Lecture 10:
Recurrent Neural Networks
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Administrative
A1 grades will go out soon
A2 is due today (11:59pm)

Midterm is in-class on Tuesday!
We will send out details on where to go soon
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Extra Credit: Train Game

© /' 6 Train Game ¢ @) serena

L
&« C | ® localhost:8081/stage2.html | A D 19 B

Train Game

Instructions:

n this stage, adjust your hyperparameters as desired in the control panel, after each epoch of training. Current values are shown in red in the control panel. Hyperparameter changes
affect the next epoch,

= You may select actions for a maximum of 20 epochs or 30 total actions (including undo), whichever comes first.
= You may refer to the provided dataset statistics and training curves for reference. Hover over info icons for definitions

Control Panel

Weight decay (0) @ Network depth (6) @ Dropout (0.4) & Learning rate (0.0001) Network width (256) @ Control (Epoch 8) @
L]

More details on Piazza e O 0% Cwm om0 0ROV oume a0y W O% g D
by early next week -

isti 11 0.9

Dataset Statistics ] = 3 —
Classes: Classes: 3 @ 090 Wval F o8 Myval
Input tensor size: Input tensor size: [3,32,32] @ @ 2 07
Examples per split: Examples per split: Train (5000), Val o8 06
(3000), Test(2000) @ 07 ¢

06 0.5

05 04

04 03

02 46 81012141618 20 02 46 8101214161820
Eooch Epoch
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Last Time: CNN Architectures
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Last Time: CNN Architectures
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Last Time: CNN Architectures
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DenseNet FractalNet
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Last Time: CNN Architectures
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Last Time: CNN Architectures
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Today: Recurrent Neural Networks
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“Vanilla” Neural Network

one to one

\ Vanilla Neural Networks
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
f Pt f t t Pt ¢
f f Pt bt t t ¢

\ e.g. Image Captioning
image -> sequence of words
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
f Pt f t t Pt ¢
f f Pt bt t t ¢

\ e.g. Sentiment Classification
sequence of words -> sentiment
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
f Pt f t t Pt ¢
f f Pt bt t t ¢

\ e.g. Machine Translation
seq of words -> seq of words
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
f Pt f t t Pt ¢
f f Pt bt t t ¢

/

e.g. Video classification on frame level
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Sequential Processing of Non-Sequence Data

Classify images by taking a
series of “glimpses”

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with
permission
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Sequential Processing of Non-Sequence Data

Generate images one piece at a time!

Gre! g et al, “DRAW: A Rec t Neural orK For Image Generation”, ICVIL 2U15
Figur copyr ight Karol Gre g I Dan h Ik AI Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with
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Recurrent Neural Network
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Recurrent Neural Network

usually want to
predict a vector at
some time steps
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Recurrent Neural Network

We can process a sequence of vectors x by

applying a recurrence formula at every time step: y
he|= | fw|(Fe—1b|T4)
new state / old state input vector at T
some time step
some function X

with parameters W
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Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

hy = fW(ht—la 513‘1;)

Notice: the same function and the same set "
of parameters are used at every time step.
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(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = fW(ht—la fL't)

|

h; = tanh(Wpphi—q + Wopay)

X Yt = Whyht
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RNN: Computational Graph
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RNN: Computational Graph
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RNN: Computational Graph

h0—>fW —>h1—>fW —>h2—>fW —>h3—>.-.—>h_|_
X1 X2 X3

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - 25 May 4, 2017



RNN: Computational Graph

Re-use the same weight matrix at every time-step

h0—>fW —>h1—>fW —>h2—>fW —>h3—>.-.—>h_|_
W X1 X2 X3
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RNN: Computational Graph: Many to Many

Yi Y5 Y3 Yt
T ! ! !
h0—>fW—>h1—>fW—>h2—>fW—>h3—>...—>hT
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RNN: Computational Graph: Many to Many

Y, [ L, Yo 7 L Y3 L, Yr L,
h0—>fW —>h1—>fW —>h2—>fW —>h3—>.-.—>h_|_
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RNN: Computational Graph: Many to Many -

