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Deep Learning is Changing Our Lives
Self-Driving	Car

Smart	Robots

Machine	Translation

AlphaGo3

This image is licensed under CC-BY 2.0

This image is in the public domain

This image is in the public domain

This image is licensed under CC-BY 2.0
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Important Property of Neural Networks

Results get better with 

more data +
bigger models +

more computation

(Better algorithms, new insights and 
improved techniques always help, too!)

2012
AlexNet

2015
ResNet

152 layers
22.6 GFLOP
~3.5% error

8 layers
1.4 GFLOP
~16% Error

16X
Model

2014
Deep Speech 1

2015
Deep Speech 2

80 GFLOP
7,000 hrs of Data

~8% Error

10X
Training Ops

465 GFLOP
12,000 hrs of Data

~5% Error

Dally, NIPS’2016 workshop on Efficient Methods for Deep Neural Networks

Models are Getting Larger
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Microsoft Baidu



Hard to distribute large models through over-the-air update
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The first Challenge: Model Size

This image is licensed under CC-BY 2.0App icon is in the public domain 
Phone image is licensed under CC-BY 2.0

https://commons.wikimedia.org/wiki/File:Google%27s_Lexus_RX_450h_Self-Driving_Car.jpg
https://creativecommons.org/licenses/by/2.0/deed.en
https://commons.wikimedia.org/wiki/File:App.jpg
https://www.flickr.com/photos/janitors/15707807341
https://creativecommons.org/licenses/by/2.0/deed.en


The Second Challenge: Speed
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2.5 days 
5 days 
1 week 
1.5 weeks

10.76% 
7.02% 
6.21% 
6.16%

Error rate Training time

ResNet18: 
ResNet50: 
ResNet101: 
ResNet152:

Such long training time limits ML researcher’s productivity

Training time benchmarked with fb.resnet.torch using four M40 GPUs



AlphaGo: 1920 CPUs and 280 GPUs, 
                  $3000 electric bill per game 

The Third Challenge: Energy Efficiency
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on mobile: drains battery
on data-center: increases TCO

This image is in the public domain

Phone image is licensed under CC-BY 2.0 This image is licensed under CC-BY 2.0

This image is in the public domain

http://www.publicdomainpictures.net/view-image.php?image=20852
https://www.flickr.com/photos/janitors/15707807341
https://creativecommons.org/licenses/by/2.0/deed.en
https://www.flickr.com/photos/scobleizer/4870003098
https://creativecommons.org/licenses/by/2.0/deed.en
https://en.wikipedia.org/wiki/File:Alphago_logo_Reversed.svg


larger model => more memory reference => more energy

Where is the Energy Consumed?
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1 = 1000

Operation Energy [pJ] Relative Cost

32 bit int ADD 0.1 1
32 bit float ADD 0.9 9
32 bit Register File 1 10
32 bit int MULT 3.1 31
32 bit float MULT 3.7 37
32 bit SRAM Cache 5 50
32 bit DRAM Memory 640 6400

1 10 100 1000 10000

Relative Energy Cost 

Figure 1: Energy table for 45nm CMOS process [7]. Memory access is 3 orders of magnitude more
energy expensive than simple arithmetic.

To achieve this goal, we present a method to prune network connections in a manner that preserves the
original accuracy. After an initial training phase, we remove all connections whose weight is lower
than a threshold. This pruning converts a dense, fully-connected layer to a sparse layer. This first
phase learns the topology of the networks — learning which connections are important and removing
the unimportant connections. We then retrain the sparse network so the remaining connections can
compensate for the connections that have been removed. The phases of pruning and retraining may
be repeated iteratively to further reduce network complexity. In effect, this training process learns
the network connectivity in addition to the weights - much as in the mammalian brain [8][9], where
synapses are created in the first few months of a child’s development, followed by gradual pruning of
little-used connections, falling to typical adult values.

2 Related Work

Neural networks are typically over-parameterized, and there is significant redundancy for deep learn-
ing models [10]. This results in a waste of both computation and memory. There have been various
proposals to remove the redundancy: Vanhoucke et al. [11] explored a fixed-point implementation
with 8-bit integer (vs 32-bit floating point) activations. Denton et al. [12] exploited the linear
structure of the neural network by finding an appropriate low-rank approximation of the parameters
and keeping the accuracy within 1% of the original model. With similar accuracy loss, Gong et al.
[13] compressed deep convnets using vector quantization. These approximation and quantization
techniques are orthogonal to network pruning, and they can be used together to obtain further gains
[14].

There have been other attempts to reduce the number of parameters of neural networks by replacing
the fully connected layer with global average pooling. The Network in Network architecture [15]
and GoogLenet [16] achieves state-of-the-art results on several benchmarks by adopting this idea.
However, transfer learning, i.e. reusing features learned on the ImageNet dataset and applying them
to new tasks by only fine-tuning the fully connected layers, is more difficult with this approach. This
problem is noted by Szegedy et al. [16] and motivates them to add a linear layer on the top of their
networks to enable transfer learning.

Network pruning has been used both to reduce network complexity and to reduce over-fitting. An
early approach to pruning was biased weight decay [17]. Optimal Brain Damage [18] and Optimal
Brain Surgeon [19] prune networks to reduce the number of connections based on the Hessian of the
loss function and suggest that such pruning is more accurate than magnitude-based pruning such as
weight decay. However, second order derivative needs additional computation.

HashedNets [20] is a recent technique to reduce model sizes by using a hash function to randomly
group connection weights into hash buckets, so that all connections within the same hash bucket
share a single parameter value. This technique may benefit from pruning. As pointed out in Shi et al.
[21] and Weinberger et al. [22], sparsity will minimize hash collision making feature hashing even
more effective. HashedNets may be used together with pruning to give even better parameter savings.
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Relative Energy Cost
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than a threshold. This pruning converts a dense, fully-connected layer to a sparse layer. This first
phase learns the topology of the networks — learning which connections are important and removing
the unimportant connections. We then retrain the sparse network so the remaining connections can
compensate for the connections that have been removed. The phases of pruning and retraining may
be repeated iteratively to further reduce network complexity. In effect, this training process learns
the network connectivity in addition to the weights - much as in the mammalian brain [8][9], where
synapses are created in the first few months of a child’s development, followed by gradual pruning of
little-used connections, falling to typical adult values.

2 Related Work

Neural networks are typically over-parameterized, and there is significant redundancy for deep learn-
ing models [10]. This results in a waste of both computation and memory. There have been various
proposals to remove the redundancy: Vanhoucke et al. [11] explored a fixed-point implementation
with 8-bit integer (vs 32-bit floating point) activations. Denton et al. [12] exploited the linear
structure of the neural network by finding an appropriate low-rank approximation of the parameters
and keeping the accuracy within 1% of the original model. With similar accuracy loss, Gong et al.
[13] compressed deep convnets using vector quantization. These approximation and quantization
techniques are orthogonal to network pruning, and they can be used together to obtain further gains
[14].

There have been other attempts to reduce the number of parameters of neural networks by replacing
the fully connected layer with global average pooling. The Network in Network architecture [15]
and GoogLenet [16] achieves state-of-the-art results on several benchmarks by adopting this idea.
However, transfer learning, i.e. reusing features learned on the ImageNet dataset and applying them
to new tasks by only fine-tuning the fully connected layers, is more difficult with this approach. This
problem is noted by Szegedy et al. [16] and motivates them to add a linear layer on the top of their
networks to enable transfer learning.

Network pruning has been used both to reduce network complexity and to reduce over-fitting. An
early approach to pruning was biased weight decay [17]. Optimal Brain Damage [18] and Optimal
Brain Surgeon [19] prune networks to reduce the number of connections based on the Hessian of the
loss function and suggest that such pruning is more accurate than magnitude-based pruning such as
weight decay. However, second order derivative needs additional computation.

