	RAM	requirements!	

• Recent	state	of	the	art:	Scalable	Modified	Kneser-Ney	
Language	Model	Estimation by	Heafield et	al.:	
“Using	one	machine	with	140	GB	RAM	for	2.8	days,	
we	built	an	unprunedmodel	on	126	billion	tokens”

Recurrent	Neural	Networks!

4/21/16Richard	Socher9

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

Recurrent	Neural	Network	language	model

4/21/16Richard	Socher10

Given	list	of	word	vectors:

At	a	single	time	step:

xt ht

ßà

Recurrent	Neural	Network	language	model

Main	idea:	we	use	the	same	set	of	W	weights	at	all	time	
steps!

Everything	else	is	the	same:

is	some	initialization	vector	for	the	hidden	layer	
at	time	step	0

is	the	column	vector	of	L	at	index	[t]	at	time	step	t

Recurrent	Neural	Network	language	model

4/21/16Richard	Socher12

is	a	probability	distribution	over	the	vocabulary

Same	cross	entropy	loss	function	but	predicting	words	
instead	of	classes

Recurrent	Neural	Network	language	model

4/21/16Richard	Socher13

Evaluation	could	just	be	negative	of	average	log	
probability	over	dataset	of	size	(number	of	words)	T:

But	more	common:	Perplexity:				2J

Lower	is	better!

Training	RNNs	is	hard

• Multiply	the	same	matrix	at	each	time	step	during	forward	prop

• Ideally	inputs	from	many	time	steps	ago	can	modify	output	y
• Take										for	an	example	RNN	with	2	time	steps!	Insightful!

4/21/16Richard	SocherLecture	1,	Slide	 14

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

The	vanishing/exploding	gradient	problem

• Multiply	the	same	matrix	at	each	time	step	during	backprop

4/21/16Richard	SocherLecture	1,	Slide	 15

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

The	vanishing	gradient	problem	- Details

• Similar	but	simpler	RNN	formulation:

• Total	error	is	the	sum	of	each	error	at	time	steps	t

• Hardcore	chain	rule	application:

4/21/16Richard	SocherLecture	1,	Slide	 16

The	vanishing	gradient	problem	- Details

• Similar	to	backprop but	less	efficient	formulation
• Useful	for	analysis	we’ll	look	at:

• Remember:
• More	chain	rule,	remember:

• Each	partial	is	a	Jacobian:

4/21/16Richard	SocherLecture	1,	Slide	 17

The	vanishing	gradient	problem	- Details

• From	previous	slide:	

• Remember:

• To	compute	Jacobian,	derive	each	element of	matrix:	

• Where:

4/21/16Richard	SocherLecture	1,	Slide	 18

ht−1 ht

Check	at	home	
that	you	understand
the	diag matrix	
formulation

The	vanishing	gradient	problem	- Details

• Analyzing	the	norms	of	the	Jacobians,	yields:

• Where	we	defined	̄ ‘s	as	upper	bounds	of	the	norms
• The	gradient	is	a	product	of	Jacobianmatrices,	each	associated	

with	a	step	in	the	forward	computation.	

• This	can	become	very	small	or	very	large	quickly	[Bengio et	al	
1994],	and	the	locality	assumption	of	gradient	descent	breaks	
down.	à Vanishing	or	exploding	gradient

4/21/16Richard	SocherLecture	1,	Slide	 19

Why	is	the	vanishing	gradient	a	problem?

• The	error	at	a	time	step	ideally	can	tell	a	previous	time	step	
from	many	steps	away	to	change	during	backprop

4/21/16Richard	SocherLecture	1,	Slide	 20

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

The	vanishing	gradient	problem	for	language	models

• In	the	case	of	language	modeling	or	question	answering	words	
from	time	steps	far	away	are	not	taken	into	consideration	when	
training	to	predict	the	next	word

• Example:	

Jane	walked	into	the	room.	John	walked	in	too.	It	was	late	in	the	
day.	Jane	said	hi	to	____

4/21/16Richard	SocherLecture	1,	Slide	 21

IPython Notebook	with	vanishing	gradient	example

• Example	of	simple	and	clean	NNet implementation	

• Comparison	of	sigmoid	and	ReLu units

• A	little	bit	of	vanishing	gradient

4/21/16Richard	SocherLecture	1,	Slide	 22

4/21/16Richard	SocherLecture	1,	Slide	 23

Trick	for	exploding	gradient:	clipping	trick

• The	solution	first	introduced	by	Mikolov is	to	clip	gradients
to	a	maximum	value.	