Y, ™ L, Y, 7 L, Y3 L, Yt L,
h0—>fW —>h1—>fW —>h2—>fW —>h3—>.-.—>h_|_
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RNN: Computational Graph: Many to One

y
h0—>fW—>h1—>fW—>h2—>fW—>h3—>...—>hT
W X1 X2 X3
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RNN: Computational Graph: One to Many

Y3 Y3 Y3 Yr
T T ! !
h0—>fW—>h1—>fW—>h2—>fW—>h3—>...—>hT
/X
W
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Sequence to Sequence: Many-to-one +
one-to-many

Many to one: Encode input
sequence in a single vector

\o
- X =
NOX S

N
w X (=

(O8]

_|
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Sequence to Sequence: Many-to-one +
one-to-many

One to many: Produce output

sequence from single input vector
Many to one: Encode input

sequence in a single vector

<

- T

N Oy <

\o
- X =
NOX S

N
w X (=

w

—
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Example:
Character-level
Language Model

Vocabulary:

[h.el,0]

Example training 1 - _ .

sequence. input layer g (1) ? (1)

“hello” 0 0 0 0
input chars: “n” e “qr I
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Example:
Character-level
Language Model

hi = tanh(Whphi—1 + Want)

vocabulary: ey | 53— 08 |+ 35 -2 25
[h,e,l,o] 0.9 0.1 -0.3 0.7

Eamole train I A R
Xxampie training - 5 5 5
sequence. input layer g (1) ? [1)
“hello” 0 0 0 0
input chars: “n” “@” i “I”
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Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

target chars:

output layer

hidden layer

input layer

input chars: ¢

Fei-Fei Li & Justin Johnson & Serena Yeung

1.0 0.5
2.2 0.3
-3.0 -1.0
4.1 12
0.3 1.0
-0.1 » 0.3
0.9 0.1
1 0
0 1
0 0
0 0
‘h “g”

Lecture 10 -
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0.5 -1.5

1.9 -0.1

1.1 22

T T W _hy
0.1 |w hn| -0-3
05— 0.9
-0.3 0.7

T TW_xh
0 0

0 0

1 1

0 0

il 1) “I”
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Example: Sample |

Character-level it

Language Model e

Sampling 5

output layer %%

41

Vocabulary: I

[h,e,l,0] . 03
hidden layer | -0.1 —

0.9

At test-time sample T
characters one at a time, S é
0
-

feed back to model

input chars:
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Example: Sample ?\

Character-level it
Language Model e
Sampling 5
output layer %%

41

Vocabulary: I
[h,e,l,0] . 03
hidden layer | -0.1

0.9

At test-time sample T
characters one at a time, S é
0
-

feed back to model

o co-ao

input chars:
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Example: Sample ?,\ fl

Character-level o || |2

Language Model Softmax— | |

Sampling |

output layer %% 2%

4.1 1.2

Vocabulary: i T

[h,e,l,0] | 03 10
hidden layer .é); g? —

At test-time sample 1|

characters one at a time, S é E

feed back to model . o

input chars:
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Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time,
feed back to model

Fei-Fei Li & Justin Johnson & Serena Yeung

Sample

Softmax

output layer

hidden layer

input layer

input chars:

“e’,’\
!

.03 25 A1 A1
A3 20 A7 02
.00 .05 68 .08
84 50 .03 79
t t t t
1.0 05 0.1 0.2
2.2 0.3 0.5 1.5
-3.0 -1.0 1.9 -0.1
4.1 12 1.9 2.2
L | e
0.3 1.0 0.1 |w bnl-03
-0.1 0.3 05— 0.9
0.9 0.1 -0.3 0.7
N T I O
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
“h “e” it 7
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Forward through entire sequence to

BaCkpropagatK)n through tlme compute loss, then backward through

entire sequence to compute gradient

Loss
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Truncated Backpropagation through time

Loss

Run forward and backward
through chunks of the
sequence instead of whole
sequence
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Truncated Backpropagation through time

