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Lecture 10:
Recurrent Neural Networks
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Administrative

A1 grades will go out soon

A2 is due today (11:59pm)

Midterm is in-class on Tuesday!
We will send out details on where to go soon
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Extra Credit: Train Game

More details on Piazza 
by early next week
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Last Time: CNN Architectures

AlexNet

Figure copyright Kaiming He, 2016. Reproduced with permission. 
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Last Time: CNN Architectures

Figure copyright Kaiming He, 2016. Reproduced with permission. 
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Last Time: CNN Architectures

Figure copyright Kaiming He, 2016. Reproduced with permission. 
Input

Softmax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

relu

Residual block

conv

conv

X
identity

F(x) + x

F(x)

relu

X



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 20177

Figures copyright Larsson et al., 2017. Reproduced with permission.
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Last Time: CNN Architectures
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Last Time: CNN Architectures
AlexNet and VGG have 
tons of parameters in the 
fully connected layers

AlexNet: ~62M parameters

FC6: 256x6x6 -> 4096: 38M params
FC7: 4096 -> 4096: 17M params
FC8: 4096 -> 1000: 4M params
~59M params in FC layers!
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Today: Recurrent Neural Networks



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201711

Vanilla Neural Networks

“Vanilla” Neural Network
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Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words
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Recurrent Neural Networks: Process Sequences

e.g. Sentiment Classification
sequence of words -> sentiment
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Recurrent Neural Networks: Process Sequences

e.g. Machine Translation
seq of words -> seq of words
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Recurrent Neural Networks: Process Sequences

e.g. Video classification on frame level
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Sequential Processing of Non-Sequence Data

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with 
permission.

Classify images by taking a 
series of “glimpses”
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Sequential Processing of Non-Sequence Data

Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with 
permission.

Generate images one piece at a time!
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Recurrent Neural Network

x

RNN
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Recurrent Neural Network

x

RNN

y
usually want to 
predict a vector at 
some time steps
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W
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Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

Notice: the same function and the same set 
of parameters are used at every time step.
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(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:
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h0 fW h1

x1

RNN: Computational Graph
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h0 fW h1 fW h2

x2x1

RNN: Computational Graph
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h0 fW h1 fW h2 fW h3

x3

… 

x2x1

RNN: Computational Graph

hT
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h0 fW h1 fW h2 fW h3

x3

… 

x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT
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h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

L
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h0 fW h1 fW h2 fW h3

x3

y

… 

x2x1W

RNN: Computational Graph: Many to One

hT
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h0 fW h1 fW h2 fW h3

yT

… 

x
W

RNN: Computational Graph: One to Many

hT

y3y3y3
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Sequence to Sequence: Many-to-one + 
one-to-many

h
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fW
h
3

x
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x
2

x
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W
1

h
T

Many to one: Encode input 
sequence in a single vector
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Sequence to Sequence: Many-to-one + 
one-to-many
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Many to one: Encode input 
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sequence from single input vector
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201735

Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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Example: 
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
Sample
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SampleExample: 

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model
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SampleExample: 

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model
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Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model
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Backpropagation through time
Loss

Forward through entire sequence to 
compute loss, then backward through 
entire sequence to compute gradient
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Truncated Backpropagation through time
Loss

Run forward and backward 
through chunks of the 
sequence instead of whole 
sequence
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Truncated Backpropagation through time
Loss

Carry hidden states 
forward in time forever, 
but only backpropagate 
for some smaller 
number of steps
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Truncated Backpropagation through time
Loss
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min-char-rnn.py gist: 112 lines of Python

(https://gist.github.com/karpathy/d4dee
566867f8291f086)

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086


Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201746

x

RNN

y
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train more

train more

train more

at first:
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The Stacks Project: open source algebraic geometry textbook

Latex source http://stacks.math.columbia.edu/
The stacks project is licensed under the GNU Free Documentation License

http://stacks.math.columbia.edu/
http://stacks.math.columbia.edu/
https://github.com/stacks/stacks-project/blob/master/COPYING
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Generated 
C code
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote detection cell
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

line length tracking cell
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

if statement cell
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote/comment cell
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Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

code depth cell
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Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning

Figure from Karpathy et a, “Deep 
Visual-Semantic Alignments for Generating 
Image Descriptions”, CVPR 2015; figure 
copyright IEEE, 2015.
Reproduced for educational purposes.
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Convolutional Neural Network