HashedNets [20] is a recent technique to reduce model sizes by using a hash function to randomly
group connection weights into hash buckets, so that all connections within the same hash bucket
share a single parameter value. This technique may benefit from pruning. As pointed out in Shi et al.
[21] and Weinberger et al. [22], sparsity will minimize hash collision making feature hashing even
more effective. HashedNets may be used together with pruning to give even better parameter savings.
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larger model => more memory reference => more energy

Where is the Energy Consumed?

This image is in the public domain

https://pixabay.com/en/ram-technology-pc-computer-683250/
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phase learns the topology of the networks — learning which connections are important and removing
the unimportant connections. We then retrain the sparse network so the remaining connections can
compensate for the connections that have been removed. The phases of pruning and retraining may
be repeated iteratively to further reduce network complexity. In effect, this training process learns
the network connectivity in addition to the weights - much as in the mammalian brain [8][9], where
synapses are created in the first few months of a child’s development, followed by gradual pruning of
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and keeping the accuracy within 1% of the original model. With similar accuracy loss, Gong et al.
[13] compressed deep convnets using vector quantization. These approximation and quantization
techniques are orthogonal to network pruning, and they can be used together to obtain further gains
[14].

There have been other attempts to reduce the number of parameters of neural networks by replacing
the fully connected layer with global average pooling. The Network in Network architecture [15]
and GoogLenet [16] achieves state-of-the-art results on several benchmarks by adopting this idea.
However, transfer learning, i.e. reusing features learned on the ImageNet dataset and applying them
to new tasks by only fine-tuning the fully connected layers, is more difficult with this approach. This
problem is noted by Szegedy et al. [16] and motivates them to add a linear layer on the top of their
networks to enable transfer learning.

Network pruning has been used both to reduce network complexity and to reduce over-fitting. An
early approach to pruning was biased weight decay [17]. Optimal Brain Damage [18] and Optimal
Brain Surgeon [19] prune networks to reduce the number of connections based on the Hessian of the
loss function and suggest that such pruning is more accurate than magnitude-based pruning such as
weight decay. However, second order derivative needs additional computation.

HashedNets [20] is a recent technique to reduce model sizes by using a hash function to randomly
group connection weights into hash buckets, so that all connections within the same hash bucket
share a single parameter value. This technique may benefit from pruning. As pointed out in Shi et al.
[21] and Weinberger et al. [22], sparsity will minimize hash collision making feature hashing even
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how to make deep learning more efficient?

larger model => more memory reference => more energy

Where is the Energy Consumed?

Battery images are in the public domain 
Image 1, image 2, image 2, image 4

https://pixabay.com/en/battery-full-battery-green-charger-1926843/
https://pixabay.com/en/medium-percent-battery-medium-green-1926832/
https://pixabay.com/en/medium-battery-battery-computer-1926831/
https://pixabay.com/en/low-battery-low-battery-charger-1926830/


Improve the Efficiency of Deep Learning 
by Algorithm-Hardware Co-Design 
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Application as a Black Box

Spec 2006
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Hardware

Algorithm
This image is in 

the public domain

This image is in 
the public domainCPU

https://pixabay.com/en/box-cardboard-closed-carton-moving-40302/
https://pixabay.com/en/processor-cpu-control-center-298666/


Open the Box before Hardware Design

Hardware

Algorithm
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Breaks the boundary between algorithm and hardware 

This image is in 
the public domain?PU

This image is in 
the public domain

?

https://pixabay.com/en/processor-cpu-control-center-298666/
http://www.publicdomainpictures.net/view-image.php?image=56626&picture=cardboard-box-white-background
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Inference Training

Algorithm

Hardware

Algorithms for
Efficient Training

Algorithms for  
Efficient Inference

Hardware for 
Efficient Inference 

Hardware for 
Efficient Training 

Agenda



Hardware

General Purpose* Specialized HW

CPU GPU

* including GPGPU

FPGA ASIC
latency 

 oriented
throughput 
 oriented

programmable  
logic

fixed  
logic

Hardware 101: the Family



Hardware 101: Number Representation

FP32 

FP16 

Int32 

Int16 

Int8

S E M
1 8 23

Range Accuracy 

10-38 - 1038 .000006% 

6x10-5 - 6x104 .05% 

0 – 2x109 ½ 

0 – 6x104 ½ 

0 – 127 ½ 

-                           -

S E M
1 5 10

M
31

S

S M

1

1 15

S M
1 7

Dally, High Performance Hardware for Machine Learning, NIPS’2015

(-1)  x (1.M) x 2s E

S I F

radix point

Fixed point



Operation: Energy (pJ)
8b Add 0.03

16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2

32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Area (µm2)

36
67
137
1360

4184
282
3495
1640
7700

N/A
N/A

Energy numbers are from Mark Horowitz “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014
Area numbers are from synthesized result using Design Compiler under TSMC 45nm tech node. FP units used DesignWare Library.

Hardware 101: Number Representation
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Algorithms for
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Algorithms for  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Hardware for 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Hardware for 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• 1. Pruning

• 2. Weight Sharing 

• 3. Quantization 

• 4. Low Rank Approximation

• 5. Binary / Ternary Net

• 6. Winograd Transformation

Part 1: Algorithms for Efficient Inference



Part 1: Algorithms for Efficient Inference

• 1. Pruning

• 2. Weight Sharing 

• 3. Quantization 

• 4. Low Rank Approximation

• 5. Binary / Ternary Net

• 6. Winograd Transformation



Pruning Neural Networks

[Han et al. NIPS’15]

Pruning Trained	Quantization Huffman	Coding 24

[Lecun et al. NIPS’89]



Pruning Neural Networks

Pruning Trained	Quantization Huffman	Coding

[Han et al. NIPS’15]

10x	less	connections
60 Million

6M

25

-0.01x +x+12



Pruning Trained	Quantization Huffman	Coding

[Han et al. NIPS’15]
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Pruning Neural Networks
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Pruning Trained	Quantization Huffman	Coding

[Han et al. NIPS’15]
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Pruning

Pruning Neural Networks
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Retrain to Recover Accuracy

Pruning Trained	Quantization Huffman	Coding

[Han et al. NIPS’15]
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Iteratively Retrain to Recover Accuracy

Pruning Trained	Quantization Huffman	Coding

[Han et al. NIPS’15]
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Pruning Pruning+Retraining Iterative Pruning and Retraining
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Pruning RNN and LSTM

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201651

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning

*Karpathy et al, "Deep Visual-
Semantic Alignments for Generating 
Image Descriptions”, 2015.  
Figure copyright IEEE, 2015; reproduced for educational purposes. 

Pruning Trained	Quantization Huffman	Coding

[Han et al. NIPS’15]
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• Original: a basketball player in a white uniform is 
playing with a ball

• Pruned 90%: a basketball player in a white uniform is 
playing with a basketball

• Original : a brown dog is running through a grassy field
• Pruned 90%: a brown dog is running through a grassy 

area

• Original : a soccer player in red is running in the field
• Pruned 95%: a man in a red shirt and black and white 

black shirt is running through a field

• Original : a man is riding a surfboard on a wave
• Pruned 90%: a man in a wetsuit is riding a wave on a 

beach

Pruning Trained	Quantization Huffman	Coding

95%

90%

90%

90%

[Han et al. NIPS’15]

Pruning RNN and LSTM

31



Pruning Happens in Human Brain

Christopher A Walsh. Peter Huttenlocher (1931-2013). Nature, 502(7470):172–172, 2013.  

Pruning Trained	Quantization Huffman	Coding

50 Trillion
Synapses  

500 Trillion
Synapses  

1000 Trillion
Synapses  

Newborn 1 year old Adolescent 

32

This image is in the public domain This image is in the public domain This image is in the public domain

https://pixabay.com/en/newborn-baby-cute-child-portrait-220142/
https://pixabay.com/en/baby-one-year-todler-child-1708992/
https://pixabay.com/en/teen-boy-young-happy-teenager-722647/


Before Pruning After Pruning

Pruning Changes Weight Distribution

Pruning Trained	Quantization Huffman	Coding

After Retraining

[Han et al. NIPS’15]

33

Conv5 layer of Alexnet. Representative for other network layers as well.