Loss

ST AN

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps
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Truncated Backpropagation through time

Loss

ST AN
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min-char-rnn.py gist: 112 lines of Python

Minimal character-level vanilla RNN model. Written by Andrej Karpathy (@karpathy)

83D License

import numpy as np

'r').read()

data = open(
chars = list(s
data_size, vocab_size = len(data),
print 'data has %d characters, %d unique.
char_to_ix = { ch:i for i.ch in enumerate(chars) }
ix_to_char = { iich for i,ch in enumerate(chars) }

len(chars)
' % (data_size, vocab size)

hidden_size = 180
seq_length = 25
learning rate = 1e-1

wxh = np.random.randn(hidden_size, vocab_size)*e.a1
whh = np.random.randn(hidden_size, hidden_size)*n.e1
why = np.random.randn(vocab_size, hidden_size}®e.o1
bh = np.zeros( (hidden_size, 1))

by = np.zeros((vocab_size, 1))

def lossFun(inputs, targets, hprev):

inputs, targets are both list of integers

hprev is Wil array of initial hidden state
gradients on model parameters, and last hidden state

returns the loss

xs, hs, ys, ps = {}L {}, % @
-11 = np.copy(hprev)
]

t in xrange(len(inputs)):

for
xs[t] = np.zeros((vocab_size,1))

xs[t][inputs[t]] = 1
hs[t] = np.tanh(np.dot(Wxh, xs[t]) + mp.dot{whh, hs[t-1]) + bh)
ys[t] = np.dot(why, hs[t]) + by 1og ti
np.exp(ys[t]) / np.sum(np.exp(ys
-np.log(ps[t][targets[t], e])

rem

dWxh, gWhh, dwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(wny)
dbh, dby = np.zeros_like(bh), np.zeros_Like(by)
dhnext = np.zeros_like(hs[8])
for t in reversed(xrange(len(inputs))):
dy = np.copy(ps[t])
dy[targets[t]] -= 1
dwhy += np.dot(dy, hs[t].T)
dby += dy
np.dot(why.T, dy) + dhnext
(1 - hs[t] * hs[t]) * dh
dnraw
np.dot(dhraw, xs[t].T)
np.dot(dhraw, hs[t-1].T)
np.dot (wnh.T, dhraw)
dparam in [dwxh, cwhh, dwhy, dbh, dby]

5, out=dparam) # clip to mitigate expl
dbh, dby, hs[len(inputs)-1]

for
np.clip(dparan, -5,
return loss, dwxh, dwhh, dwhy,

Fei-Fei Li & Justin Johnson & Serena Yeung

def sample(h, seed ix, n):

sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for

st time step
x = np.zeros((vocab_size, 1))

x[seed_ix] = 1
ixes = []

for € in xrange(n):
h = np.tanh(np.dot(wxh, x) + np.dot(whh, h) + bh}
¥ = np.dot(why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
p=p.ravel())

ix = np.random.choice(range (vocab_size),
x = np.zeros((vocab_size, 1))

x[ix] = 1

1ixes.append(ix)
return ixes

np=8 8
mixh, mWAh, mahy = np.zeros_like(wxh),
mbh, mby = np.zeros_like(bh), np.zeros_like(by)
smooth_loss = -np.log(1.6/vocab_size)*seq_length

np.zeros_like(whh), np.zeros_like(why)

while True:
if prseq_length+1 >= len(data) or n == o:

hprev = np.zeros((hidden_size, 1)) R
p=0 f :1

inputs = [char_to_ix[ch] for ch in data[p:p:seq_length]]

targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 109

sample_ix = sample(hprev, inputs[e], 2@e)
txt = '".jein{ix_te char[ix] for ix in sample_ix)

print '--—-\n %s \n----' % (txt, )

loss, dwWxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
* 9.001

smooth_loss = smooth_loss * @.99a + loss

@: print 'iter %d, loss: %f' % (n, smooth_loss)

if n % 109

for param, dparam, mem in zip([wxh, whh, why, bh, by],
[dwxh, dwhh, dwhy, dbh, dbyl,
[maxh, mWnh, mwny, mbh, mby]):
men += dparam * dparam
param += -learning_rate * dparam / np.sqrt(mem + 1e-8)

p += seq_length

n=1

(https://qgist.github.com/karpathy/d4dee
566867f8291f086)
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THE SONNETS

by William Shakespeare y

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament, _>
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

