Lecture 13:
Generative Models
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Administrative

Midterm grades released on Gradescope this week
A3 due next Friday, 5/26
HyperQuest deadline extended to Sunday 5/21, 11:59pm

Poster session is June 6
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Overview

e Unsupervised Learning

e Generative Models
o PixelRNN and PixelCNN
o Variational Autoencoders (VAE)
o Generative Adversarial Networks (GAN)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 3 May 18, 2017



Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)

X is data, y is label
— Cat

Goal: Learn a function to map x ->y

Examples: Classification,

regression, object detection, Classification
semantic segmentation, image

captioning, etc.

This image is CCO public domain
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification, DOG. DOG. CAT
regression, object detection, ’
semantic segmentation, image Object Detection

captioning, etc.

his image is CCO public domain
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/pets-christmas-dogs-cat-962215/

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

GRASS, ,

Examples: Classification, TREE, SKY

regression, object detection,
semantic segmentation, image Semantic Segmentation
captioning, etc.
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

A cat sitting on a suitcase on the floor

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Image captioning
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https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.
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Supervised vs Unsupervised Learning

Unsupervised Learning ] o

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

K-means clustering
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https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg

Supervised vs Unsupervised Learning

Unsupervised Learning

original data space

component space

Data: x SECs oms=s
Just data, no labels! 5L CESERS i
Goal: Learn some underlying
hidden structure of the data 9.4
Examples: Clustering, Principal Component Analysis
dimensionality reduction, feature (Dimensionality reduction)

learning, density estimation, etc.
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http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Unsupervised Learning Reconsiucted daa
L2 Loss function: minhm

||£L‘—If:||2 < ,"Eﬁ@
RS

Data: x

i :
Just data, no labels! Resorsin cid | 2 | b < S
Decoder | Dacoder 4-ayer upcony
Goal: Learn some underlying Features [ 2 | -
hidden structure of the data b e | e o R
RNL&HS
_ Input data | T — gsgw
Examples: Clustering, sl < 5
dimensionality reduction, feature Autoencoders
learning, density estimation, etc. (Feature learning)
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Supervised vs Unsupervised Learning

Unsupervised Learning

R '/._\
Data: x

Just data, no labels! 1-d density estimation

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.
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https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning
Data: (x, y) Data: x
X is data, y is label Just data, no labels!

Goal: Learn a functionto map x->y  Goal: Learn some underlying

hidden structure of the data
Examples: Classification,

regression, object detection, Examples: Clustering,
semantic segmentation, image dimensionality reduction, feature
captioning, etc. learning, density estimation, etc.
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y
Examples: Classification,
regression, object detection,

semantic segmentation, image
captioning, etc.

Fei-Fei Li & Justin Johnson & Serena Yeung

Unsupervised Learning

Training data is cheap
Data: x \, Holy grail: Solve

Just data, no labels! unsupervised leaming
’ => understand structure

of visual world
Goal: Learn some underlying

hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.
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Generative Models
Given training data, generate new samples from same distribution

B B

Training data ~ p,_..(X) Generated samples ~

model )

Want to learn p__,.(x) similar to p_,_._(X)
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Generative Models
Given training data, generate new samples from same distribution

A Fjrq

Training data ~ p,_..(X) Generated samples ~p_ . (X)

Want to learn p__,.(x) similar to p_,_._(X)

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve forp __ . (X)
- Implicit density estimation: learn model that can sample from p_ _ . (x) w/o explicitly defining it
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Why Generative Models?

- Realistic samples for artwork super-resolution, colorization, etc.

- Generatlve models of time-series data can be used for simulation and
planning (reinforcement learning applications!)

- Training generative models can also enable inference of latent
representations that can be useful as general features

Flgures from L-R are copyright: (1) Alec Radford et al. 2016; (2) David Berthelot et al. 2017 Phillip Isola et al. 2017. Reproduced with authors permission
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https://arxiv.org/abs/1511.06434
https://arxiv.org/pdf/1703.10717.pdf
https://phillipi.github.io/pix2pix/

Taxonomy of Generative Models Direct

GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
" . GSN
Fully Visible Belief Nets \

- NADE /
- MADE Variational Markov Chain
- PixelRNN/CNN

. Variational Autoencoder Boltzmann Machine
Change of variables models

(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Taxonomy of Generative Models Direct

Today: discuss 3 most ‘ GAN
popular types of generative Generative models
models today /\
Explicit density Implicit density
Tractable density Approximate density Markov Chain

Fully Visible Belief Nets / \ GSN

- NADE — )

- MADE Variational Markov Chain

- [PixelRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models
(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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PixelRNN and PixelCNN
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Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
M

p(m) = Hp($xg|$1} cees 3711—1)
T i=1 T

Likelihood of Probability of i'th pixel value
Image X given all previous pixels

Then maximize likelihood of training data
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Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
M

p(m) = Hp($xg|$1} cees 3711—1)
T i=1 T

Likelihood of Probability of i'th pixel value
Image X given all previous pixels
Complex distribution over pixel
o o o values => Express using a neural
Then maximize likelihood of training data  ctwork!
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Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:

T
p(z) = I I p(xi|T1, ...y Ti—1)
T =1 T Will need to define
o ordering of “previous
L|k.eI|hood of Probability of i'th pixel value pixels”
Image X given all previous pixels

Complex distribution over pixel
. o . values => Express using a neural
Then maximize likelihood of training data  ctwork!
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PIX8| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

@ O
o O
© O
© O
© O
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PIX8| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner i*@ © O© O
Dependency on previous pixels modeled © &6 o6 ©
using an RNN (LSTM) O © © O O
© 0 0 0 O
© 0 0 0O O
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PIX8| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

© 0 O O
© 0 O O O
© 0 O O O

© O O

@)
@)
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PIX8| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Drawback: sequential generation is slow!