Part 1: Algorithms for Efficient Inference

• 1. Pruning

• 2. Weight Sharing 

• 3. Quantization 

• 4. Low Rank Approximation

• 5. Binary / Ternary Net

• 6. Winograd Transformation



Trained Quantization
[Han et al. ICLR’16]

Pruning Trained	Quantization Huffman	Coding

2.09,  2.12,  1.92,  1.87

2.0
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Published as a conference paper at ICLR 2016

Train Connectivity

Prune Connections

Train Weights

Cluster the Weights

Generate Code Book

Quantize the Weights 
with Code Book

Retrain Code Book

Pruning: less number of weights
Quantization: less bits per weight

original
   size

   9x-13x 
reduction

  27x-31x 
reduction

   same 
accuracy

   same 
accuracy

original 
network

Encode Weights

Encode Index

Huffman Encoding

  35x-49x 
reduction

   same 
accuracy

Figure 1: The three stage compression pipeline: pruning, quantization and Huffman coding. Pruning
reduces the number of weights by 10⇥, while quantization further improves the compression rate:
between 27⇥ and 31⇥. Huffman coding gives more compression: between 35⇥ and 49⇥. The
compression rate already included the meta-data for sparse representation. The compression scheme
doesn’t incur any accuracy loss.

features such as better privacy, less network bandwidth and real time processing, the large storage
overhead prevents deep neural networks from being incorporated into mobile apps.

The second issue is energy consumption. Running large neural networks require a lot of memory
bandwidth to fetch the weights and a lot of computation to do dot products— which in turn consumes
considerable energy. Mobile devices are battery constrained, making power hungry applications such
as deep neural networks hard to deploy.

Energy consumption is dominated by memory access. Under 45nm CMOS technology, a 32 bit
floating point add consumes 0.9pJ, a 32bit SRAM cache access takes 5pJ, while a 32bit DRAM
memory access takes 640pJ, which is 3 orders of magnitude of an add operation. Large networks
do not fit in on-chip storage and hence require the more costly DRAM accesses. Running a 1 billion
connection neural network, for example, at 20fps would require (20Hz)(1G)(640pJ) = 12.8W just
for DRAM access - well beyond the power envelope of a typical mobile device.

Our goal is to reduce the storage and energy required to run inference on such large networks so they
can be deployed on mobile devices. To achieve this goal, we present “deep compression”: a three-
stage pipeline (Figure 1) to reduce the storage required by neural network in a manner that preserves
the original accuracy. First, we prune the networking by removing the redundant connections, keeping
only the most informative connections. Next, the weights are quantized so that multiple connections
share the same weight, thus only the codebook (effective weights) and the indices need to be stored.
Finally, we apply Huffman coding to take advantage of the biased distribution of effective weights.

Our main insight is that, pruning and trained quantization are able to compress the network without
interfering each other, thus lead to surprisingly high compression rate. It makes the required storage
so small (a few megabytes) that all weights can be cached on chip instead of going to off-chip DRAM
which is energy consuming. Based on “deep compression”, the EIE hardware accelerator Han et al.
(2016) was later proposed that works on the compressed model, achieving significant speedup and
energy efficiency improvement.

2 NETWORK PRUNING

Network pruning has been widely studied to compress CNN models. In early work, network pruning
proved to be a valid way to reduce the network complexity and over-fitting (LeCun et al., 1989;
Hanson & Pratt, 1989; Hassibi et al., 1993; Ström, 1997). Recently Han et al. (2015) pruned state-
of-the-art CNN models with no loss of accuracy. We build on top of that approach. As shown on
the left side of Figure 1, we start by learning the connectivity via normal network training. Next, we
prune the small-weight connections: all connections with weights below a threshold are removed
from the network. Finally, we retrain the network to learn the final weights for the remaining sparse
connections. Pruning reduced the number of parameters by 9⇥ and 13⇥ for AlexNet and VGG-16
model.
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Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

-0.03 -0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

-0.01 0.02 0.04 0.01

-0.07 -0.02 0.01 -0.02

0.04

0.02

0.04

-0.03

-0.03 0.12 0.02 -0.07

0.03 0.01

0.02 -0.01 0.01 0.04

 -0.01 -0.02 -0.01 0.01

cluster

   weights 
(32 bit float) centroids

gradient

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

cluster index
  (2 bit uint)

2.00

1.50

0.00

-1.00

-0.02

-0.02

group by

fine-tuned 
centroids

reduce

1.96

1.48

-0.04

-0.97

1:

lr0:

2:

3:

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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Huffman Coding

• In-frequent weights: use more bits to represent
• Frequent weights: use less bits to represent
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Figure 1: The three stage compression pipeline: pruning, quantization and Huffman coding. Pruning
reduces the number of weights by 10⇥, while quantization further improves the compression rate:
between 27⇥ and 31⇥. Huffman coding gives more compression: between 35⇥ and 49⇥. The
compression rate already included the meta-data for sparse representation. The compression scheme
doesn’t incur any accuracy loss.

features such as better privacy, less network bandwidth and real time processing, the large storage
overhead prevents deep neural networks from being incorporated into mobile apps.

The second issue is energy consumption. Running large neural networks require a lot of memory
bandwidth to fetch the weights and a lot of computation to do dot products— which in turn consumes
considerable energy. Mobile devices are battery constrained, making power hungry applications such
as deep neural networks hard to deploy.

Energy consumption is dominated by memory access. Under 45nm CMOS technology, a 32 bit
floating point add consumes 0.9pJ, a 32bit SRAM cache access takes 5pJ, while a 32bit DRAM
memory access takes 640pJ, which is 3 orders of magnitude of an add operation. Large networks
do not fit in on-chip storage and hence require the more costly DRAM accesses. Running a 1 billion
connection neural network, for example, at 20fps would require (20Hz)(1G)(640pJ) = 12.8W just
for DRAM access - well beyond the power envelope of a typical mobile device.

Our goal is to reduce the storage and energy required to run inference on such large networks so they
can be deployed on mobile devices. To achieve this goal, we present “deep compression”: a three-
stage pipeline (Figure 1) to reduce the storage required by neural network in a manner that preserves
the original accuracy. First, we prune the networking by removing the redundant connections, keeping
only the most informative connections. Next, the weights are quantized so that multiple connections
share the same weight, thus only the codebook (effective weights) and the indices need to be stored.
Finally, we apply Huffman coding to take advantage of the biased distribution of effective weights.

Our main insight is that, pruning and trained quantization are able to compress the network without
interfering each other, thus lead to surprisingly high compression rate. It makes the required storage
so small (a few megabytes) that all weights can be cached on chip instead of going to off-chip DRAM
which is energy consuming. Based on “deep compression”, the EIE hardware accelerator Han et al.
(2016) was later proposed that works on the compressed model, achieving significant speedup and
energy efficiency improvement.

2 NETWORK PRUNING

Network pruning has been widely studied to compress CNN models. In early work, network pruning
proved to be a valid way to reduce the network complexity and over-fitting (LeCun et al., 1989;
Hanson & Pratt, 1989; Hassibi et al., 1993; Ström, 1997). Recently Han et al. (2015) pruned state-
of-the-art CNN models with no loss of accuracy. We build on top of that approach. As shown on
the left side of Figure 1, we start by learning the connectivity via normal network training. Next, we
prune the small-weight connections: all connections with weights below a threshold are removed
from the network. Finally, we retrain the network to learn the final weights for the remaining sparse
connections. Pruning reduced the number of parameters by 9⇥ and 13⇥ for AlexNet and VGG-16
model.
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Figure 1: The three stage compression pipeline: pruning, quantization and Huffman coding. Pruning
reduces the number of weights by 10⇥, while quantization further improves the compression rate:
between 27⇥ and 31⇥. Huffman coding gives more compression: between 35⇥ and 49⇥. The
compression rate already included the meta-data for sparse representation. The compression scheme
doesn’t incur any accuracy loss.

features such as better privacy, less network bandwidth and real time processing, the large storage
overhead prevents deep neural networks from being incorporated into mobile apps.