‘When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held: X
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer "This fair child of mine
Shall sum my count, and make my old excuse,’
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.
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l train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage Tiving were to it beloge, pavu say fTalling misfort

how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.
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BANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upen my soul,
Breaking and strongly should be buried;, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Fei-Fei Li & Justin Johnson & Serena Yeung

VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.
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The Stacks Project: open source algebraic geometry textbook

[ The Stacks Project
home about tagsexplained taglookup browse search bibliography recent comments blog add slogans
Browse chapters Parts
- - 1. Preliminaries
Part Chapter online TeX source view pdf 2 Schemes
Preliminaries 3. Topics in Scheme Theory
1. Introduction online tex() pdf > 4. Algebraic Spaces
; i 5. Topics in Geometry
2. Conventions onlfne tex() pdf > & Dibtamatien Tieas:
3. SetTheory online tex()  pdf » 7. Algebraic Stacks
4. Categories online  tex() pdf > 8. Miscellany
5. Topology onlfne texC)  pdf > e
6. Sheaves on Spaces online tex() pdf >
7. Sites and Sheaves online tex() pdf > The Stacks project now consists of
8. Stacks online tex() pdf > o 455910 lines of code
9. Fields online tex()  pdf > o 14221 tags (56 inactive tags)
10. Commutative Algebra online tex() pdf > o 2366 sections

e

L atex S O u rce http:/stacks.math.columbia.edu/

The stacks project is licensed under the GNU Free Documentation License
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For @,._, ., where £,,, = 0, hence we can find a closed subset # in H and
any sets F on X, U is a closed immersion of S, then I/ — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=S8pec(R)=U xx Uxx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xg U — V. Consider the maps M along the set of points
Schpppy and U — U is the fibre category of § in U in Section, 77 and the fact that
any U affine, see Morphisms, Lemma 77, Hence we obtain a scheme S and any
open subset W < U in Sh(G) such that Spec(R') — S is smooth or an

U= U U, xs, U;
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where x,2', 5" € §" such that Ox . — O, ., is

separated. By Algebra, Lemma 77 we can define a map of complexes GLg/ (2/5")
and we win.

To prove study we see that F|y is a covering of X7, and T; is an object of Fx s for
i > 0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M®*=1° ®SP‘-'C(H Og.. — IKI}-)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) 7P ¢, (Sch/S) ryps

and

V =T(S.0) — (U, Spec(4))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme 5.

Proof. See discussion of sheaves of sets. [

The result for prove any open covering follows from the less of Example 77, It may
replace S by Xpaces.érate Which gives an open subspace of X and T equal to Sz,
see Descent, Lemma ??7. Namely, by Lemma ?7 we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose X = lim |X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex
Set(A) =T (X, Gx_ox ).
When in this case of to show that Q — Cz;x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 77
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem
(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U/ and a
surjective étale morphism U/ — X. Let UNU =[], » Ui be the scheme X over

i=l....,

S at the schemes X; — X and U = lim; X;. O

The following lemma surjective restrocomposes of this implies that F,, = F,, =

}-X,,‘ 0+

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fyxyg. Set T =
J1 CI. Since I™ C I™ are nonzero over ip < p is a subset of T, p 0 As works.

