
CS 224D: Deep Learning for NLP1
1 Course Instructor: Richard Socher

Lecture Notes: Part II2
2 Author: Rohit Mundra, Richard Socher

Spring 2016

Keyphrases: Intrinsic and extrinsic evaluations. Effect of hyper-
parameters on analogy evaluation tasks. Correlation of human
judgment with word vector distances. Dealing with ambiguity in
word using contexts. Window classification.

This set of notes extends our discussion of word vectors (inter-
changeably called word embeddings) by seeing how they can be
evaluated intrinsically and extrinsically. As we proceed, we discuss
the example of word analogies as an intrinsic evaluation technique
and how it can be used to tune word embedding techniques. We then
discuss training model weights/parameters and word vectors for ex-
trinsic tasks. Lastly we motivate artificial neural networks as a class
of models for natural language processing tasks.

1 Evaluation of Word Vectors

So far, we have discussed methods such as the Word2Vec and GloVe
methods to train and discover latent vector representations of natural
language words in a semantic space. In this section, we discuss how
we can quantitatively evaluate the quality of word vectors produced
by such techniques.

1.1 Intrinsic Evaluation

Intrinsic evaluation of word vectors is the evaluation of a set of word
vectors generated by an embedding technique (such as Word2Vec or
GloVe) on specific intermediate subtasks (such as analogy comple-
tion). These subtasks are typically simple and fast to compute and
thereby allow us to help understand the system used to generate the
word vectors. An intrinsic evaluation should typically return to us a
number that indicates the performance of those word vectors on the
evaluation subtask.

Figure 1: The left subsystem (red)
being expensive to train is modified by
substituting with a simpler subsystem
(green) for intrinsic evaluation.

Motivation: Let us consider an example where our final goal
is to create a question answering system which uses word vectors
as inputs. One approach of doing so would be to train a machine
learning system that:

1. Takes words as inputs

2. Converts them to word vectors

cs 224d: deep learning for nlp 2

3. Uses word vectors as inputs for an elaborate machine learning
system

4. Maps the output word vectors by this system back to natural
language words

5. Produces words as answers
Intrinsic evaluation:

• Evaluation on a specific, intermedi-
ate task

• Fast to compute performance

• Helps understand subsystem

• Needs positive correlation with real
task to determine usefulness

Of course, in the process of making such a state-of-the-art question-
answering system, we will need to create optimal word-vector repre-
sentations since they are used in downstream subsystems (such as
deep neural networks). To do this in practice, we will need to tune
many hyperparameters in the Word2Vec subsystem (such as the
dimension of the word vector representation). While the idealistic
approach is to retrain the entire system after any parametric changes
in the Word2Vec subsystem, this is impractical from an engineering
standpoint because the machine learning system (in step 3) is typi-
cally a deep neural network with millions of parameters that takes
very long to train. In such a situation, we would want to come up
with a simple intrinsic evaluation technique which can provide a
measure of "goodness" of the word to word vector subsystem. Ob-
viously, a requirement is that the intrinsic evaluation has a positive
correlation with the final task performance.

1.2 Extrinsic Evaluation
Extrinsic evaluation:

• Is the evaluation on a real task

• Can be slow to compute perfor-
mance

• Unclear if subsystem is the prob-
lem, other subsystems, or internal
interactions

• If replacing subsystem improves
performance, the change is likely
good

Extrinsic evaluation of word vectors is the evaluation of a set of word
vectors generated by an embedding technique on the real task at
hand. These tasks are typically elaborate and slow to compute. Using
our example from above, the system which allows for the evalua-
tion of answers from questions is the extrinsic evaluation system.
Typically, optimizing over an underperforming extrinsic evaluation
system does not allow us to determine which specific subsystem is at
fault and this motivates the need for intrinsic evaluation.

1.3 Intrinsic Evaluation Example: Word Vector Analogies

A popular choice for intrinsic evaluation of word vectors is its per-
formance in completing word vector analogies. In a word vector
analogy, we are given an incomplete analogy of the form:

a : b : : c : ?
The intrinsic evaluation system then identifies the word vector

which maximizes the cosine similarity:

d = argmax
i

(xb − xa + xc)Txi
‖xb − xa + xc‖

cs 224d: deep learning for nlp 3

This metric has an intuitive interpretation. Ideally, we want xb − xa =

xd − xc (For instance, queen – king = actress – actor). This implies
that we want xb − xa + xc = xd. Thus we identify the vector xd which
maximizes the normalized dot-product between the two word vectors
(i.e. cosine similarity).