• Makes	a	big	difference	in	RNNs.

24

On the di�culty of training Recurrent Neural Networks

region of space. It has been shown that in practice
it can reduce the chance that gradients explode, and
even allow training generator models or models that
work with unbounded amounts of memory(Pascanu
and Jaeger, 2011; Doya and Yoshizawa, 1991). One
important downside is that it requires a target to be
defined at every time step.

In Hochreiter and Schmidhuber (1997); Graves et al.
(2009) a solution is proposed for the vanishing gra-
dients problem, where the structure of the model is
changed. Specifically it introduces a special set of
units called LSTM units which are linear and have a
recurrent connection to itself which is fixed to 1. The
flow of information into the unit and from the unit is
guarded by an input and output gates (their behaviour
is learned). There are several variations of this basic
structure. This solution does not address explicitly the
exploding gradients problem.

Sutskever et al. (2011) use the Hessian-Free opti-
mizer in conjunction with structural damping, a spe-
cific damping strategy of the Hessian. This approach
seems to deal very well with the vanishing gradient,
though more detailed analysis is still missing. Pre-
sumably this method works because in high dimen-
sional spaces there is a high probability for long term
components to be orthogonal to short term ones. This
would allow the Hessian to rescale these components
independently. In practice, one can not guarantee that
this property holds. As discussed in section 2.3, this
method is able to deal with the exploding gradient
as well. Structural damping is an enhancement that
forces the change in the state to be small, when the pa-
rameter changes by some small value�✓. This asks for
the Jacobian matrices @xt

@✓

to have small norm, hence
further helping with the exploding gradients problem.
The fact that it helps when training recurrent neural
models on long sequences suggests that while the cur-
vature might explode at the same time with the gradi-
ent, it might not grow at the same rate and hence not
be su�cient to deal with the exploding gradient.

Echo State Networks (Lukoševičius and Jaeger, 2009)
avoid the exploding and vanishing gradients problem
by not learning the recurrent and input weights. They
are sampled from hand crafted distributions. Because
usually the largest eigenvalue of the recurrent weight
is, by construction, smaller than 1, information fed in
to the model has to die out exponentially fast. This
means that these models can not easily deal with long
term dependencies, even though the reason is slightly
di↵erent from the vanishing gradients problem. An
extension to the classical model is represented by leaky
integration units (Jaeger et al., 2007), where

x

k

= ↵x

k�1 + (1� ↵)�(W
rec

x

k�1 +W

in

u

k

+ b).

While these units can be used to solve the standard
benchmark proposed by Hochreiter and Schmidhu-
ber (1997) for learning long term dependencies (see
(Jaeger, 2012)), they are more suitable to deal with
low frequency information as they act as a low pass
filter. Because most of the weights are randomly sam-
pled, is not clear what size of models one would need
to solve complex real world tasks.

We would make a final note about the approach pro-
posed by Tomas Mikolov in his PhD thesis (Mikolov,
2012)(and implicitly used in the state of the art re-
sults on language modelling (Mikolov et al., 2011)).
It involves clipping the gradient’s temporal compo-
nents element-wise (clipping an entry when it exceeds
in absolute value a fixed threshold). Clipping has been
shown to do well in practice and it forms the backbone
of our approach.

3.2. Scaling down the gradients

As suggested in section 2.3, one simple mechanism to
deal with a sudden increase in the norm of the gradi-
ents is to rescale them whenever they go over a thresh-
old (see algorithm 1).

Algorithm 1 Pseudo-code for norm clipping the gra-
dients whenever they explode

ĝ @E
@✓

if kĝk � threshold then

ĝ threshold

kĝk ĝ

end if

This algorithm is very similar to the one proposed by
Tomas Mikolov and we only diverged from the original
proposal in an attempt to provide a better theoretical
foundation (ensuring that we always move in a de-
scent direction with respect to the current mini-batch),
though in practice both variants behave similarly.

The proposed clipping is simple to implement and
computationally e�cient, but it does however in-
troduce an additional hyper-parameter, namely the
threshold. One good heuristic for setting this thresh-
old is to look at statistics on the average norm over
a su�ciently large number of updates. In our ex-
periments we have noticed that for a given task and
model size, training is not very sensitive to this hyper-
parameter and the algorithm behaves well even for
rather small thresholds.