Lemma 0.3. In Situation 77. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (7?). On the
other hand, by Lemma 77 we see that
D(Ox+) = Ox(D)

where K is an F-algebra where d,,; 1 is a scheme over S. a
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Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Op, = 0x(L)

Proof. This is an algebraie space with the composition of sheaves F on Xy, we
have

Ox (F) = {morphy xo, (G, F)}
where G defines an isomorphism F — F of O-modules. |
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma 77, a

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complexr.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a
b: X =2Y' 2 Y aY 2 Y xxY 2 X

be a morphism of algebraic spaces over S and Y.

scheme covering. Let

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. a

This since F € F and = € G the diagram

S§— =

|

3

Ox

AN

gor,

Spec(iy) Morgees d(iﬁfl\*_‘.),,k .G)

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and
e the composition of G is a regular sequence,
® Oy is a sheaf of rings.
O

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraie space. The property F is a finite morphism of algebraie stacks. Then the
cohomology of X is an open neighbourhood of {7, a

Proof. This is clear that G is a finite presentation, see Lemmas 77,
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxe — Fr -UOxyp,) — O%10x,(0%,)
is an isomorphism of covering of Qy,. If F is the unique element of F such that X
is an isomorphism,
The property F is a disjoint union of Proposition ??7 and we can filtered set of
presentations of a scheme O y-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. O

If F is a finite direct sum Oy, is a closed immersion, see Lemma 77, This is a
sequence of F is a similar morphism.
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static void do_command(struct seq file *m, wvoid *v)

{
int column = 32 << (cmd[2] & 0x80); Generated

if (state)

emd = (int)(int state * (in B(&ch->ch flags) & Cmd) ? 2 : 1); (:; (j
else CO e

seq = 1;
for (i = 0; 1 < 16; i++) {
if (k & (1 =< 1))
pipe = (in use & UMXTHREAD UNCCA) +
((count & Ox00000000ff£f£ffff8) & 0x000000£f) << B;
if (count == 0)
sub(pid, ppc_md.kexec handle, 0x20000000);
pipe set bytes(i, 0);
}
subsystem info = &of changes[PAGE_SIZE];
rek controls(offset, idx, &soffset);

Fob Almnr mres wrands o d=T1 3 oy o] iy J 4= Aleary
. Wani co ellperacely pu L i deviCE

control check polarity(&context, wval, 0);
for (i = 0; i < COUNTER; i++)

seq puts(s, "policy ");
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ina SWAP ALLOCATE(nr) (&)

mulate_sigs() arch_get_unali

static void stat PC_SEC _ read mostly offsetof(struct seg argsgueus, %
pC>[1]):

statiec woid
os_prefix(unsigned long sys)
{

fifdef CONFIG PREEMPT
PUT_PARARM RAID(Z, sel) = get state state();
set_pid sum((unsigned long)state, current_state_str(),

(unsigoned long)=1=>1lr full; low;
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Searching for interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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Searching for interpretable cells

lter fle d*SWString F@pres@ntation from WEer-space
pECKTstring (M@lid *Mmboufp, sEzel:  BrEmEs,, s¥zeo: W)

plﬂ:lr-tud :r g fields, PRTHINNX
TEElid Le

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

guote detection cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

Cell sensitive o position in line:

ThiErEa s importance of The crossing of the Berezina lies in the fact
that it plainly and indubitably proved the fallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
line of acrtion--the one Kutuzov and the general mass of the army
demanded--namely, simply to Tfollow the enemy up. The French crowd T1led
At a continually increasing speed and all its energy was directed to
reaching its goal. It Tled like a wounded animal and it was impoassibles
o block 1ts path. This was shown not so0o much by the arrangements it
made for crossing as by what took place at the bridges. When the bridges
broke down, unarmed soldiers, people from Moscow and women wWwith children
Wwho were with the French transport, all--carried on by wvis inertiae--
pressad fTforward 1into boats and into the ice-covered water and didinety

surrender.

line length tracking cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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Searching for interpretable cells

cu :
BTIF_SIGPENDING);

if statement cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

Cell that turns on inside comments and quotes:

gquote/comment cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

fdef CONFIG_AUDIT 5
aric 1nlil au

YSCAL
ne int dict nutch _class_bits({int

' r BITMASK_S
I |

:f ill:kii] & classes[class][

IZE; i++)
1)

code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

class, u32 *"mask)
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Image Captioning