Using intrinsic evaluation techniques such as word-vector analo-
gies should be handled with care (keeping in mind various aspects of
the corpus used for pre-training). For instance, consider analogies of
the form:

City 1 : State containing City 1 : : City 2 : State containing City 2

Input Result Produced

Chicago : Illinois : : Houston Texas
Chicago : Illinois : : Philadelphia Pennsylvania
Chicago : Illinois : : Phoenix Arizona
Chicago : Illinois : : Dallas Texas
Chicago : Illinois : : Jacksonville Florida
Chicago : Illinois : : Indianapolis Indiana
Chicago : Illinois : : Austin Texas
Chicago : Illinois : : Detroit Michigan
Chicago : Illinois : : Memphis Tennessee
Chicago : Illinois : : Boston Massachusetts

Table 1: Here are semantic word vector
analogies (intrinsic evaluation) that may
suffer from different cities having the
same name

In many cases above, there are multiple cities/towns/villages with
the same name across the US. Thus, many states would qualify as the
right answer. For instance, there are at least 10 places in the US called
Phoenix and thus, Arizona need not be the only correct response. Let
us now consider analogies of the form:

Capital City 1 : Country 1 : : Capital City 2 : Country 2

Input Result Produced

Abuja : Nigeria : : Accra Ghana
Abuja : Nigeria : : Algiers Algeria
Abuja : Nigeria : : Amman Jordan
Abuja : Nigeria : : Ankara Turkey
Abuja : Nigeria : : Antananarivo Madagascar
Abuja : Nigeria : : Apia Samoa
Abuja : Nigeria : : Ashgabat Turkmenistan
Abuja : Nigeria : : Asmara Eritrea
Abuja : Nigeria : : Astana Kazakhstan

Table 2: Here are semantic word vector
analogies (intrinsic evaluation) that may
suffer from countries having different
capitals at different points in time

In many of the cases above, the resulting city produced by this
task has only been the capital in the recent past. For instance, prior to
1997 the capital of Kazakhstan was Almaty. Thus, we can anticipate

cs 224d: deep learning for nlp 4

other issues if our corpus is dated.
The previous two examples demonstrated semantic testing using

word vectors. We can also test syntax using word vector analogies.
The following intrinsic evaluation tests the word vectors’ ability to
capture the notion of superlative adjectives:

Input Result Produced

bad : worst : : big biggest
bad : worst : : bright brightest
bad : worst : : cold coldest
bad : worst : : cool coolest
bad : worst : : dark darkest
bad : worst : : easy easiest
bad : worst : : fast fastest
bad : worst : : good best
bad : worst : : great greatest

Table 3: Here are syntactic word vector
analogies (intrinsic evaluation) that test
the notion of superlative adjectives

Similarly, the intrinsic evaluation shown below tests the word
vectors’ ability to capture the notion of past tense:

Input Result Produced

dancing : danced : : decreasing decreased
dancing : danced : : describing described
dancing : danced : : enhancing enhanced
dancing : danced : : falling fell
dancing : danced : : feeding fed
dancing : danced : : flying flew
dancing : danced : : generating generated
dancing : danced : : going went
dancing : danced : : hiding hid
dancing : danced : : hitting hit

Table 4: Here are syntactic word vector
analogies (intrinsic evaluation) that test
the notion of past tense

1.4 Intrinsic Evaluation Tuning Example: Analogy Evaluations
Some parameters we might consider
tuning for a word embedding technique
on intrinsic evaluation tasks are:

• Dimension of word vectors

• Corpus size

• Corpus souce/type

• Context window size

• Context symmetry

Can you think of other hyperparame-
ters tunable at this stage?