© 0 O O
© 0 O O O

5
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P IX9|C N N [van der Oord et al. 2016]

Still generate image pixels starting from i .i
corner

0 2b5
f

Dependency on previous pixels now A .
modeled using a CNN over context region / / / /

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 29 May 18, 2017



P IX9|C N N [van der Oord et al. 2016]

Softmax loss at each pixel

Still generate image pixels starting from i .i
corner

0 1, 255
. . ,dj\’\
Dependency on previous pixels now
modeled using a CNN over context region / / / /
Training: maximize likelihood of training
images

n
p(.’l?) — Hp($%|$17 ey mi—l)
i=1

Figure copyright van der Oord et al., 2016. Reproduced with permission.
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P IX9|C N N [van der Oord et al. 2016]

Still generate image pixels starting from i .i

corner . ? .
Dependency on previous pixels now A .

modeled using a CNN over context region / / / /
Training is faster than PixelRNN

(can parallelize convolutions since context region
values known from training images)

Generation must still proceed sequentially
=> still slow

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 31 May 18, 2017



Generation Samples

R T | S
Hlﬁﬁﬁﬂﬂlﬁl
R TGRS

e

ot

=lai
L Iﬁlﬂ ﬁﬁ.ﬂiﬂ@lﬂm
Iﬁﬂlﬂﬂ.ﬂ S oLl L
o e T R b

R NETEEEEE RGN B

32x32 CIFAR-10 32x32 ImageNet

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.
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PixelRNN and PixelCNN

Pros: Improving PixelCNN performance
- Can explicitly compute likelihood - Gated convolutional layers
p(x) - Short-cut connections
- Explicit likelihood of training - Discretized logistic loss
data gives good evaluation - Multi-scale
metric - Training tricks
- Good samples - Etc...
Con: See
- Sequentia| generation => slow - Van der Oord et al. NIPS 2016
- Salimans et al. 2017
(PixelCNN++)
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Variational
Autoencoders (VAE)
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So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

i
po(z) = | [ po(zilz1, ..., zi-1)
=1
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So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

i
po(z) = | [ po(zilz1, ..., zi-1)
=1

VAEs define intractable density function with latent z:

po(z) = / po(2)po(z]2)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Features z
I Encoder
Input data T
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Originally: Linear +
nonlinearity (sigmoid)

Later: Deep, fully-connected
Later: ReLU CNN

Features > .iﬁ"r
I Encoder . Eg.@
Input data T gﬂ zw
nH < HE
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x

Originally: Linear +
(dimensionality reduction)

nonlinearity (sigmoid)

_ o Later: Deep, fully-connected
Q: Why dimensionality Later: ReLU CNN
reduction? '
Features [ 2 o PR

T Encoder EE @
RIS N
i < B2
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x Originally: Linear +
(dimensionality reduction) nonlinearity (sigmoid)

Later: Deep, fully-connected

Q: Why dimensionality Later: ReLU CNN

reduction?

A: Want features to

capture meaningful Features Z Eﬁg o 7 e
;aac:.[tec])rs of variation in T . %E
Input data T Esgg

60 < B2
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Some background first: Autoencoders

How to learn this feature representation?

Features z

I Encoder

Input data T --H > -E
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Some background first: Autoencoders

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Reconstructed 4
input data
I Decoder
Features z
I Encoder
£

Input data
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Some background first: Autoencoders

How to learn this feature representation?

Train such that features can be used to reconstruct original data

“Autoencoding” - encoding itself

Originally: Linear +
nonlinearity (sigmoid)

/ Later: Deep, fully-connected
Later: ReLU CNN (upconv)
Decoder

x
Features > hﬁ' o
£I

Reconstructed
input data

Encoder . EP'
LR
a7 < G2
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Some background first: Autoencoders _Reconstructed data

e = |
How to learn this feature representation? ,E. E@
Train such that features can be used to reconstruct original data n SEE

“Autoencoding” - encoding itself -
-h!; M&

Reponstructed ff: Encoder: 4-layer conv
Input data Decoder: 4-layer upconv
Decoder
Input data
Features 2 mﬁﬁ I
I Encoder and i
I

Input data

" =
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Some background first: Autoencoders _Reconstructed data

o e i = A

Train such that features . ,Eiﬂ’a
can be used to L2 Loss function: SEE

reconstruct original data |z —2||* = -
1 =2

Reconstructed
input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Decoder
Input data

T
Features = mﬁﬁi gl
I

Encoder :ﬁ‘ﬁ@
ol o Y
a7 < G2
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Some background first: Autoencoders _Reconstructed data
e i =
I;iir;:uucsr;:jhg[ features L2 Loss function: Doesn'’t use labels! ,. E@
reconstruct original data |z —2||* = nsqn
1 i < WS

Reponstructed ff: Encoder: 4-layer conv
Input data Decoder: 4-layer upconv
Decoder
Input data
Features 2z = >0
I Encoder
I