“straw” “hat” END

START HStraW" Hhatll

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick
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Recurrent Neural Network
“straw” “hat” END

START llstrawll Hhat"

Convolutional Neural Network
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test image

This image is CCO public domain



https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
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test image
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A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in
suitcase on the floor branch grass with a frisbee the grass

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track
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https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/

Captions generated using neuraltalk2
All images are_CCO Public domain: fur

Image Captioning: Failure Cases AR

A bird is perched on
a tree branch

A woman is holding a
cat in her hand

A manina
baseball uniform
throwing a ball

&
A woman standing on a
beach holding a surfboard

<

A person holding a
computer mouse on a desk
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https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/

Image Captioning with Attention

RNN focuses its attention at a different spatial location
when generating each word

14x14 Feature Map

1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image  Feature Extraction over the image word

generatinnJ

5

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.
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Image Captioning with Attention

CNN = | h0

Features:

Image: LxD
HxWx3

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual
Attention”, ICML 2015
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Image Captioning with Attention

Distribution over

L locations
a1l
CNN = | h0
Features:
Image: LxD

HxWx3

Xu et al, “Show, Attend and Tell: Neural
Image Caption Generation with Visual
Attention”, ICML 2015
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Image Captioning with Attention

Distribution over
L locations

a1l

T

CNN = | h0

Features: L

Image: L x
HxWx3 Weighted — . .
features: D 21 & = p?, U?,
Weighted
Xu et al, “Show, Attend and Tell: Neural H H
Image éaption éeneration with Visual Comblnatlon ?,- —_ 1
Attention”, ICML 2015 of features
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Image Captioning with Attention

Distribution over

L locations
al
- CNN —P | h0 —> h1
Featlres: / \
Image: L x
HxWx3 Weighted 1 1
features: D | © y
Weighted

Xu et al, “Show, Attend .and Tell: Neural Combination FirSt Word
Image Caption Generation with Visual
Attention”, ICML 2015 of features
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Image Captioning with Attention

Distribution over  Distribution

L locations over vocab
a1l a2 d1
CNN — | ho
Featlres:
Image: L x
HxWx3 Weighted . .
features: D | © y
Weighted
Xu et al, “Show, Attend .and Tell: Neural Combination FirSt Word
Image Caption Generation with Visual
Attention”, ICML 2015 of features
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Image Captioning with Attention

Distribution over  Distribution
ocatio over vocab
al a2 d1
CNN -3 | hO h1 p———| h2
Featdyres: / \
Image: L x
HxWx3 Weighted
eatures: D 2l y1 z y2
Weighted

Xu et al, “Show, Attend .and Tell: Neural Combination
Image Caption Generation with Visual
Attention”, ICML 2015 of features
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Image Captioning with Attention

Distribution over  Distribution

ocatio over vocab
a1l a2 d1 a3 d2
CNN = | hO h1 o o
Featlyres:
Image: L x
HxWx3 Weighted
eatures: D | 21 y1 22 | | y2
Weighted
Xu et al, “Show, Attend .and Tell: Neural Combination
Image Caption Generation with Visual
Attention”, ICML 2015 of features
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Image Captioning with Attention

Soft attention . ‘ : - _ . .
wlwiwlnl BE R

bird flying over body water

Hard attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.
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Image Captioning with Attention

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
- i mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water, trees in the background.

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.
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Visual Question Answering

What endangered animal Q: Where will the driver go Q: When was the picture

Q: Q: Who is under the
is featured on the truck? if turning right? taken? umbrella?
A. A bald eagle. A: Onto 24 % Rd. A: During a wedding. A: Two women.
A: A sparrow. A: Onto 25 % Rd. A: During a bar mitzvah. A: A child.
A: A humming bird. A: Onto 23 % Rd. A: During a funeral. A: An old man.
A: Araven. A: Onto Main Street. A: During a Sunday church A: A husband and a wife.

earvira

Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015
Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.
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Visual Question Answering: RNNs with Attention
softmax [ [ [ ] n