The second issue is energy consumption. Running large neural networks require a lot of memory
bandwidth to fetch the weights and a lot of computation to do dot products— which in turn consumes
considerable energy. Mobile devices are battery constrained, making power hungry applications such
as deep neural networks hard to deploy.

Energy consumption is dominated by memory access. Under 45nm CMOS technology, a 32 bit
floating point add consumes 0.9pJ, a 32bit SRAM cache access takes 5pJ, while a 32bit DRAM
memory access takes 640pJ, which is 3 orders of magnitude of an add operation. Large networks
do not fit in on-chip storage and hence require the more costly DRAM accesses. Running a 1 billion
connection neural network, for example, at 20fps would require (20Hz)(1G)(640pJ) = 12.8W just
for DRAM access - well beyond the power envelope of a typical mobile device.

Our goal is to reduce the storage and energy required to run inference on such large networks so they
can be deployed on mobile devices. To achieve this goal, we present “deep compression”: a three-
stage pipeline (Figure 1) to reduce the storage required by neural network in a manner that preserves
the original accuracy. First, we prune the networking by removing the redundant connections, keeping
only the most informative connections. Next, the weights are quantized so that multiple connections
share the same weight, thus only the codebook (effective weights) and the indices need to be stored.
Finally, we apply Huffman coding to take advantage of the biased distribution of effective weights.

Our main insight is that, pruning and trained quantization are able to compress the network without
interfering each other, thus lead to surprisingly high compression rate. It makes the required storage
so small (a few megabytes) that all weights can be cached on chip instead of going to off-chip DRAM
which is energy consuming. Based on “deep compression”, the EIE hardware accelerator Han et al.
(2016) was later proposed that works on the compressed model, achieving significant speedup and
energy efficiency improvement.

2 NETWORK PRUNING

Network pruning has been widely studied to compress CNN models. In early work, network pruning
proved to be a valid way to reduce the network complexity and over-fitting (LeCun et al., 1989;
Hanson & Pratt, 1989; Hassibi et al., 1993; Ström, 1997). Recently Han et al. (2015) pruned state-
of-the-art CNN models with no loss of accuracy. We build on top of that approach. As shown on
the left side of Figure 1, we start by learning the connectivity via normal network training. Next, we
prune the small-weight connections: all connections with weights below a threshold are removed
from the network. Finally, we retrain the network to learn the final weights for the remaining sparse
connections. Pruning reduced the number of parameters by 9⇥ and 13⇥ for AlexNet and VGG-16
model.
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Summary of Deep Compression

Pruning Trained	Quantization Huffman	Coding

[Han et al. ICLR’16]
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Results: Compression Ratio

Network Original 
Size

Compressed 
Size

Compression  
Ratio

Original 
Accuracy

Compressed 
Accuracy

LeNet-300 1070KB 27KB 40x 98.36% 98.42%

LeNet-5 1720KB 44KB 39x 99.20% 99.26%

AlexNet 240MB 6.9MB 35x 80.27% 80.30%

VGGNet 550MB 11.3MB 49x 88.68% 89.09%

GoogleNet 28MB 2.8MB 10x 88.90% 88.92%

ResNet-18 44.6MB 4.0MB 11x 89.24% 89.28%

Compression Acceleration Regularization

Can we make compact models to begin with?

[Han et al. ICLR’16]
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SqueezeNet

Iandola et al,  “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size”, arXiv 2016

54Compression Acceleration Regularization
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Compressing SqueezeNet

Network Approach Size Ratio Top-1 
Accuracy

Top-5 
Accuracy

AlexNet - 240MB 1x 57.2% 80.3%

AlexNet SVD 48MB 5x 56.0% 79.4%

AlexNet Deep 
Compression 6.9MB 35x 57.2% 80.3%

SqueezeNet - 4.8MB 50x 57.5% 80.3%

SqueezeNet Deep 
Compression 0.47MB 510x 57.5% 80.3%

55Compression Acceleration Regularization

Iandola et al,  “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size”, arXiv 2016



Average

Results: Speedup

Compression Acceleration Regularization 56

CPU GPU mGPU

0.6x



Results: Energy Efficiency
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Deep Compression Applied to Industry
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• 1. Pruning

• 2. Weight Sharing 

• 3. Quantization 

• 4. Low Rank Approximation

• 5. Binary / Ternary Net

• 6. Winograd Transformation



Quantizing the Weight and Activation

• Train with float
• Quantizing the weight and 

activation:
• Gather the statistics for 

weight and activation
• Choose proper radix point 

position
• Fine-tune in float format
• Convert to fixed-point format

Qiu et al.  Going Deeper with Embedded FPGA Platform for Convolutional Neural Network, FPGA’16
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Low Rank Approximation for Conv

Zhang et al Efficient and Accurate Approximations of Nonlinear Convolutional Networks CVPR’15



Zhang et al Efficient and Accurate Approximations of Nonlinear Convolutional Networks CVPR’15

Low Rank Approximation for Conv



Novikov et al Tensorizing Neural Networks, NIPS’15

Low Rank Approximation for FC
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Binary / Ternary Net: Motivation
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Figure 2: Weight distribution of the original GoogLeNet (a), pruned GoogLeNet (b), after retraining
the sparsity-constrained GoogLeNet (c), ignoring the sparisty constraint and recovering the zero
weights (d), and after retraining the dense network (e).

Initial Dense Training: The first D step learns the connection weights and importance via normal
network training on the dense network. Unlike conventional training, however, the goal of this D step
is not only to learn the values of the weights; we are also learning which connections are important.
We use the simple heuristic to quantify the importance of the weights using their absolute value.

Sparse Training: The S step prunes the low-weight connections and trains a sparse network. We
applied the same sparsity to all the layers, thus there’s a single hyper parameter: the sparsity, the
percentage of weights that are pruned to 0. For each layer W with N parameters, we sorted the
parameters, picked the k-th largest one � = S

k

as the threshold where k = N ⇤ (1� sparsity), and
generated a binary mask to remove all the weights smaller than �. Details are shown in Algorithm 1 .

The reason behind removing small weight is partially due to the Taylor expansion of the loss function,
shown in Equation (1)(2). We want to minimize the increase in Loss when conducting hard threshold
in pruning, so we need to minimize the first and second terms in equation 2. Since we are zeroing
out parameters, �W

i

is actually W

i

� 0 = W

i

. At local minimum point with @Loss/@W

i

⇡ 0

and @

2
Loss

@W

2
i

> 0, only the second order term matters. Since second order gradient @2
Loss/@W

2
i

is
expensive to calculate and W

i

has a power of 2, we use |W
i

| as the metric of pruning. Smaller |W
i

|
means smaller increase to the loss function.

Loss = f(x,W1,W2,W3...) (1)

�Loss =
@Loss

@W

i

�W

i

+
1

2

@

2
Loss

@W

2
i

�W

i

2 + ... (2)

Retraining while enforcing the binary mask in each iteration, we converted a dense network into
a sparse network which has a known sparsity support and can fully recover or even increase the
original accuracy of initial dense model under the sparsity constraint. The sparsity can be tuned using
validation and we found values between 25% and 50% generally work well in our experiments.

Final Dense Training: The final D step recovers the pruned connections, making the network dense
again. These previously-pruned connections are initialized to zero and the entire network is retrained
with 1/10 the original learning rate (since the sparse network is already at a good local minima).
Hyper parameters like dropout ratios and weight decay remained unchanged. By restoring the pruned
connections, the final D step increases the model capacity of the network and make it possible to
arrive at a better local minima compared with the sparse model from S step.