We now explore some of the hyperparameters in word vector em-
bedding techniques (such as Word2Vec and GloVe) that can be tuned
using an intrinsic evaluation system (such as an analogy completion
system). Let us first see how different methods for creating word-
vector embeddings have performed (in recent research work) under
the same hyperparameters on an analogy evaluation task:

cs 224d: deep learning for nlp 5

Model Dimension Size Semantics Syntax Total

ivLBL 100 1.5B 55.9 50.1 53.2
HPCA 100 1.6B 4.2 16.4 10.8
GloVE 100 1.6B 67.5 54.3 60.3
SG 300 1B 61 61 61
CBOW 300 1.6B 16.1 52.6 36.1
vLBL 300 1.5B 54.2 64.8 60.0
ivLBL 300 1.5B 65.2 63.0 64.0
GloVe 300 1.6B 80.8 61.5 70.3
SVD 300 6B 6.3 8.1 7.3
SVD-S 300 6B 36.7 46.6 42.1
SVD-L 300 6B 56.6 63.0 60.1
CBOW 300 6B 63.6 67.4 65.7
SG 300 6B 73.0 66.0 69.1
GloVe 300 6B 77.4 67.0 71.7
CBOW 1000 6B 57.3 68.9 63.7
SG 1000 6B 66.1 65.1 65.6
SVD-L 300 42B 38.4 58.2 49.2
GloVe 300 42B 81.9 69.3 75.0

Table 5: Here we compare the perfor-
mance of different models under the
use of different hyperparameters and
datasets

Inspecting the above table, we can make 3 primary observations:

• Performance is heavily dependent on the model used for word
embedding:
This is an expected result since different methods try embedding
words to vectors using fundamentally different properties (such as
co-occurrence count, singular vectors, etc.) Implementation Tip: A window size

of 8 around each center word typically
works well for GloVe embeddings

Figure 2: Here we see how training
time improves training performance
and helps squeeze the last few perfor-
mance.

• Performance increases with larger corpus sizes:
This happens because of the experience an embedding technique
gains with more examples it sees. For instance, an analogy com-
pletion example will produce incorrect results if it has not encoun-
tered the test words previously.

• Performance is lower for extremely low as well as for extremely
high dimensional word vectors:
Lower dimensional word vectors are not able to capture the dif-
ferent meanings of the different words in the corpus. This can be
viewed as a high bias problem where our model complexity is too
low. For instance, let us consider the words "king", "queen", "man",
"woman". Intuitively, we would need to use two dimensions such
as "gender" and "leadership" to encode these into 2-bit word vec-
tors. Any lower would fail to capture semantic differences between
the four words and any more may capture noise in the corpus

cs 224d: deep learning for nlp 6

that doesn’t help in generalization – this is also known as the high
variance problem.

Figure 3 demonstrates how accuracy has been shown to improve
with larger corpus.

Figure 3: Here we see how performance
improves with data size.Figure 4 demonstrates how other hyperparameters have been

shown to affect the accuracies using GloVe.

Figure 4: We see how accuracies vary
with vector dimension and context
window size for GloVe

1.5 Intrinsic Evaluation Example: Correlation Evaluation

Another simple way to evaluate the quality of word vectors is by
asking humans to assess the similarity between two words on a fixed
scale (say 0-10) and then comparing this with the cosine similarity
between the corresponding word vectors. This has been done on
various datasets that contain human judgement survey data.

cs 224d: deep learning for nlp 7

Model Size WS353 MC RG SCWS RW

SVD 6B 35.3 35.1 42.5 38.3 25.6
SVD-S 6B 56.5 71.5 71.0 53.6 34.7
SVD-L 6B 65.7 72.7 75.1 56.5 37.0
CBOW 6B 57.2 65.6 68.2 57.0 32.5
SG 6B 62.8 65.2 69.7 58.1 37.2
GloVe 6B 65.8 72.7 77.8 53.9 38.1
SVD-L 42B 74.0 76.4 74.1 58.3 39.9
GloVe 42B 75.9 83.6 82.9 59.6 47.8
CBOW 100B 68.4 79.6 75.4 59.4 45.5

Table 6: Here we see the correlations be-
tween of word vector similarities using
different embedding techniques with
different human judgment datasets

1.6 Further Reading: Dealing With Ambiguity

One might wonder we handle the situation where we want to capture
the same word with different vectors for its different uses in natural
language. For instance, "run" is both a noun and a verb and it used
and interpreted differently based on the context. Improving Word

Representations Via Global Context And Multiple Word

Prototypes (Huang et al, 2012) describes how such cases can
also be handled in NLP. The essence of the method is the following:

1. Gather fixed size context windows of all occurrences of the word
(for instance, 5 before and 5 after)

2. Each context is represented by a weighted average of the context
words’ vectors (using idf-weighting)

3. Apply spherical k-means to cluster these context representations.

4. Finally, each word occurrence is re-labeled to its associated cluster
and is used to train the word representation for that cluster.