Input data

sl < HEs
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Some background first: Autoencoders

Reconstructed
input data

T
Features z \ After training,
I

throw away decoder
Encoder

Input data
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Some background first: Autoencoders

Loss function
(Softmax, etc) bird  plane

/ \ dog deer truck

Predicted Label

Train for final task
(sometimes with
small data)

Classifier Fine-tune
Encoder can be encoder

Y
used to initialize a Features z jointly with
I

supervised model classifier
Encoder

L L

Input data
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Some background first: Autoencoders

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Reponstructed T Features capture factors of
input data variation in training data. Can we
Decoder generate new images from an
autoencoder?
Features s
I Encoder
I

Input data
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {m(i) f\;1 is generated from underlying unobserved (latent)
representation z

Sample from
true conditional £I

por(z | 2)

Sample from
true prior >

po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {m(i)}ﬁl is generated from underlying unobserved (latent)
representation z

Intuition (remember from autoencoders!):
X is an image, z is latent factors used to

Sample from _ ) ,
T generate x: attributes, orientation, etc.

true conditional
po- (x| )

Sample from
true prior >

po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model.

Sample from
true conditional £I

por(z | 2)

Sample from
true prior >

po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model.

Sample from
true conditional £I

por(z | 2)

How should we represent this model?

Sample from
true prior >

po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model.

Sample fr.o_m How should we represent this model?
true conditional i
po+ (| Z(l)) Choose prior p(z) to be simple, e.g.

Gaussian. Reasonable for latent attributes,

Sample from e.g. pose, how much smile.

true prior >
Po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model.

Sample fr.o_m How should we represent this model?
true conditional I
po+ (| Z(l)) Choose prior p(z) to be simple, e.g.
Decoder Gaussian.
network » _
Sample from Conditional p(x|z) is complex (generates
true prior P image) => represent with neural network
Po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model.

Sample from
true conditional £I

por(z | 2)

How to train the model?

Decoder
network
Sample from

true prior >
Po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model.

Sample fr.o_m How to train the model?

true conditional i

po~( | Z(l)) Remember strategy for training generative
DetCOdir models from FVBNSs. Learn model parameters
networ « . . . o

Sample from to maximize likelihood of training data

rue prio z po() = [ po(2)po(w]2)dz

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model.

Sample fr.o_m How to train the model?
true conditional i
po~( | Z(l)) Remember strategy for training generative
DetCOdir models from FVBNSs. Learn model parameters
networ « . . . o
Sample from to maximize likelihood of training data
rue prio z po() = [ po(2)po(w]2)dz
\

Now with latent z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model.

Sample fr.o_m How to train the model?

true conditional i

po~( | Z(l)) Remember strategy for training generative
DetCOdir models from FVBNSs. Learn model parameters
networ « . . . o

Sample from to maximize likelihood of training data

rue prio z po() = [ po(2)po(w]2)dz

Q: What is the problem with this?

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters §*
of this generative model.

Sample fr.o_m How to train the model?

true conditional i

po~( | Z(l)) Remember strategy for training generative
DetCOdir models from FVBNSs. Learn model parameters
networ « . . . o

Sample from to maximize likelihood of training data

rue prio z po() = [ po(2)po(w]2)dz

Q: What is the problem with this?

Intractable!
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

v
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

f

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

v vV
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

\

Decoder neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

2 v v
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

f

Intractible to compute
p(x|z) for every z!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

2 v v
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

Posterior density also intractable: P9(2’|-’L‘) = Peo (33|Z)P9 (Z)/Pe(fﬁ')

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability
® v Vv
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

v v 9
Posterior density also intractable: P9(2’|-’L‘) = Peo (33|Z)P9 (Z)/Pe(fﬁ')

f

Intractable data likelihood

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

® v v
Data likelihood: pe(z) = [ pe(2)pe(z|2)dz
v v O
Posterior density also intractable: Po(2|x) = po(z|z)pe(2)/po(z)

Solution: In addition to decoder network modeling p,(x|z), define additional
encoder network q¢(z|x) that approximates p,(z|x)

Will see that this allows us to derive a lower bound on the data likelihood that is
tractable, which we can optimize

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z
Ju’zlili' z|a: ‘u'mlz a:lz
Encoder network Decoder network
9 (2|7) pe(z|2)
(parameters ¢) (parameters 0)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Sample z from z|:1: ~ N(,u,zm, Yz) Sample x|z from 3:|z ~ N(}”’m|z; Yig|z)
JUJz|:1: z|m aUJ:r|z a:lz
Encoder network Decoder network
po(z|2)
(parameters ¢) (parameters 0)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Sample z from z|x ~ N (fhz)2, 2 |z) Sample x|z from |z ~ N (Uy,, Lg|2)
Ju’zlili' z|a: ‘u'mlz a:lz
Encoder network Decoder network
9 (2|) po(z|2)
(parameters ¢) (parameters 0)

Encoder and decoder networks also called

“recognition”/“inference” and “generation” networks  Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

log pg(z?)) = E, q,(z]2) [logpg(a:(i))} (pg(z?) Does not depend on z)
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

log pg(z?)) = E, q,(z]2) [logpg(a:(i))} (pg(z?) Does not depend on z)

/

Taking expectation wrt. z
(using encoder network) will
come in handy later
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:
log pa () = E. q,(z]2) [logpg(a:(i))} (pg(2'?) Does not depend on z)

po(zV) | 2)po(2)
po(z | z®)