The algorithm can also be thought of as adapting
the learning rate based on the norm of the gradient.
Compared to other learning rate adaptation strate-
gies, which focus on improving convergence by col-
lecting statistics on the gradient (as for example in

Gradient	clipping	intuition

4/21/16Richard	Socher25

• Error	surface	of	a	single	hidden	unit	RNN,	

• High	curvature	walls

• Solid	lines:	standard	gradient	descent	trajectories	

• Dashed	lines	gradients	rescaled	to	fixed	size

On the di�culty of training Recurrent Neural Networks

Figure 6. We plot the error surface of a single hidden unit

recurrent network, highlighting the existence of high cur-

vature walls. The solid lines depicts standard trajectories

that gradient descent might follow. Using dashed arrow

the diagram shows what would happen if the gradients is

rescaled to a fixed size when its norm is above a threshold.

explode so does the curvature along v, leading to a
wall in the error surface, like the one seen in Fig. 6.

If this holds, then it gives us a simple solution to the
exploding gradients problem depicted in Fig. 6.

If both the gradient and the leading eigenvector of the
curvature are aligned with the exploding direction v, it
follows that the error surface has a steep wall perpen-
dicular to v (and consequently to the gradient). This
means that when stochastic gradient descent (SGD)
reaches the wall and does a gradient descent step, it
will be forced to jump across the valley moving perpen-
dicular to the steep walls, possibly leaving the valley
and disrupting the learning process.

The dashed arrows in Fig. 6 correspond to ignoring
the norm of this large step, ensuring that the model
stays close to the wall. The key insight is that all the
steps taken when the gradient explodes are aligned
with v and ignore other descent direction (i.e. the
model moves perpendicular to the wall). At the wall, a
small-norm step in the direction of the gradient there-
fore merely pushes us back inside the smoother low-
curvature region besides the wall, whereas a regular
gradient step would bring us very far, thus slowing or
preventing further training. Instead, with a bounded
step, we get back in that smooth region near the wall
where SGD is free to explore other descent directions.

The important addition in this scenario to the classical
high curvature valley, is that we assume that the val-
ley is wide, as we have a large region around the wall
where if we land we can rely on first order methods
to move towards the local minima. This is why just
clipping the gradient might be su�cient, not requiring
the use a second order method. Note that this algo-

rithm should work even when the rate of growth of the
gradient is not the same as the one of the curvature
(a case for which a second order method would fail
as the ratio between the gradient and curvature could
still explode).

Our hypothesis could also help to understand the re-
cent success of the Hessian-Free approach compared
to other second order methods. There are two key dif-
ferences between Hessian-Free and most other second-
order algorithms. First, it uses the full Hessian matrix
and hence can deal with exploding directions that are
not necessarily axis-aligned. Second, it computes a
new estimate of the Hessian matrix before each up-
date step and can take into account abrupt changes in
curvature (such as the ones suggested by our hypothe-
sis) while most other approaches use a smoothness as-
sumption, i.e., averaging 2nd order signals over many
steps.

3. Dealing with the exploding and
vanishing gradient

3.1. Previous solutions

Using an L1 or L2 penalty on the recurrent weights can
help with exploding gradients. Given that the parame-
ters initialized with small values, the spectral radius of
W

rec

is probably smaller than 1, from which it follows
that the gradient can not explode (see necessary condi-
tion found in section 2.1). The regularization term can
ensure that during training the spectral radius never
exceeds 1. This approach limits the model to a sim-
ple regime (with a single point attractor at the origin),
where any information inserted in the model has to die
out exponentially fast in time. In such a regime we can
not train a generator network, nor can we exhibit long
term memory traces.

Doya (1993) proposes to pre-program the model (to
initialize the model in the right regime) or to use
teacher forcing. The first proposal assumes that if
the model exhibits from the beginning the same kind
of asymptotic behaviour as the one required by the
target, then there is no need to cross a bifurcation
boundary. The downside is that one can not always
know the required asymptotic behaviour, and, even if
such information is known, it is not trivial to initial-
ize a model in this specific regime. We should also
note that such initialization does not prevent cross-
ing the boundary between basins of attraction, which,
as shown, could happen even though no bifurcation
boundary is crossed.

Teacher forcing is a more interesting, yet a not very
well understood solution. It can be seen as a way of
initializing the model in the right regime and the right

Figure	 from	paper:	
On	the	difficulty	of	
training	Recurrent	Neural	
Networks,	Pascanuet	al.	
2013

For	vanishing	gradients:	Initialization	+	ReLus!