For a more rigorous treatment on this topic, one should refer to
the original paper.

2 Training for Extrinsic Tasks

We have so far focused on intrinsic tasks and emphasized their
importance in developing a good word embedding technique. Of
course, the end goal of most real-world problems is to use the result-
ing word vectors for some other extrinsic task. Here we discuss the
general approach for handling extrinsic tasks.

2.1 Problem Formulation

Most NLP extrinsic tasks can be formulated as classification tasks.
For instance, given a sentence, we can classify the sentence to have

cs 224d: deep learning for nlp 8

positive, negative or neutral sentiment. Similarly, in named-entity
recognition (NER), given a context and a central word, we want
to classify the central word to be one of many classes. For the in-
put, "Jim bought 300 shares of Acme Corp. in 2006", we would
like a classified output "[Jim]Person bought 300 shares of [Acme
Corp.]Organization in [2006]Time."

Figure 5: We can classify word vectors
using simple linear decision boundaries
such as the one shown here (2-D word
vectors) using techniques such as
logistic regression and SVMs

For such problems, we typically begin with a training set of the
form:

{x(i), y(i)}N
1

where x(i) is a d-dimensional word vector generated by some word
embedding technique and y(i) is a C-dimensional one-hot vector
which indicates the labels we wish to eventually predict (sentiments,
other words, named entities, buy/sell decisions, etc.).

In typical machine learning tasks, we usually hold input data and
target labels fixed and train weights using optimization techniques
(such as gradient descent, L-BFGS, Newton’s method, etc.). In NLP
applications however, we introduce the idea of retraining the input
word vectors when we train for extrinsic tasks. Let us discuss when
and why we should consider doing this.

2.2 Retraining Word Vectors
Implementation Tip: Word vector
retraining should be considered for
large training datasets. For small
datasets, retraining word vectors will
likely worsen performance.

As we have discussed so far, the word vectors we use for extrinsic
tasks are initialized by optimizing them over a simpler intrinsic task.
In many cases, these pretrained word vectors are a good proxy for
optimal word vectors for the extrinsic task and they perform well
at the extrinsic task. However, it is also possible that the pretrained
word vectors could be trained further (i.e. retrained) using the extrin-
sic task this time to perform better. However, retraining word vectors
can be risky.

Figure 6: Here, we see that the words
"Telly", "TV", and "Television" are clas-
sified correctly before retraining. "Telly"
and "TV" are present in the extrinsic
task training set while "Television" is
only present in the test set.

If we retrain word vectors using the extrinsic task, we need to en-
sure that the training set is large enough to cover most words from
the vocabulary. This is because Word2Vec or GloVe produce semanti-
cally related words to be located in the same part of the word space.
When we retrain these words over a small set of the vocabulary, these
words are shifted in the word space and as a result, the performance
over the final task could actually reduce. Let us explore this idea
further using an example. Consider the pretrained vectors to be in a
two dimensional space as shown in Figure 6. Here, we see that the
word vectors are classified correctly on some extrinsic classification
task. Now, if we retrain only two of those vectors because of a limited
training set size, then we see in Figure 7 that one of the words gets
misclassified because the boundary shifts as a result of word vector
updates.

cs 224d: deep learning for nlp 9

Thus, word vectors should not be retrained if the training data set
is small. If the training set is large, retraining may improve perfor-
mance.

Figure 7: Here, we see that the words
"Telly" and "TV" are classified correctly
after traininng, but "Television" is not
since it was not present in the training
set.

2.3 Softmax Classification and Regularization

Let us consider using the Softmax classification function which has
the form:

p(yj = 1|x) =
exp(Wj·x)

∑C
c=1 exp(Wc·x)

Here, we calculate the probability of word vector x being in class j.
Using the Cross-entropy loss function, we calculate the loss of such a
training example as:

−
C

∑
j=1

yj log(p(yj = 1|x)) = −
C

∑
j=1

yj log
(

exp(Wj·x)

∑C
c=1 exp(Wc·x)

)

Of course, the above summation will be a sum over (C − 1) zero
values since yj is 1 only at a single index (at least for now) implying
that x belongs to only 1 correct class. Thus, let us define k to be the
index of the correct class. Thus, we can now simplify our loss to be:

− log
(

exp(Wk·x)

∑C
c=1 exp(Wc·x)

)
We can then extend the above loss to a dataset of N points:

−
N

∑
i=1

log
(exp(Wk(i)·x(i))

∑C
c=1 exp(Wc·x(i))

)
The only difference above is that k(i) is now a function that returns
the correct class index for example x(i).