=E, [log ] (Bayes’ Rule)
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:
log pg () = E. g (zla) [logpg(a:(i))} (pg(2'?) Does not depend on z)

po (2™ | 2)pe(2)
po(z | x))

po (2D | 2)po(2) qs(z | V)
po(z | 2®)  qu(z | z®)

=E, |log ] (Bayes’ Rule)

= E, |log ] (Multiply by constant)
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:
log pg () = E. g (zla) [logpg(a:(i))} (pg(2'?) Does not depend on z)

po(z® | z)po(2)
po(z | =)

po(z") | 2)po(2) gg(z | V)
po(z | @) qu(z ] z®)

. (%)
i Qp(2 | @
= E. |logps(2) | )| — E. [log %

=E, |log ] (Bayes’ Rule)

= E, |log ] (Multiply by constant)

qe(2 | SU(”)] :
+ E, |log —————= Logarithms
] [ 8 oz | oy | (Logarithms)
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:
log pa (V) = E. qs(z]z) [logpg(a:(i))} (pe(x?) Does not depend on z)
po(z™ | 2)pa(2)
po(z | 2?)
po (x| 2)pe(2) qs(z | =)
po(z |2@)  gy(z | 2™)
[ - “) gs(z | =)
=E. |lo | 2 } —-E, [lo M ¢ .
logpe (™ | 2) —r 2o(z [2®)

= E. [logps(e® | 2)] ~ Dir(gs(z | 2?) || po(2)) + Dicr(golz | #7) || po(z | )

=E, |log ] (Bayes’ Rule)

=E, |log ] (Multiply by constant)

] +E, llog ] (Logarithms)
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:
log pa (V) = E. qs(z]z) [logpg(a:(i))} (pe(x?) Does not depend on z)

po(z™ | 2)pa(2)
po(z | x))

po (2D | 2)po(2) qs(z | V)
po(z | 2®)  qu(z | z®)

=E, |log ] (Bayes’ Rule)

=E, |log ] (Multiply by constant)

’ i (2] 2) (2] 207) :
=E, :logpg(ac( )| z)} —E, {log %] +E, llog jm] (Logarithms)
= E. [logps(z® | 2)| = Drer(go(z | 2©) || po(2)) + Drcr(galz | #9) || pa(z | )

\ /

The expectation wrt. z (using
encoder network) let us write
nice KL terms
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

log pa (V) = E. qs(z]z) [logpg(a:(i))} (pe(x?) Does not depend on z)

I (4)
= E, |log po(z™ | z)pg(z)] (Bayes’ Rule)
_ po(z | x))

po (2D | 2)po(2) qs(z | V)
po(z | 2®)  qu(z | z®)

=E, |log ] (Multiply by constant)

r . (4) (4)
=E., 108;]99(39(” | z)} —E, [log —%(z I )] + E, llog —qd,(z |2 : )] (Logarithms)
: po(2) po(z | z)
= B. [logps (e | 2)| = Dicr(ao(z | 2) I|p6(2)) + Dicias(z | #7) | poz | )
Decoder network gives py(x|z), can This KL term (between Pg(2x) intractable (saw
compute estimate of this term through Gaussians for encoder and z  €arlier), can’t compute this KL
sampling. (Sampling differentiable prior) has nice closed-form term :( But we know KL
through reparam. trick, see paper. solution! divergence always >=0.
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:
log pg(z'V) = E. qs(z]z) [logpg(ai(i))} (pe(x?) Does not depend on z)

po(z) | 2)po(2)
po(z | z)
po (2 | 2)po(2) qo(z | )

=E, |log ] (Bayes’ Rule)

=E. |lo . . Multiply by constant

BTG T20)  ge(z] a:m)] (Multiply by )
- _ (7) ()

=B, |logpe(z™ | z)} —E, [log M] +E, llog 42 | @ )] (Logarithms)
i po(2) po(z | ()

=|E, |logpe(z™ | Z)} Dxr(gs(z | ) || pa(2))|+ Drr(gq(z | z® )HPB(Z | 2 ))

Lz,0,0) >0
Tractable lower bound which we can take

gradient of and optimize! (pe(x|z) differentiable,
KL term differentiable)
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

log pg(z?)) = E, q,(z]2) [logpg(a:(i))} (pg(z?) Does not depend on z)

I (4)
= E, |log po(z™ | z)pg(z)] (Bayes’ Rule)
|7 pe(z [2®)

po(z) | 2)po(2) qo(z | )

=E. |lo . . Multiply by constant
8z [2®)  golz] :vm)] (Multiply by )
i _ () (2)
= E, |logpg(z? | z)} —E, [log M] +E, llog 4z | @ )] (Logarithms)
L po(z) po(z | (@
=E, _108;190(1‘(” | 2)} Drr(gs(z | 2) || pa(z )) + Drer(ge(7 | 2 )HP@(Z E3 ))
L(zD,0,8) >
. : 0%, p* = Lz (@)
log po () > £(z?, 6, ¢) ¢ = argrgax Z 32
Variational lower bound (“‘ELBQO”) Training: MaX|m|ze Iower bound
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:
log pa () = E, q,(z]2) [logpg(a:(i))} (pg(z'?) Does not depend on z)

po(z) | 2)po(2)
po(z | z®)