A
LSTM .
L L] \ 1 1 T 1
which is ‘\ the\ brown bread ?
‘\ What kind of animal is in the photo?
. = h, \ A cat.
.M&AI&

Ll |
q

convolutional
feature maps C(/)

attention terms a,

. . £on
Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016 Why Is the person holding a RNt
Figures from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes. To cut the cake with.
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Multilayer RNNs

i
hl = tanh W' (hf )

by
h € R™ Wt [n x2n]
LSTM: W [4n x 2n]
3 sigm
7\ _ [siem| e (i
0 sigm B
g tanh

¢, =fOc_1+i0g
h; = 0 ® tanh(c})

depth

Fei-Fei Li & Justin Johnson & Serena Yeung

time
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- - Bengio et al, “Learning long-term dependencies with gradient descent
Va n I I I a R N N G ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

hy = tanh(Wrphe—1 + Wepay)

hi_
ht_1 . L_» ht = tanh ((Whh th) ( ;tl))
- T g = tanh (W (h;—l))
X i
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Bengio et al, “Learning long-term dependencies with gradient descent

| | }
Va n I I I a R N N G ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Backpropagation from h,
to h,, multiplies by W
(actually W, T)

4 )
hy = tanh(Wrphe—1 + Wepay)
¢ - he—1
— tanh | (W, Wi, B
> stack L—_» ht an (( L L ) ( Ty ))
- T g = tanh (W (h;—l))
'

ht-1 a
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- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

1
|
l__'
;
|
=
|
|
T
,__’
!
b
|
-

N
Al

-_—
hl

Computing gradient
of h, involves many
factors of W

(and repeated tanh)
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- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Y - " 4 N
W—> — > tanh W—> — > tanh W—> < tanh W-’Q—> tanh
1A A A A
h. ——— stack —»> . —T——> stack —»> h. —T——> stack —»> h. —T——> stack —> N
0 - 1 2 - 3 - 4
LT " T ERT TR
X1 X2 X3 X4

_ _ Largest singular value > 1:
Computing gradient  Exploding gradients
of h, involves many
factors of W Largest singular value < 1:
(and repeated tanh)  vanishing gradients
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- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Y - " 4 N
W—> — > tanh W—> — > tanh W—> < tanh W-’Q—> tanh
1A A A A
h. ——— stack —»> . —T——> stack —»> h. —T——> stack —»> h. —T——> stack —> N
0 - 1 2 - 3 - 4
LT " T ERT TR
X1 X2 X3 X4

_ _ Largest singular value > 1: _, Gradient clipping: Scale
Computing gradient | Exploding gradients gradient if its norm is too big
of h, involves many

grad_norm = np.sum(grad * grad)

factors of W Largest singular value < 1: if grad_norm > threshold:
(and repeated tanh) Vanishing gradients grad *= (threshold / grad_norm)
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- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Y - " 4 N
W—> — > tanh W—> — > tanh W—> < tanh W—> —> tanh
1ol 1oL o0 oL
h. ——— stack —»> . —T——> stack —»> h. —T——> stack —»> h. —T——> stack —> N
0 - 1 2 - 3 - 4
& T _4 - I ) - T / & T J
X1 X2 X3 X4

_ _ Largest singular value > 1:
Computing gradient  Exploding gradients
of h, involves many
factors of W Largest singular value < 1:
(and repeated tanh) | vanishing gradients

— Change RNN architecture
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Long Short Term Memory (LSTM)

Vanilla RNN

h; = tanh (W (ht—l))
Tt

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation

Fei-Fei Li & Justin Johnson & Serena Yeung

LSTM

1
i
0
g

o

_ g W (ht_1)
o It

tanh

ct=fOc1+10g

ht = o ® tanh(c;)
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Long Short Term Memory (LSTM)