To visualize the DSD training flow, we plotted the progression of weight distribution in Figure 2.
The figure is plotted using GoogLeNet inception_5b3x3 layer, and we found that this progression of
weight distribution is very representative for VGGNet and ResNet as well. The original distribution
of weight is centered on zero with tails dropping off quickly. Pruning is based on absolute value so
after pruning the large center region is truncated away. The network parameters un-truncated adjust
themselves during the retraining phase, so in (c) the boundary becomes soft and forms a bimodal
distribution. In (d), at the beginning of the re-dense training step, all the pruned weights come back
again and are reinitialized to zero. Finally, in (e), the previously-pruned weights are retrained together
with the survived weights. In this step, we kept the same learning hyper-parameters (weight decay,
learning rate, etc.) for reborn weights and old weights. Comparing Figure (d) and (e), the old weights’
distribution almost remained the same, while the new weights become more spread around zero. The
overall mean absolute value of the weight distribution is much smaller.
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Trained Ternary Quantization
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Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR’17



Weight Evolution during Training

Under review as a conference paper at ICLR 2017

Equation 2. We use scaled gradients for 32-bit weights:

@L

@w̃l
=

8
>>>>>>><

>>>>>>>:

W p
l ⇥ @L

@wt
l

: w̃l > �l

1⇥ @L

@wt
l

: |w̃l|  �l

Wn
l ⇥ @L

@wt
l

: w̃l < ��l

(8)

Note we use scalar number 1 as factor of gradients of zero weights. The overall quantization process
is illustrated as Figure 1. The evolution of the ternary weights from different layers during training is
shown in Figure 2. We observe that as training proceeds, different layers behave differently: for the
first quantized conv layer, the absolute values of W p

l and Wn
l get smaller and sparsity gets lower,

while for the last conv layer and fully connected layer, the absolute values of W p
l and Wn

l get larger
and sparsity gets higher.

We learn the ternary assignments (index to the codebook) by updating the latent full-resolution
weights during training. This may cause the assignments to change between iterations. Note that
the thresholds are not constants as the maximal absolute values change over time. Once an updated
weight crosses the threshold, the ternary assignment is changed.

The benefits of using trained quantization factors are: i) The asymmetry of W p
l 6= Wn

l enables
neural networks to have more model capacity. ii) Quantized weights play the role of "learning rate
multipliers" during back propagation.

3.2 QUANTIZATION HEURISTIC

In previous work on ternary weight networks, Li & Liu (2016) proposed Ternary Weight Networks
(TWN) using ±�l as thresholds to reduce 32-bit weights to ternary values, where ±�l is defined
as Equation 5. They optimized value of ±�l by minimizing expectation of L2 distance between
full precision weights and ternary weights. Instead of using a strictly optimized threshold, we adopt
different heuristics: 1) use the maximum absolute value of the weights as a reference to the layer’s
threshold and maintain a constant factor t for all layers:

�l = t⇥ max(|w̃|) (9)

and 2) maintain a constant sparsity r for all layers throughout training. By adjusting the hyper-
parameter r we are able to obtain ternary weight networks with various sparsities. We use the first
method and set t to 0.05 in experiments on CIFAR-10 and ImageNet dataset and use the second one
to explore a wider range of sparsities in section 5.1.1.
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Figure 2: Ternary weights value (above) and distribution (below) with iterations for different layers
of ResNet-20 on CIFAR-10.
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Visualization of the TTQ Kernels

Pruning Trained Quantization Huffman Coding

Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR’17



Error Rate on ImageNet

Pruning Trained Quantization Huffman Coding

Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR’17
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3x3 DIRECT Convolutions
Compute Bound

8 7 6

5 4 3

2 1 0

Filter

0 1 2

3 4 5

6 7 8

Image Tensor

6 2 8 07 1

0 8 1 7 2 6

4 4 5 33 5

9xC FMAs/Output: Math Intensive

4 6 4 84 7

4 0 4 1 4 2

4 4 4 54 3

9xK FMAs/Input: Good Data Reuse

∑

✽

Direct convolution: we need 9xCx4 = 36xC FMAs for 4 outputs

Julien Demouth, Convolution OPTIMIZATION: Winograd, NVIDIA
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3x3 WINOGRAD Convolutions
Transform Data to Reduce Math Intensity

4x4 Tile

Point-wise 
multiplication Output TransformFilter

Data Transform

Filter Transform

∑ over C

Direct convolution: we need 9xCx4 = 36xC FMAs for 4 outputs 
Winograd convolution: we need 16xC FMAs for 4 outputs: 2.25x fewer FMAs

Julien Demouth, Convolution OPTIMIZATION: Winograd, NVIDIA
See A. Lavin & S. Gray, ”Fast Algorithms for Convolutional Neural Networks
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Speedup of Winograd Convolution
VGG16, Batch Size 1 – Relative Performance

Measured on Maxwell TITAN X

0.00

0.50

1.00

1.50

2.00

conv 1.1 conv 1.2 conv 2.1 conv 2.2 conv 3.1 conv 3.2 conv 4.1 conv 4.2 conv 5.0

cuDNN 3 cuDNN 5

Julien Demouth, Convolution OPTIMIZATION: Winograd, NVIDIA
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Compression Acceleration Regularization

Hardware for Efficient Inference

TPU
Google

8-bit Integer

Eyeriss 
MIT

RS Dataflow

DaDiannao
CAS

eDRAM

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers p

j

and p
j+1 to read the non-zero elements (if

any) of this PE’s slice of column I
j

from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation b

x

= b
x

+ v ⇥ a
j

. Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M⇥V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the

SpMat

SpMat

Ptr_Even Ptr_OddArithm
Act_0 Act_1

Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and

EIE
Stanford

Compression/
Sparsity

77

“This unit is designed for dense 
matrices. Sparse architectural 
support was omitted for time-to-
deploy reasons. Sparsity will have 
high priority in future designs” 

a common goal: minimize memory access



Google TPU
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David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit



Google TPU
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● 4 MiB of on-chip Accumulator 
memory

● The Matrix Unit: 65,536 (256x256) 
8-bit multiply-accumulate units

● 700 MHz clock rate
● Peak: 92T operations/second 

○ 65,536 * 2 * 700M
● >25X as many MACs vs GPU
● >100X as many MACs vs CPU

● 24 MiB of on-chip Unified Buffer 
(activation memory)

● 3.5X as much on-chip memory 
vs GPU

● Two 2133MHz DDR3 DRAM 
channels

● 8 GiB of off-chip weight DRAM 
memory

David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit
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Google TPU

David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit



Inference Datacenter Workload
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Name LOC
Layers

Nonlinear 
function Weights

TPU Ops / 
Weight 

Byte

TPU 
Batch 
Size

% 
Deployed

FC Conv Vector Pool Total
MLP0 0.1k 5 5 ReLU 20M 200 200 61%
MLP1 1k 4 4 ReLU 5M 168 168

LSTM0 1k 24 34 58 sigmoid, 
tanh 52M 64 64

29%
LSTM1 1.5k 37 19 56 sigmoid, 

tanh 34M 96 96

CNN0 1k 16 16 ReLU 8M 2888 8 5%
CNN1 1k 4 72 13 89 ReLU 100M 1750 32

David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit



Roofline Model: Identify Performance Bottleneck
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Samuel Williams, Andrew Waterman, and David Patterson. "Roofline: an insightful visual 
performance model for multicore architectures."Communications of the ACM 52.4 (2009): 65-76.

David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit



TPU Roofline

83

David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit



Log Rooflines for CPU, GPU, TPU
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Star = TPU
Triangle = GPU
Circle = CPU

David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit



Linear Rooflines for CPU, GPU, TPU
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Star = TPU
Triangle = GPU
Circle = CPU

David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit



Why so far below Rooflines?
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Low latency requirement => Can’t batch more => low ops/byte

less memory footprint => need compress the model
How to Solve this?