=E. |log Make approximate

posterior distribution
y by constant) close to prior

] (Bayes’ Rule)
Reconstruct

: I W] 2)po(2) go(z | 1)
the input data= E. |lo Po (2 O\ 29 . ] M
T TG [20) gz 2] |

gs(z | 21V)
po(z | ™)

= B. [logpo(a | 2)] — Dicslas(z | +) 1p0(2) + Drca (o= | 29 Il po( | +2))

=E, —logpg (@) | z)} —E, [log ] +E, llog ] (Logarithms)

L(z9),0, ) >0
* _ (7)
log po(2®) > £(z®. 0. 9) 0%, ¢* = arg maXZE ,0,0)
Variational lower bound (‘ELBO”) Training: MaX|m|ze Iower bound
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 82 May 18, 2017




Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logps(e? | 2)| = Dicr(gs(= | 27) || po(2))

Lz, 0,¢)
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logps(e? | 2)| = Dicr(gs(= | 27) || po(2))

Lz, 0,¢)

Let’s look at computing the bound
(forward pass) for a given minibatch of
input data

Input Data i
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logps(e? | 2)| = Dicr(gs(= | 27) || po(2))

Lz, 0,¢)

Hz|z Ez|c::
Encoder network \/
q4(2|)
Input Data i
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logps(e? | 2)| = Dicr(gs(= | 27) || po(2))

Lz, 0,¢)

Make approximate
posterior distribution

close to prior Hz|z Ez|c::
Encoder network \/
9¢(2|)
Input Data i
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logps(e? | 2)| = Dicr(gs(= | 27) || po(2))

Lz, 0,¢)

Z
Sample z from z|z ~ N 3
Make approximate P | (ru’zlfc? zlm)

posterior distribution /

close to prior Hz|z Ez|a:
Encoder network \/
q4(z|z)
Input Data i
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logps(e? | 2)| = Dicr(gs(= | 27) || po(2))

Lz, 0,¢)

Make approximate
posterior distribution
close to prior

Fei-Fei Li & Justin Johnson & Serena Yeung

M|z

Decoder network

po(x|2)

E.cz:lz

<

Sample z from z|:1: ~ N(,uz|m 2z|m)

Encoder network

9 (2|)
Input Data

/

Hz|x

Ez|c::

~_

Lecture 13 - 88

May 18, 2017



Fa

Variational Autoencoders
xT

Putting it all t _ imizing th Maximize
~utting it a rrmaximizing the | Jihood of Sample x|z from |z ~ N(;Umz; Ewlz)
likelihoogrfower bound original input

being / \

E. [logpg(:v(i) | z)] — Drr(qe(z | ) || pe(2)) reconstructed M|z Ea:lz

Decoder network \/
po(z|2)

Z

Sample z from z|:1: ~ N(,uz|m 2z|m)

/

Lz, 0,¢)

Make approximate
posterior distribution

close to prior Hz|z Ez|c::
Encoder network \/
9¢(2|)
Input Data i
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Variational Autoencoders ]

T
Maximize
likelihood of ~ Sample x|z from  Z|2 ~ N (tg|,, Xglz)

original input /
being \

E. [logpg(:v(i) | z)] — Drr(qe(z | ) || pe(2)) reconstructed M|z Ea:lz

Decoder network \/
po(z|2)

Z

Sample z from z|:1: ~ N(,uz|m 2z|m)

/

Putting it all t . maximizing the
likelihoogTower bound

Lz, 0,¢)

Make approximate
posterior distribution

close to prior Hz|z Ez|a:
Encoder network
For every minibatch of input \/
data: compute this forward q¢,(z|a¢)
pass, and then backprop! Input Data i
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Variational Autoencoders: Generating Data!

Use decoder network. Now sample z from prior!

Fa

£
Sample x|z from :1:|z ~ N(,Ufm|z, 2m|z)

N

M|z E.ﬂz

Decoder network \/
po(x|z)

<

Sample z from z ~ N (0, I)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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ing Data!

Generat

| Autoencoders

lona

t

1a

Var

Use decoder network. Now sample z from prior!

QAN NANNNANNNN N SNNNNS
QAVAN O LELLLLLWN NN~
QAN LLLLVVYY YN~~~
QUAVVDNININLn Gyt G W YVVVY W~~~
QAVVHHINNKVW B BVIVIYY W - - —
QAOOVOHINININNHOEBPBDIYOVIYY W = ——
QAQOOIOMHIMNMNMMON N DIOID D W = ——
QOODOMMNMMMN MM ®O DD D w o — —
QODWMIN MM N MDD WS DD e e —
OODOMM MMM N D0 WD DD e e e —
QOMME MMM NN LW on om om o —
DA I8 0% 0?07 000000 0 &n & O~ 0~ P o~
RN e I L N Nl ol o
SRS K K G a al all ok ol S S NN
Sl ogororrorrrrTaNNN
SdadadaddorrrrrrTrTIIIINN
SddddgorrrrrrdFdTIITIXINN
SAdAddTTTTrrrrrrrrI™2r22NN
S I e glie e i <l el el ol ol ol ol O N NI NI NN

E.cz:lz

N

Sample x|z from :1:|z ~ N(,Ufm|z, 2m|z)
Hzx|z

Decoder network
po(x|2)

A
Sample z from z ~ N (0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

May 18, 2017
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ing Data!
Data manifold for 2-d z

Generati

| Autoencoders

lona

t

1a

Var

Use decoder network. Now sample z from prior!