Recurrent Neural Network



test image

This image is CC0 public domain

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
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A cat sitting on a 
suitcase on the floor

A cat is sitting on a tree 
branch

A dog is running in the 
grass with a frisbee

A white teddy bear sitting in 
the grass

Two people walking on 
the beach with surfboards

Two giraffes standing in a 
grassy field

A man riding a dirt bike on 
a dirt track

Image Captioning: Example Results

A tennis player in action 
on the court

Captions generated using neuraltalk2
All images are CC0 Public domain: 
cat suitcase, cat tree, dog, bear, 
surfers, tennis, giraffe, motorcycle

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
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Image Captioning: Failure Cases

A woman is holding a 
cat in her hand

A woman standing on a 
beach holding a surfboard

A person holding a 
computer mouse on a desk

A bird is perched on 
a tree branch

A man in a 
baseball uniform 
throwing a ball

Captions generated using neuraltalk2
All images are CC0 Public domain: fur 
coat, handstand, spider web, baseball

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
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Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

RNN focuses its attention at a different spatial location 
when generating each word
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Image Captioning with Attention

CNN

Image: 
H x W x 3

Features: 
L x D

h0

Xu et al, “Show, Attend and Tell: Neural 
Image Caption Generation with Visual 
Attention”, ICML 2015
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CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

Distribution over 
L locations

Xu et al, “Show, Attend and Tell: Neural 
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention
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CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

Weighted 
combination 
of features

Distribution over 
L locations

z1
Weighted 

features: D

Xu et al, “Show, Attend and Tell: Neural 
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention
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CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

h1

Distribution over 
L locations

Weighted 
features: D y1

First wordXu et al, “Show, Attend and Tell: Neural 
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention
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CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

y1

h1

First word

Distribution over 
L locations

a2 d1

Weighted 
features: D

Distribution 
over vocab

Xu et al, “Show, Attend and Tell: Neural 
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention
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CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

y1

h1

First word

Distribution over 
L locations

a2 d1

h2

z2 y2
Weighted 

features: D

Distribution 
over vocab

Xu et al, “Show, Attend and Tell: Neural 
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention
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CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

y1

h1

First word

Distribution over 
L locations

a2 d1

h2

a3 d2

z2 y2
Weighted 

features: D

Distribution 
over vocab

Xu et al, “Show, Attend and Tell: Neural 
Image Caption Generation with Visual 
Attention”, ICML 2015

Image Captioning with Attention
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Soft attention

Hard attention

Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.
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Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.
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Visual Question Answering

Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015
Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201788

Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figures from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

Visual Question Answering: RNNs with Attention
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time

depth

Multilayer RNNs

LSTM:
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht 
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale 
gradient if its norm is too bigComputing gradient 

of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients Change RNN architecture

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 
1997

Vanilla RNN LSTM
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

f: Forget gate, Whether to erase cell
i: Input gate, whether to write to cell
g: Gate gate (?), How much to write to cell
o: Output gate, How much to reveal cell
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☉

98

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack
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☉

99

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

stack

Backpropagation from ct to 
ct-1 only elementwise 
multiplication by f, no matrix 
multiply by W



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017100

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!

Input

S
oftm

ax

3x3 conv, 64

7x7 conv, 64 / 2

FC
 1000

P
ool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

P
ool

Similar to ResNet!



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017102

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!

Input

S
oftm

ax

3x3 conv, 64

7x7 conv, 64 / 2

FC
 1000

P
ool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

P
ool

Similar to ResNet!

In between:
Highway Networks

Srivastava et al, “Highway Networks”, 
ICML DL Workshop 2015
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Other RNN Variants

[LSTM: A Search Space Odyssey, 
Greff et al., 2015]

[An Empirical Exploration of 
Recurrent Network Architectures, 
Jozefowicz et al., 2015]

GRU [Learning phrase representations using rnn 
encoder-decoder for statistical machine translation, 
Cho et al. 2014]
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Summary
- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don’t work very well
- Common to use LSTM or GRU: their additive interactions 

improve gradient flow
- Backward flow of gradients in RNN can explode or vanish. 

Exploding is controlled with gradient clipping. Vanishing is 
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research
- Better understanding (both theoretical and empirical) is needed.
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Next time: Midterm!

Then Detection and Segmentation