Hardware that can infer on compressed model

Challenge:



[Han et al. ISCA’16]
EIE: the First DNN Accelerator for  

 Sparse, Compressed Model
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Sparse	Weight	
90%	static	sparsity

Weight	Sharing	
4-bit	weights

[Han et al. ISCA’16]
EIE: the First DNN Accelerator for  

 Sparse, Compressed Model

Sparse	Activation	
70%	dynamic	sparsity

10x	less	computation

5x	less	memory	footprint

3x	less	computation

8x	less	memory	footprint
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Virtual	Weight W0,0 W0,1 W4,2 W0,3 W4,3

Relative	Index 0 1 2 0 0

Column	Pointer 0 1 2 3

logically

physically

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016

EIE: Reduce Memory Access by Compression

~a
�

0 a1 0 a3
�

⇥ ~b
PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

b0
b1

�b2
b3

�b4
b5
b6

�b7

1

CCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBB@

b0
b1
0

b3
0

b5
b6
0

1

CCCCCCCCCCCCCA

1



Dataflow

~a
�

0 a1 0 a3
�

⇥ ~b
PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

b0
b1

�b2
b3

�b4
b5
b6

�b7

1

CCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBB@

b0
b1
0

b3
0

b5
b6
0

1

CCCCCCCCCCCCCA

1

Compression Acceleration Regularization

[Han et al. ISCA’16]

90

rule of thumb: 
0 * A = 0   W * 0 = 0
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EIE Architecture

EIE: Efficient Inference Engine on Compressed Deep Neural Network

Song Han⇤ Xingyu Liu⇤ Huizi Mao⇤ Jing Pu⇤ Ardavan Pedram⇤

Mark A. Horowitz⇤ William J. Dally⇤†

⇤Stanford University, †NVIDIA
{songhan,xyl,huizi,jingpu,perdavan,horowitz,dally}@stanford.edu

Abstract—State-of-the-art deep neural networks (DNNs)
have hundreds of millions of connections and are both compu-
tationally and memory intensive, making them difficult to de-
ploy on embedded systems with limited hardware resources and
power budgets. While custom hardware helps the computation,
fetching weights from DRAM is two orders of magnitude more
expensive than ALU operations, and dominates the required
power.

Previously proposed ‘Deep Compression’ makes it possible
to fit large DNNs (AlexNet and VGGNet) fully in on-chip
SRAM. This compression is achieved by pruning the redundant
connections and having multiple connections share the same
weight. We propose an energy efficient inference engine (EIE)
that performs inference on this compressed network model and
accelerates the resulting sparse matrix-vector multiplication
with weight sharing. Going from DRAM to SRAM gives EIE
120⇥ energy saving; Exploiting sparsity saves 10⇥; Weight
sharing gives 8⇥; Skipping zero activations from ReLU saves
another 3⇥. Evaluated on nine DNN benchmarks, EIE is
189⇥ and 13⇥ faster when compared to CPU and GPU
implementations of the same DNN without compression. EIE
has a processing power of 102 GOPS/s working directly on
a compressed network, corresponding to 3 TOPS/s on an
uncompressed network, and processes FC layers of AlexNet at
1.88⇥104 frames/sec with a power dissipation of only 600mW.
It is 24,000⇥ and 3,400⇥ more energy efficient than a CPU
and GPU respectively. Compared with DaDianNao, EIE has
2.9⇥, 19⇥ and 3⇥ better throughput, energy efficiency and
area efficiency.

Keywords-Deep Learning; Model Compression; Hardware
Acceleration; Algorithm-Hardware co-Design; ASIC;

I. INTRODUCTION

Neural networks have become ubiquitous in applications
including computer vision [1]–[3], speech recognition [4],
and natural language processing [4]. In 1998, Lecun et
al. classified handwritten digits with less than 1M parame-
ters [5], while in 2012, Krizhevsky et al. won the ImageNet
competition with 60M parameters [1]. Deepface classified
human faces with 120M parameters [6]. Neural Talk [7]
automatically converts image to natural language with 130M
CNN parameters and 100M RNN parameters. Coates et
al. scaled up a network to 10 billion parameters on HPC
systems [8].

Large DNN models are very powerful but consume large
amounts of energy because the model must be stored in
external DRAM, and fetched every time for each image,

4-bit	  
Relative	Index

4-bit	  
Virtual	weight

16-bit		
Real	weight

16-bit	  
Absolute	Index

Encoded	Weight	
Relative	Index	
Sparse	Format	

ALU

Mem

Compressed	
DNN	Model Weight		

Look-up

Index		
Accum

Prediction

Input	
Image

Result

Figure 1. Efficient inference engine that works on the compressed deep
neural network model for machine learning applications.

word, or speech sample. For embedded mobile applications,
these resource demands become prohibitive. Table I shows
the energy cost of basic arithmetic and memory operations
in a 45nm CMOS process [9]. It shows that the total energy
is dominated by the required memory access if there is
no data reuse. The energy cost per fetch ranges from 5pJ
for 32b coefficients in on-chip SRAM to 640pJ for 32b
coefficients in off-chip LPDDR2 DRAM. Large networks do
not fit in on-chip storage and hence require the more costly
DRAM accesses. Running a 1G connection neural network,
for example, at 20Hz would require (20Hz)(1G)(640pJ) =
12.8W just for DRAM accesses, which is well beyond the
power envelope of a typical mobile device.

Previous work has used specialized hardware to accelerate
DNNs [10]–[12]. However, these efforts focus on acceler-
ating dense, uncompressed models - limiting their utility
to small models or to cases where the high energy cost
of external DRAM access can be tolerated. Without model
compression, it is only possible to fit very small neural
networks, such as Lenet-5, in on-chip SRAM [12].

Efficient implementation of convolutional layers in CNN
has been intensively studied, as its data reuse and manipu-
lation is quite suitable for customized hardware [10]–[15].
However, it has been found that fully-connected (FC) layers,
widely used in RNN and LSTMs, are bandwidth limited
on large networks [14]. Unlike CONV layers, there is no
parameter reuse in FC layers. Data batching has become
an efficient solution when training networks on CPUs or
GPUs, however, it is unsuitable for real-time applications
with latency requirements.

Network compression via pruning and weight sharing
[16] makes it possible to fit modern networks such as
AlexNet (60M parameters, 240MB), and VGG-16 (130M
parameters, 520MB) in on-chip SRAM. Processing these
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Micro Architecture for each PE
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Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks.
We compare the performance on two sets of models:

uncompressed DNN model and the compressed DNN model.

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

The uncompressed DNN model is obtained from Caffe
model zoo [28] and NeuralTalk model zoo [7]; The com-
pressed DNN model is produced as described in [16], [23].
The benchmark networks have 9 layers in total obtained
from AlexNet, VGGNet, and NeuralTalk. We use the Image-
Net dataset [29] and the Caffe [28] deep learning framework
as golden model to verify the correctness of the hardware
design.

VI. EXPERIMENTAL RESULT

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102

Speedup on EIE
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%

regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks. We compare the performance on two sets
of models: uncompressed DNN model and the compressed
DNN model. The uncompressed DNN model is obtained
from Caffe model zoo [28] and NeuralTalk model zoo [7];
The compressed DNN model is produced as described

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

in [16], [23]. The benchmark networks have 9 layers in total
obtained from AlexNet, VGGNet, and NeuralTalk. We use
the Image-Net dataset [29] and the Caffe [28] deep learning
framework as golden model to verify the correctness of the
hardware design.

VI. EXPERIMENTAL RESULTS

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
GOP/s. Considering 10⇥ weight sparsity and 3⇥ activation
sparsity, this requires a dense DNN accelerator 3TOP/s to
have equivalent application throughput.

CPU GPU mGPU EIE

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers p

j

and p
j+1 to read the non-zero elements (if

any) of this PE’s slice of column I
j

from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation b

x

= b
x

+ v ⇥ a
j

. Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M⇥V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the
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Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
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Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks.
We compare the performance on two sets of models:

uncompressed DNN model and the compressed DNN model.