QAN NANNNANNNN N SNNNNS
QAVAN O LELLLLLWN NN~
QAN LLLLVVYY YN~~~
QAUAVVNININLNLyGo G BV VVY W~~~
QAVOVOHIHINNKKWW W BVIYOVVYY W - - —

QO0DHINININMHEBIVVIV®w w—— 4

QAOQOIMHINMNMMNKNWMDIOII D W@ = ——
QOO DOMMNMMMNMM®O DD D w o — —
QODMI MM MMM MSD DD e —
OODOMM MMM N D0 WD DD e e e —
QOMME MMM N OO0 e on om e —
DA I8 0% 0?07 000000 0 &n & O~ 0~ P o~
R N s Rl ol O
SRS K K G a al all ok ol S S NN
JaadddddodocororrororrrTannN~
SdadadaddorrrrrrTrTIIIINN
SddddgorrrrrrdFdTIITIXINN
Sdddgrrrrrrr>drIr2r™22ranN
S I e glie e i <l el el ol ol ol ol O N NI NI NN

< >

Vary z,

E.cz:lz

N

Sample x|z from :1:|z ~ N(,Ufm|z, 2m|z)
Hzx|z

Decoder network
po(x|2)

A
Sample z from z ~ N (0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Vary z,

May 18, 2017
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Variational Autoencoders: Generating Data!

=> independent Degree of smile

Diagonal prior on z pﬁ J& g g4

latent variables \
Different

dimensions of z Vary z,
encode

interpretable factors

of variation

Head pose
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Variational Autoencoders: Generating Data!

ovlavle S N

Diagonal prior on z

=> independent Degree of smile

latent variables \
Different

dimensions of z Vary z,
encode

interpretable factors

of variation \/

\

Also good feature representation that
can be computed using q¢(z|x)!

Head pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Labeled Faces in the Wild
32x32 CIFAR-10

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 96 May 18, 2017



Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as
PixeIRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANS)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian
- Incorporating structure in latent variables

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13- 97 May 18, 2017




Generative Adversarial
Networks (GAN)
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So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

i
po(z) = | [ po(zilz1, ..., zi-1)
=1

VAEs define intractable density function with latent z:

po(z) = / po(2)po(z]2)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead
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So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

i
po(z) = | [ po(zilz1, ..., zi-1)
=1

VAEs define intractable density function with latent z:
po(o) = [ po(2)pa(ale)dz
Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017
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So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

i
po(z) = | [ po(zilz1, ..., zi-1)
=1

VAEs define intractable density function with latent z:

po(o) = [ po(2)pa(ale)dz
Cannot optimize directly, derive and optimize lower bound on likelihood instead
What if we give up on explicitly modeling density, and just want ability to sample?
GANSs: don’t work with any explicit density function!

Instead, take game-theoretic approach: learn to generate from training distribution
through 2-player game

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017



Generative Adversarial Networks Adversarial Neis” NIPS 2074

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to
represent this complex
transformation?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017
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Generative Adversarial Networks Adversarial Neis” NIPS 2074

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to Output: Sample from
represent this complex training distribution
transformation? *
A: A neural network! Generator
Network
X
Input: Random noise z
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lan Goodfellow et al., “Generative

Training GANS: TWO-pIayer game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017
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lan Goodfellow et al., “Generative

Training GANS: TWO-pIayer game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

*

Discriminator Network

Fake Images ~ | Real Images
(from generator) | ~ - (from training set)
A

Generator Network

*

Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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Trammg GANS TWQ-p|ayer game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game
Minimax objective function:

min max [Ewpdm log Do, () + E,up(z) log(1 — Do, (G, (2’)))]
g d

Fei-Fei Li & Justin Johnson & Serena Yeung
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Trammg GANS TWQ-p|ayer game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [Exwpdm log Dy, () + E.np(z) log(1l — Dy, (Go, (Z)))]
0y 04 — \ '

Discriminator output

Discrimina'tor output for
for real data x

generated fake data G(z)

Fei-Fei Li & Justin Johnson & Serena Yeung
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Training GANs: Two-player game — sossaranes. nips 2ot

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [Emwpdm log Dy, () + E.np(z) log(1l — Dy, (Go, (Z)))]
0, Ba — \ '

Discriminator output Discrimina'tor output for
for real data x generated fake data G(z)

- Discriminator (8,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z2)) is close to 0 (fake)

- Generator (Gg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)
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lan Goodfellow et al., “Generative

Training GANS: TWO-pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max | Egnp,,q, 108 Do, (2) + Eenp(e) 10g(1 — Doy (Go, (2))]

0, B4

Alternate between:
1. Gradient ascent on discriminator

n}gax |:]E$diata log Dy, (m) + Ezwp(z) log(l - D9d(G99 (z)))]
d

2. Gradient descent on generator
n;in E,p(z)log(l — Dg,(Gg,(2)))

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017
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lan Goodfellow et al., “Generative

Training GANS: TWO-pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max | Egnp,,q, 108 Do, (2) + Eenp(e) 10g(1 — Doy (Go, (2))]

0, B4

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

max [Emmpdam log Dy, (z) + IEZNp(z) log(1 — D9d(G99 (z)))} dominated by region

04 .
where sample is
2. Gradient descent on generator already QO\Od

mink, p() log(l — Do, (G, (2)))