[Hochreiter et al., 1997] f: Forget gate, Whether to erase cell
i: Input gate, whether to write to cell
g: Gate gate (?), How much to write to cell

vector from o: Output gate, How much to reveal cell
below (x)
X sigmoid | — | i
h sigmoid | — | f ) o
W f . a W he—1
vector from sigmoid | — | o ol — o T
before (h) q tanh
tanh — |9 :
cc=fOc_1+10g
*
4h x 2h 4h 4*h he = 0 ® tanh(c;)
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

a I
C » O — + —» C >
t-1 T A
> f
_>|_|_> 2 o
W— ® tanh Loy o hi—1
->g—'_> aln 0 o W i
tanh
h >stack_> . O > 1 )
1 t 0 ht/ ¢=fOc_1+iOg

| ht =0@® tanh(ct)
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Long Short Term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]
Backpropagation from c, to

-~ Y c,, only elementwise

C O —> + —» C o mult?plication by f, no matrix
1 < 14— y — U multiply by W
- f
> | _L> 1 o
W— O tanh fl_] o hi—1
ng aln 0 o W Tt
tanh
h > stack b O B g
t-1 k ? = 0) ht/ Ct:f@ct_l—l—i(ag

| ht =0@® tanh(ct)
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

-
C d ® C ) C [ © ) C [ ®© )
e ~C; ~e 10 —C -0t e
e i i
W ?—EgIQ telnh W g_j_>® talnh W g_j_>® talnh
— > stack —T—> stack —T > stack
N o—————— © — ht7—> N f o————> ©— ht——> N t? o————>©©— h —
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

«
a Y 4 N 4 N
> O—> + —> C — - :@—>+<—_>C — - :@4—_>+<—_>C —
f f f
W— ;}, ® telnh W— ;} O} talnh W— ;} O} talnh
— > stack —T—> stack —T > stack
<

Similar to ResNet!

QOO0 O
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Long Short Term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]

Uninterrupted gradient flow!

«

a Y 4 N 4 N

>»O—> + —> C —C - ‘®<—_>+<—_>C — - ‘®<—_>+<—_>C —
f f f
W— ;}, ® tanh W— ;} O} tanh W— ;} O} tanh
' ' '

— > stack —T—> stack —T > stack

N tT o———°=h7~ t{ o———0°=h5~ { t{ —

<
In between:

Similar to ResNet!

Fei-Fei Li & Justin Johnson & Serena Yeung

QOO0 O

XEToS

Highway Networks

g:T(l‘aWT)
y=9g0 Hx,Wyg)+(1—9g)Ox

Srivastava et al, “Highway Networks”,

ICML DL Workshop 2015

Lecture 10 - 102 May 4, 2017



- [An Empirical Exploration of
Oth e r R N N Va rl a n tS Recurrent Network Architectures,
Jozefowicz et al., 2015]
GRU [Learning phrase representations using rnn

encoder-decoder for statistical machine translation, BT
Cho et al. 2014] z = sigm(Weax, +by)
ro= sigm({Wexy + Whehe +5)
re = o(Werxs + Whephi_1 + b-) heyt = tanh(Wis(r ® ) + tanh(z,) + by) © 2
+ k@[l —=z)
Zr = J(Wa:zxt + thht—l + bz)
~ MUT?:
hy = tanh(Wyrxe + Whn(re © he—1) + br) ) _
_ z = sigm(Wr + Wiahe 4 b)
h't = 2 () ht—l -+ (1 —_ Zt) ® ht r = sigm(r; + Wih; + &)
higr =  tanh(Win(r @ he) + Wepze + ba) © 2
+ h@(l—z)
MUT3:
z = sigm(Wor + Wy, tanh{h, ) + &)
[LSTM: A Search Space Odyssey, F S HEpn(Wa+ Wiohs +5)
Greff et al., 2015] hept = tanh{Win(r ® he) + Wenzs + ) © 2
+ h@(1—=)
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Summary

- RNNs allow a lot of flexibility in architecture design

- Vanilla RNNs are simple but don’'t work very well

- Common to use LSTM or GRU: their additive interactions
improve gradient flow

- Backward flow of gradients in RNN can explode or vanish.
Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research

- Better understanding (both theoretical and empirical) is needed.
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Next time: Midterm!

Then Detection and Segmentation
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