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

The uncompressed DNN model is obtained from Caffe
model zoo [28] and NeuralTalk model zoo [7]; The com-
pressed DNN model is produced as described in [16], [23].
The benchmark networks have 9 layers in total obtained
from AlexNet, VGGNet, and NeuralTalk. We use the Image-
Net dataset [29] and the Caffe [28] deep learning framework
as golden model to verify the correctness of the hardware
design.

VI. EXPERIMENTAL RESULT

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
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Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%

regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks. We compare the performance on two sets
of models: uncompressed DNN model and the compressed
DNN model. The uncompressed DNN model is obtained
from Caffe model zoo [28] and NeuralTalk model zoo [7];
The compressed DNN model is produced as described

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

in [16], [23]. The benchmark networks have 9 layers in total
obtained from AlexNet, VGGNet, and NeuralTalk. We use
the Image-Net dataset [29] and the Caffe [28] deep learning
framework as golden model to verify the correctness of the
hardware design.

VI. EXPERIMENTAL RESULTS

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
GOP/s. Considering 10⇥ weight sparsity and 3⇥ activation
sparsity, this requires a dense DNN accelerator 3TOP/s to
have equivalent application throughput.

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers p

j

and p
j+1 to read the non-zero elements (if

any) of this PE’s slice of column I
j

from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation b

x

= b
x

+ v ⇥ a
j

. Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M⇥V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the
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Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
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Part 3: Efficient Training — Algorithms

• 1. Parallelization 

• 2. Mixed Precision with FP16 and FP32

• 3. Model Distillation
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Moore’s law made CPUs 300x faster than in 1990 
But its over…

C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011



Data Parallel – Run multiple inputs in parallel

Dally, High Performance Hardware for Machine Learning, NIPS’2015



Data Parallel – Run multiple inputs in parallel

• Doesn’t affect latency for one input 
• Requires P-fold larger batch size 
• For training requires coordinated weight update

Dally, High Performance Hardware for Machine Learning, NIPS’2015



Parameter Update

Large Scale Distributed Deep Networks, Jeff Dean et al., 2013

Parameter Server

Model!
Workers

Data!
Shards

p’ = p + ∆p

∆p p’

One method to achieve scale is parallelization

Large scale distributed deep networks 
J Dean et al (2012)



Model Parallel  
Split up the Model – i.e. the network

Dally, High Performance Hardware for Machine Learning, NIPS’2015



Model-Parallel Convolution – by output region (x,y)

AijAijAxyk

Input maps 
Axyk

Kernels 
Multiple 3D 
Kuvkj

Bxyj

x

Output maps 
Bxyj

Bxyj Bxyj

Bxyj Bxyj

Bxyj

Bxyj Bxyj

Bxyj Bxyj

Dally, High Performance Hardware for Machine Learning, NIPS’2015

6D Loop 
Forall output map j 
 For each input map k 
  For each pixel x,y 
   For each kernel element u,v 
    Bxyj += A(x-u)(y-v)k x Kuvkj



Aij

Model-Parallel Convolution – By output map j 
(filter)

AijAijAxyk

Input maps 
Axyk

Kernels 
Multiple 3D 
Kuvkj

AijAijBxyj

x

Output maps 
Bxyj

6D Loop 
Forall output map j 
 For each input map k 
  For each pixel x,y 
   For each kernel element u,v 
    Bxyj += A(x-u)(y-v)k x Kuvkj

Dally, High Performance Hardware for Machine Learning, NIPS’2015



Model Parallel Fully-Connected Layer (M x V)

Wij aj

weight matrix

Input activations

bi

O
utput activations

= x

Dally, High Performance Hardware for Machine Learning, NIPS’2015



Model Parallel Fully-Connected Layer (M x V)

Wij

aj

weight matrix

Input activations

bi

O
utput activations

= x
bi Wij

Dally, High Performance Hardware for Machine Learning, NIPS’2015



Hyper-Parameter Parallel 
Try many alternative networks in parallel

Dally, High Performance Hardware for Machine Learning, NIPS’2015



Summary of Parallelism
• Lots of parallelism in DNNs

• 16M independent multiplies in one FC layer
• Limited by overhead to exploit a fraction of this

• Data parallel
• Run multiple training examples in parallel
• Limited by batch size

• Model parallel
• Split model over multiple processors
• By layer
• Conv layers by map region
• Fully connected layers by output activation

• Easy to get 16-64 GPUs training one model in parallel
Dally, High Performance Hardware for Machine Learning, NIPS’2015
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Mixed Precision

https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/



Mixed Precision Training

5  
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VOLTA TRAINING METHOD 
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F16 BWD-A 
Actv Grad 
W Actv Grad F16 
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Master-W (F32) 
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Weight Update 
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Boris Ginsburg, Sergei Nikolaev, Paulius Micikevicius, “Training with mixed precision”, NVIDIA GTC 2017



Inception V1

12  12  

INCEPTION V1 

Boris Ginsburg, Sergei Nikolaev, Paulius Micikevicius, “Training with mixed precision”, NVIDIA GTC 2017



ResNet

13  13  

RESNET50 

Boris Ginsburg, Sergei Nikolaev, Paulius Micikevicius, “Training with mixed precision”, NVIDIA GTC 2017



AlexNet

30  

ALEXNET : COMPARISON OF RESULTS 

Nvcaffe-0.16, DGX-1, SGD with momentum, 100 epochs, batch=1024, no augmentation, 1 crop, 1 model  

Mode 
Top1 

accuracy, % 
Top5  

accuracy, % 

Fp32 58.62 81.25 

Mixed precision training 58.12 80.71 

FP16 training 54.89 78.12 

FP16 training, loss scale = 1000 57.76 80.76 

Boris Ginsburg, Sergei Nikolaev, Paulius Micikevicius, “Training with mixed precision”, NVIDIA GTC 2017

Inception V3

39  

INCEPTION-V3 RESULTS 

Scale loss function by 100x…  

Nvcaffe-0.16, DGX-1, SGD with momentum, 100 epochs, batch=512, no augmentation, 1 crop, 1 model  

Mode 

Top1 

accuracy, % 

Top5  

accuracy, % 

Fp32 73.85 91.44 

Mixed precision training 73.6 91.11 

FP16 training 71.36 90.84 

FP16 training, loss scale = 100 74.13 91.51 

FP16 training, loss scale = 100, 

FP16 master weight storage 
73.52 91.08 

41  

RESNET RESULTS 

No scale of loss function …  

Nvcaffe-0.16, DGX-1, SGD with momentum, 100 epochs, batch=512, no augmentation, 1 crop, 1 model  

Mode 
Top1 

accuracy, % 
Top5  

accuracy, % 

Fp32 71.75 90.52 

Mixed precision training 71.17 90.10 

FP16 training, loss scale = 1 71.17 90.33 

FP16 training, loss scale = 1, 
FP16 master weight storage 

70.53 90.14 

ResNet-50
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Model Distillation

Teacher	model	1	

(Googlenet)
Teacher	model	3	

(Resnet)

Teacher	model	2	

(Vggnet)

student	
model

student model has much smaller model size

Knowledge Knowledge Knowledge



Softened outputs reveal the dark knowledge

Hinton et al. Dark knowledge / Distilling the Knowledge in a Neural Network



Softened outputs reveal the dark knowledge

•Method: Divide score by a “temperature” to get a much softer 
distribution  

•Result: Start with a trained model that classifies 58.9% of the 
test frames correctly. The new model converges to 57.0% 
correct even when it is only trained on 3% of the data

Hinton et al. Dark knowledge / Distilling the Knowledge in a Neural Network
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DSD produces same model architecture but can find better optimization solution, 
arrives at better local minima, and achieves higher prediction accuracy across a wide 
range of deep neural networks on CNNs / RNNs / LSTMs.