When sample is Iikelyz:
fake, wantto learn ‘|

In practice, optimizing this generator objective from it to improve /f,l |
does not work well! generator. But |
gradient in this region-| |

is relatively flat!
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Training GANs: Two-player game — sossaranes. nips 2ot
Minimax objective function:

min max [Emm log Do, () + E,p(z) log(1 — Do, (G, (z)))]

0, B4

Alternate between:
1. Gradient ascent on discriminator

n}gax |:]E$diata log Dy, (m) + Ezwp(z) log(l - D9d(G99 (z)))]
d

2. Instead: Gradient ascent on generator, different
objective
’ maxE, . (.) 10g(Do, (G, (2)))

Instead of minimizing likelihood of discriminator being correct, now
maximize likelihood of discriminator being wrong.

Same obijective of fooling discriminator, but now higher gradient |
signal for bad samples => works much better! Standard in practice.

4
3
2L
14

/

High gradient signal

Cow: gradient signal
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lan Goodfellow et al., “Generative

Training GANS: TWO-pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max | Egnp,,q, 108 Do, (2) + Eenp(e) 10g(1 — Doy (Go, (2))]

0, 64
Aside: Jointly training two

) networks is challenging,
Alternate between: can be unstable. Choosing

1. Gradient ascent on discriminator objectives with better loss
max |:]E$"‘"‘Pdata log Dy, (z) + ]Ezwp(z) log(1 — ng(Ggg (z)))] landscapes helps training,

84 is an active area of
research.

2. Instead: Gradient ascent on generator, different
objective 2|
J mgax Ezwp(z) log(ng(G'gg (z))) A

; /

Instead of minimizing likelihood of discriminator being correct, now High gradient signal
maximize likelihood of discriminator being wrong. 2|
Same obijective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice.

L
0.0 0.2

Cow: gradient signal
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lan Goodfellow et al., “Generative

Training GANS: TWO-pIayer game Adversarial Nets”, NIPS 2014
Putting it together: GAN training algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(), ..., 2(™)} from noise prior p,(z).
e Sample minibatch of m examples {z(%), ..., m(m}} from data generating distribution
pdala(m)-

e Update the discriminator by ascending its stochastic gradient:

s

Vou- - [108 Day(o9) + og(1 — Do, (Ga, ()]

i=1
end for

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(z).
e Update the generator by ascending its stochastic gradient (improved objective):

1 i
ng E ; ]og(ng(Geg (’Z( ))))

end for
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lan Goodfellow et al., “Generative

Training GANS: TWO-pIayer game Adversarial Nets”, NIPS 2014
Putting it together: GAN training algorithm

for number of training iterations do

arlE sene o
e Sample minibatch of m noise samples {z(), ..., 2(™)} from noise prior p,(z).
Some find k=1 5 Sa(ml))le minibatch of m examples {x(1), ..., m(m}} from data generating distribution
Pdata\ ).
more stable, e Update the discriminator by ascending its stochastic gradient:
others use k > 1, Lo
no best rule. Vo — > [log Dy, (z®) + log(1 — D, (G, (z("“))))}
i=1
\ITVecent V\;o.rk é;eAgN end for
asSeIsteln )% Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(2).
alleviates this e Update the generator by ascending its stochastic gradient (improved objective):
problem, better L
stability! Vo, — Z log(Dg, (G, (2()))
m
i=1
end for
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lan Goodfellow et al., “Generative

Training GANS: TWO-pIayer game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

*

Discriminator Network

Fake Images ~ | Real Images
(from generator) | ~ - (from training set)
A

Generator Network
A After training, use generator network to

generate new images

Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.
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lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples (CIFAR-10)

g ”

-

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.
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Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.
e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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Generative Adversarial Nets: Convolutional Architectures

512
L

Iy

!
I

!

ot
a ]

Stride 2 16

3> |Stide 2

CONV 2

CONV 4 £

Generator G(@2)

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
amazing!

Radford et al,
ICLR 2016

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - I\/Iay 18, 2017




Generative Adversarial Nets: Convolutional Architectures

Interpolating =" B
between e
random R s (LR
points in laten &2

space .

Radford et al,
ICLR 2016
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Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

i (o
Samples -
from the <
model

\_
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Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

4 g
: ) — "
Samples S

from the <
model

Average Z
vectors, do
arithmetic
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Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

1 B

Samples Smiling Man

from the <
model

Average Z
vectors, do
arithmetic
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Generative Adversarial Nets: Interpretable Vector Math

Glasses man No glasses man No glasses woman

Radford et al,
ICLR 2016

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017
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Generative Adversarial Nets: Interpretable Vector Math

Glasses man No glasses man No glasses woman Radford ot al,

Woman with glasses
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2017: Year of the GAN Text > Image Synthesis
' this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red

Better training and generation Source->Target domain transfer R Bt AT, ER5 T 41 e L sERn
. . . Input lllpll . Input Output ' ‘

Reed et al. 2017.
Many GAN appllcatlons

(c) Kitchen. (d) Conference room.

LSGAN. Mao et al. 2017.