Let us now try to estimate the number of parameters that would
be updated if we consider training both, model weights (W), as well
word vectors (x). We know that a simple linear decision boundary
would require a model that takes in at least one d-dimensional input
word vector and produces a distribution over C classes. Thus, to
update the model weights, we would be updating C · d parameters.
If we update the word vectors for every word in the vocabulary V
as well, then we would be updating as many as |V| word vectors,
each of which is d-dimensional. Thus, the total number of parameters
would be as many as C · d + |V| · d for a simple linear classifier:

cs 224d: deep learning for nlp 10

∇θ J(θ) =



∇W·1
...
∇W·d
∇xaardvark

...
∇xzebra


This is an extremely large number of parameters considering how

simple the model’s decision boundary is - such a large number of
parameters is highly prone to overfitting.

To reduce overfitting risk, we introduce a regularization term
which poses the Bayesian belief that the parameters (θ) should be
small is magnitude (i.e. close to zero):

−
N

∑
i=1

log
(exp(Wk(i)·x(i))

∑C
c=1 exp(Wc·x(i))

)
+ λ

C·d+|V|·d

∑
k=1

θ2
k

Minimizing the above cost function reduces the likelihood of the
parameters taking on extremely large values just to fit the training set
well and may improve generalization if the relative objective weight
λ is tuned well. The idea of regularization becomes even more of a
requirement once we explore more complex models (such as Neural
Networks) which have far more parameters.

2.4 Window Classification Figure 8: Here, we see a central word
with a symmetric window of length 2.
Such context may help disambiguate
between the place Paris and the name
Paris.

So far we have primarily explored the idea of predicting in extrinsic
tasks using a single word vector x. In reality, this is hardly done be-
cause of the nature of natural languages. Natural languages tend to
use the same word for very different meanings and we typically need
to know the context of the word usage to discriminate between mean-
ings. For instance, if you were asked to explain to someone what
"to sanction" meant, you would immediately realize that depending
on the context "to sanction" could mean "to permit" or "to punish".
In most situations, we tend to use a sequence of words as input to
the model. A sequence is a central word vector preceded and suc-
ceeded by context word vectors. The number of words in the context
is also known as the context window size and varies depending on
the problem being solved. Generally, narrower window sizes lead to
better performance in syntactic tests while wider windows lead to
better performance in semantic tests. Generally, narrower window sizes lead

to better performance in syntactic tests
while wider windows lead to better
performance in semantic tests.

In order to modify the previously discussed Softmax model to use
windows of words for classification, we would simply substitute x(i)

with x(i)window in the following manner:

cs 224d: deep learning for nlp 11

x(i)window =


x(i−2)

x(i−1)

x(i)

x(i+1)

x(i+2)


As a result, when we evaluate the gradient of the loss with respect

to the words, we will receive gradients for the word vectors:

δwindow =


∇x(i−2)

∇x(i−1)

∇x(i)

∇x(i+1)

∇x(i+2)


The gradient will of course need to be distributed to update the

corresponding word vectors in implementation.

2.5 Non-linear Classifiers

Figure 9: Here, we see that many exam-
ples are wrongly classified even though
the best linear decision boundary is
chosen. This is due linear decision
boundaries have limited model capacity
for this dataset.

Figure 10: Here, we see that the non-
linear decision boundary allows for
much better classification of datapoints.

We now introduce the need for non-linear classification models such
as neural networks. We see in Figure 9 that a linear classifier mis-
classifies many datapoints. Using a non-linear decision boundary as
shown in Figure 10, we manage to classify all training points accu-
rately. Although oversimplified, this is a classic case demonstrating
the need for non-linear decision boundaries. In the next set of notes,
we study neural networks as a class of non-linear models that have
performed particularly well in deep learning applications.

	Evaluation of Word Vectors
	Training for Extrinsic Tasks