4/21/16Richard	Socher26

• Initialize	W(*)‘s	to
identity	matrix	I
and
f(z)		=

• à Huge	difference!

• Initialization	idea	first	introduced	in	Parsing	with	Compositional	
Vector	Grammars,	Socher	et	al.	2013

• New	experiments	with	recurrent	neural	nets	2	weeks	ago	(!)	in	
A	Simple	Way	to	Initialize	Recurrent	Networks	of	Rectified	
Linear	Units,	Le	et	al.	2015

T LSTM RNN + Tanh IRNN
150 lr = 0.01, gc = 10, fb = 1.0 lr = 0.01, gc = 100 lr = 0.01, gc = 100

200 lr = 0.001, gc = 100, fb = 4.0 N/A lr = 0.01, gc = 1

300 lr = 0.01, gc = 1, fb = 4.0 N/A lr = 0.01, gc = 10

400 lr = 0.01, gc = 100, fb = 10.0 N/A lr = 0.01, gc = 1

Table 1: Best hyperparameters found for adding problems after grid search. lr is the learning rate, gc
is gradient clipping, and fb is forget gate bias. N/A is when there is no hyperparameter combination
that gives good result.

4.2 MNIST Classification from a Sequence of Pixels

Another challenging toy problem is to learn to classify the MNIST digits [21] when the 784 pixels
are presented sequentially to the recurrent net. In our experiments, the networks read one pixel at a
time in scanline order (i.e. starting at the top left corner of the image, and ending at the bottom right
corner). The networks are asked to predict the category of the MNIST image only after seeing all
784 pixels. This is therefore a huge long range dependency problem because each recurrent network
has 784 time steps.

To make the task even harder, we also used a fixed random permutation of the pixels of the MNIST
digits and repeated the experiments.

All networks have 100 recurrent hidden units. We stop the optimization after it converges or when
it reaches 1,000,000 iterations and report the results in figure 3 (best hyperparameters are listed in
table 2).

0 1 2 3 4 5 6 7 8 9 10
x 105

0

10

20

30

40

50

60

70

80

90

100

Steps

Te
st

 A
cc

ur
ac

y

Pixel−by−pixel MNIST

LSTM
RNN + Tanh
RNN + ReLUs
IRNN

0 1 2 3 4 5 6 7 8 9 10
x 105

0

10

20

30

40

50

60

70

80

90

100

Steps

Te
st

 A
cc

ur
ac

y

Pixel−by−pixel permuted MNIST

LSTM
RNN + Tanh
RNN + ReLUs
IRNN

Figure 3: The results of recurrent methods on the “pixel-by-pixel MNIST” problem. We report the
test set accuracy for all methods. Left: normal MNIST. Right: permuted MNIST.

Problem LSTM RNN + Tanh RNN + ReLUs IRNN
MNIST lr = 0.01, gc = 1 lr = 10

−8, gc = 10 lr = 10
−8, gc = 10 lr = 10

−8, gc = 1

fb = 1.0

permuted lr = 0.01, gc = 1 lr = 10
−8, gc = 1 lr = 10

−6, gc = 10 lr = 10
−9, gc = 1

MNIST fb = 1.0

Table 2: Best hyperparameters found for pixel-by-pixelMNIST problems after grid search. lr is the
learning rate, gc is gradient clipping, and fb is the forget gate bias.

The results using the standard scanline ordering of the pixels show that this problem is so difficult
that standard RNNs fail to work, even with ReLUs, whereas the IRNN achieves 3% test error rate
which is better than most off-the-shelf linear classifiers [21]. We were surprised that the LSTM did
not work as well as IRNN given the various initialization schemes that we tried. While it still possi-
ble that a better tuned LSTM would do better, the fact that the IRNN perform well is encouraging.

5

rect(z) =max(z, 0)

Perplexity	Results

4/21/16Richard	Socher27

KN5	=	Count-based	language	model	with	Kneser-Ney	
smoothing	&	5-grams

Table	from	paper	Extensions	of	recurrent	neural	network	
language	model by	Mikolov et	al	2011

Problem:	Softmax is	huge	and	slow

4/21/16Richard	Socher28

Trick:	Class-based	word	prediction

p(wt|history)	 =	p(ct|history)p(wt|ct)

=	p(ct|ht)p(wt|ct)

The	more	classes,
the	better	perplexity
but	also	worse	speed:

One	last	implementation	trick

4/21/16Richard	Socher29

• You	only	need	to	pass	backwards	through	your	
sequence	once	and	accumulate	all	the	deltas	from	
each	Et

Sequence	modeling	for	other	tasks

4/21/16Richard	Socher30

• Classify	each	word	into:	
• NER

• Entity	level	sentiment	in	context	

• opinionated	expressions

• Example	application	and	slides	from	paper	Opinion	
Mining	with	Deep	Recurrent	Nets	by	Irsoy and	Cardie
2014

Opinion	Mining	with	Deep	Recurrent	Nets	

4/21/16Richard	Socher31

Goal:	Classify	each	word	as

direct	subjective	expressions	(DSEs)	and	
expressive	subjective	expressions	(ESEs).	

DSE:	Explicit	mentions	of	private	states	or	speech	events	
expressing	private	states	

ESE:	Expressions	that	indicate	sentiment,	emotion,	etc.	
without	explicitly	conveying	them.	

Example	Annotation

4/21/16Richard	Socher32

In	BIO	notation	(tags	either	begin-of-entity	(B_X)	or	
continuation-of-entity	(I_X)):
The	committee,	[as	usual]ESE,	[has	refused	to	make	any	
statements]DSE.	

Approach:	Recurrent	Neural	Network

4/21/16Richard	Socher33

• Notation	from	paper	(so	you	get	used	to	different	ones)

• x	represents	a	token	(word)	as	a	vector.	

• y	represents	the	output	label	(B,	I	or	O) – g	=	softmax !

• h	is	the	memory,	computed	from	the	past	memory	and	current	
word.	It	summarizes	the	sentence	up	to	that	time.

Recurrent Neural Network

ht = f (Wxt +Vht−1 + b)
yt = g(Uht + c)

y

h

x

 represents a token (word) as a vector.
 represents the output label (B, I or O).
 is the memory, computed from the past memory and
current word. It summarizes the sentence up to that time.

x
y
h

Bidirectional	RNNs

4/21/16Richard	Socher34

Problem:	For	classification	you	want	to	incorporate	
information	from	words	both	preceding	and	following

Ideas?

Bidirectionality

h
!
t = f (W

!"!
xt +V
!"
h
!
t−1 + b
!
)

h
!
t = f (W

!""
xt +V
!"
h
!
t+1 + b
!
)

yt = g(U[h
!
t;h
!
t]+ c)

y

h

x

 now represents (summarizes) the past and future
around a single token.
h = [h
!
;h
!
]

Deep	Bidirectional	RNNs

4/21/16Richard	Socher35

Going Deep

h
! (i)
t = f (W

!"! (i)
ht
(i−1) +V

!" (i)
h
! (i)
t−1 + b
! (i)
)

h
! (i)
t = f (W

!"" (i)
ht
(i−1) +V

!" (i)
h
! (i)
t+1 + b
! (i)
)

yt = g(U[h
!
t
(L)
;h
!
t
(L)
]+ c)

y

h(3)

x
Each memory layer passes an intermediate sequential
representation to the next.

h(2)

h(1)

Data

4/21/16Richard	Socher36

• MPQA	1.2	corpus	(Wiebe et	al.,	2005)	

• consists	of	535	news	articles	(11,111	sentences)	

• manually	labeled	with	DSE	and	ESEs	at	the	phrase	
level	

• Evaluation:	F1

Evaluation

4/21/16Richard	Socher37

Results: Deep vs Shallow RNNs

57

59

61

63

65

67

Pr
op

 F
1

DSE

64
66
68
70
72
74

1 2 3 4 5

B
in

 F
1

Layers

47

49

51

53

55

57
ESE

24k

200k

58
60
62
64
66
68

1 2 3 4 5
Layers

Results: Deep vs Shallow RNNs

57

59

61

63

65

67

Pr
op

 F
1

DSE

64
66
68
70
72
74

1 2 3 4 5

B
in

 F
1

Layers

47

49

51

53

55

57
ESE

24k

200k

58
60
62
64
66
68

1 2 3 4 5
Layers

Recap

4/21/16Richard	Socher38

• Recurrent	Neural	Network	is	one	of	the	best	deepNLP
model	families

• Training	them	is	hard	because	of	vanishing	and	
exploding	gradient	problems

• They	can	be	extended	in	many	ways	and	their	training	
improved	with	many	tricks	(more	to	come)

• Next	week:	Most	important	and	powerful	RNN	
extensions	with	LSTMs	and	GRUs