- winter Yosemite

Pix2pix. Isola 2017. Many examples at
CVC'GGAN Zhu et al. 2017. https://phillipi.github.io/pix2pix/

BEGAN. Bertholet et al. 2017.
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - 7 May 18, 2017




“The GAN Zoo”

* GAN - Generative Adversarial Networks

Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation

b . . s 2 . C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural netwaorks with adversarial training
= AN - Lesming e R ehebllse betark bence a1 Clojest Shapes vis 60 benexsches Aueesial Moceling = CS-GAN - Improving Neural Machine Translation with Conditienal Sequence Generative Adversarial Nets
+ acGAN - Face Aging With Conditional Generative Adversarial Networks CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
+ AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs
» AdaGAN - AdaGAN: Boosting Generative Models

» AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

CycleGAN - Unpaired Image-to-lmage Translation using Cycle-Consistent Adversarial Networks

DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

. . DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
* AffGAN - Amortised MAP Inference for Image Super-resolution g

i ¥ " DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
* AL-CGAN - Learning to Generate Images of Qutdoor Scenes from Attributes and Semantic Layouts

DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
= ALl - Adversarially Learned Inference

EBGAN - Energy-based Generative Adversarial Network
* AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
« AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery * FF-GAN - Towards Large-Pose Face Frontalization in the Wild
« ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs GAWWN .~ Learning What and Where'ta Draw
- . ’ GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
* b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks . § i ¢ : :
. . . e Geometric GAN - Geometric GAN
* Bayesian GAN - Deep and Hierarchical Implicit Models

GOGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
« BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

IAN - Neural Photo Editing with Introspective Adversarial Networks

+ BiGAN - Adversarial Feature Learning

* BS-GAN - Boundary-Seeking Generative Adversarial Networks iGAN - Generative Visual Manipulation on the Natural Image Manifold

« CGAN - Conditional Generative Adversarial Nets IcGAN - Invertible Conditional GANs for image editing

3 " & . . . ’ . = ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
* CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters 9 < 9

with Generative Adversarial Networks

Improved GAN - Improved Techniques for Training GANs

> " . ? e . " InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
* CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
» CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

» CoGAN - Coupled Generative Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo
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See also: https://github.com/soumith/ganhacks for tips

“The GAN ZOO” and tricks for trainings GANs

Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation

GAN - Generative Adversarial Networks

C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural netwarks with adversarial training

AD-GAN - | amening = Prehabillstic [ siam Spnes af Objast Shepes via 31 Gererstive-Adversarinl Morellng = CS-GAN - Improving Neural Machine Translation with Conditienal Sequence Generative Adversarial Nets

CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

acGAN - Face Aging With Conditional Generative Adversarial Networks

AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

AdaGAN - AdaGAN: Boosting Generative Models

AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

CycleGAN - Unpaired Image-to-lmage Translation using Cycle-Consistent Adversarial Networks

DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks

AffGAN - Amortised MAP Inference for Image Super-resolution

DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition

AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

ALl - Adversarially Learned Inference

EBGAN - Energy-based Generative Adversarial Network

AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery * FF-GAN - Towards Large-Pose Face Frontalization in the Wild
« ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs GAWWN .~ Learning What and Where'ta Draw
- . ’ GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
* b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks . § i ¢ : :
. . . e Geometric GAN - Geometric GAN
* Bayesian GAN - Deep and Hierarchical Implicit Models

GOGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
« BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

IAN - Neural Photo Editing with Introspective Adversarial Networks

+ BiGAN - Adversarial Feature Learning

* BS-GAN - Boundary-Seeking Generative Adversarial Networks iGAN - Generative Visual Manipulation on the Natural Image Manifold

« CGAN - Conditional Generative Adversarial Nets IcGAN - Invertible Conditional GANs for image editing

3 " & . . . ’ . = ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
* CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters 9 < 9

with Generative Adversarial Networks

Improved GAN - Improved Techniques for Training GANs

> " . ? e . " InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
* CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
» CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

» CoGAN - Coupled Generative Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo
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https://github.com/soumith/ganhacks

GANSs

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player

game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can't solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)

- Conditional GANs, GANSs for all kinds of applications

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017
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Recap

Generative Models

- PixelRNN and PixelCNN Explicit density model, optimizes exact likelihood, good
samples. But inefficient sequential generation.

- Variational Autoencoders (VAE) Optimize variational lower bound on likelihood. Useful
latent representation, inference queries. But current
sample quality not the best.

- Generative Adversarial Networks (GANS) Game-theoretic approach, best samples!
But can be tricky and unstable to train,
no inference queries.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017



Recap

Generative Models

- PixelRNN and PixelCNN Explicit density model, optimizes exact likelihood, good
samples. But inefficient sequential generation.

Variational Autoencoders (VAE) Optimize variational lower bound on likelihood. Useful

latent representation, inference queries. But current
sample quality not the best.

- Generative Adversarial Networks (GANS) Game-theoretic approach, best samples!

But can be tricky and unstable to train,
Also recent work in combinations of no inference queries.

these types of models! E.g. Adversarial
Autoencoders (Makhanzi 2015) and
PixelVAE (Gulrajani 2016)
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Recap

Generative Models

- PixelRNN and PixelCNN Explicit density model, optimizes exact likelihood, good
samples. But inefficient sequential generation.

- Variational Autoencoders (VAE) Optimize variational lower bound on likelihood. Useful
latent representation, inference queries. But current
sample quality not the best.

- Generative Adversarial Networks (GANS) Game-theoretic approach, best samples!
But can be tricky and unstable to train,
no inference queries.

Next time: Reinforcement Learning
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