Under review as a conference paper at ICLR 2017

Dense

Pruning

Sparsity Constraint

Sparse

Increase Model Capacity

 Re-Dense

Dense

Figure 1: Dense-Sparse-Dense Training Flow. The sparse training regularizes the model, and the final
dense training restores the pruned weights (red), increasing the model capacity without overfitting.

Algorithm 1: Workflow of DSD training

Initialization: W (0)
with W

(0) ⇠ N(0,⌃)
Output :W (t).
———————————————– Initial Dense Phase ———————————————–
while not converged do

W̃

(t) = W

(t�1) � ⌘

(t)rf(W (t�1);x(t�1));
t = t+ 1;

end
————————————————— Sparse Phase —————————————————-
// initialize the mask by sorting and keeping the Top-k weights.

S = sort(|W (t�1)|); � = S

ki ; Mask = 1(|W (t�1)| > �);
while not converged do

W̃

(t) = W

(t�1) � ⌘

(t)rf(W (t�1);x(t�1));
W̃

(t) = W

(t) ·Mask;
t = t+ 1;

end
————————————————- Final Dense Phase ————————————————–

while not converged do
W̃

(t) = W

(t�1) � ⌘

(t)rf(W (t�1);x(t�1));
t = t+ 1;

end
goto Sparse Phase for iterative DSD;

In contrast, simply reducing the model capacity would lead to the other extreme, causing a machine
learning system to miss the relevant relationships between features and target outputs, leading to
under-fitting and a high bias. Bias and variance are hard to optimize at the same time.

Model compression methods ( Han et al. (2016; 2015); Guo et al. (2016)) can reduce the model
size by 35x-49x or more without hurting prediction accuracy. Compression without losing accuracy
means there’s significant redundancy in the trained model. Since the compressed model can achieve
the same accuracy as the redundant uncompressed model, one hypothesis is that the model of the
original size should have the capacity to achieve higher accuracy. This shows the inadequacy of
current training methods since it fails to find the existing better solutions.

In order to find the expected higher accuracy, we propose a dense-sparse-dense training flow (DSD), a
novel training strategy that starts from a dense model from conventional training, then regularizes the
model with sparsity-constrained optimization, and finally increases the model capacity by restoring
and retraining the pruned weights. At testing time, the final model produced by DSD still has the
same architecture and dimension as the original dense model, and DSD training doesn’t incur any
inference overhead. We experimented DSD training on 7 mainstream CNN / RNN / LSTMs and
found consistent performance gains over its comparable counterpart for image classification, image
captioning and speech recognition.

2 DSD TRAINING FLOW

Our DSD training employs a three-step process: dense, sparse, dense. Each step is illustrated in
Figure 1 and Algorithm 1. The progression of weight distribution is plotted in Figure 2.

2

DSD: Dense Sparse Dense Training

Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017



DSD: Intuition

learn the trunk first then learn the leaves

Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017



Network Domain Dataset Type Baseline DSD Abs.  
Imp.

Rel.  
Imp.

GoogleNet Vision ImageNet CNN 31.1% 30.0% 1.1% 3.6%

VGG-16 Vision ImageNet CNN 31.5% 27.2% 4.3% 13.7%

ResNet-18 Vision ImageNet CNN 30.4% 29.3% 1.1% 3.7%

ResNet-50 Vision ImageNet CNN 24.0% 23.2% 0.9% 3.5%

DSD is General Purpose:  
Vision, Speech, Natural Language

[Han et al. ICLR 2017]

The beseline results of AlexNet, VGG16, GoogleNet, SqueezeNet are from Caffe Model Zoo. ResNet18, ResNet50 are from fb.resnet.torch.

Open Sourced DSD Model Zoo: https://songhan.github.io/DSD

Compression Acceleration Regularization 133
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NeuralTalk Caption Flickr-8K LSTM 16.8 18.5 1.7 10.1%
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GoogleNet Vision ImageNet CNN 31.1% 30.0% 1.1% 3.6%

VGG-16 Vision ImageNet CNN 31.5% 27.2% 4.3% 13.7%

ResNet-18 Vision ImageNet CNN 30.4% 29.3% 1.1% 3.7%

ResNet-50 Vision ImageNet CNN 24.0% 23.2% 0.9% 3.5%

NeuralTalk Caption Flickr-8K LSTM 16.8 18.5 1.7 10.1%

DeepSpeech Speech WSJ’93 RNN 33.6% 31.6% 2.0% 5.8%

DeepSpeech-2 Speech WSJ’93 RNN 14.5% 13.4% 1.1% 7.4%

DSD is General Purpose:  
Vision, Speech, Natural Language

[Han et al. ICLR 2017]

The beseline results of AlexNet, VGG16, GoogleNet, SqueezeNet are from Caffe Model Zoo. ResNet18, ResNet50 are from fb.resnet.torch.

Open Sourced DSD Model Zoo: https://songhan.github.io/DSD
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Baseline: a man and 
a woman are sitting 
on a bench. 

Sparse: a man is 
sitting on a bench 
with his hands in the 
air. 
DSD: a man is sitting 
on a bench with his 
arms folded.

Baseline:  two 
dogs are playing 
together in a field. 

Sparse:  two dogs 
are playing in a 
field. 

DSD: two dogs are 
p l a y i n g i n t h e 
grass.

Baseline:  a boy 
in a red shirt is 
climbing a rock 
wall. 
Sparse: a young 
girl is jumping off 
a tree. 

DSD: a young girl 
in a pink shirt is 
s w i n g i n g o n a 
swing.

Baseline:    a     
basketball player in 
a red uniform is 
playing with a ball. 
Sparse: a basketball 
player in a blue 
uniform is jumping 
over the goal. 
DSD: a basketball 
player in a white 
uniform is trying to 
make a shot.

Baseline:   a person in 
a red jacket is riding a  
b i k e t h r o u g h t h e   
woods. 
Sparse: a car drives 
through a mud puddle. 

DSD: a car drives 
through a forest.

�1

Figure 3: Visualization of DSD training improves the performance of image captioning.

the forest from the background. The good performance of DSD training generalizes beyond these
examples, more image caption results generated by DSD training is provided in the supplementary
material.

Table 7: DSD results on NeuralTalk
NeuralTalk BLEU-1 BLEU-2 BLEU-3 BLEU-4 Sparsity

Baseline 57.2 38.6 25.4 16.8 0%
Sparse 58.4 39.7 26.3 17.5 80%
DSD 59.2 40.7 27.4 18.5 0%

Improvement (abs) 2.0 2.1 2.0 1.7 -
Improvement (rel) 3.5% 5.4% 7.9% 10.1% -

3.7 DeepSpeech

We explore DSD training on speech data using the DeepSpeech network [16, 3]. DSD training
experiments are performed on the 5 layer model with 1 recurrent layer DeepSpeech network (DS1)
that contains approximately 8 million parameters. The DS1 model is described in Table 8. The
training data set used is Wall Street Journal (WSJ), which contains approximately 37,000 training
utterances (81 hours of speech). We benchmark DSD training on two test sets from the WSJ corpus of
read articles. The Word Error Rate (WER) reported on the test sets for the baseline model is different
from the those in DeepSpeech2 [3] due to two factors. The Deep Speech 2 models were trained using
much larger data sets containing approximately 12,000 hours of multi-speaker speech data. Secondly,
in Deep Speech 2, WER was evaluated with beam search and a language model; here the network
output is obtained using only max decoding to show improvement in the neural network accuracy.

Table 8: Deep Speech 1 Architecture
Layer ID Type #Params
layer 0 Convolution 1814528
layer 1 FullyConnected 1049600
layer 2 FullyConnected 1049600
layer 3 Bidirectional Recurrent 3146752
layer 4 FullyConnected 1049600
layer 5 CTCCost 29725

The baseline DS1 model is trained for 50 epochs on WSJ training data. The weights from this model
are pruned for the sparse iteration of DSD training. Weights are pruned in the FullyConnected layers
and the Bidirectional Recurrent layer only. Each layer is pruned to achieve 50% sparsity. This results
in overall sparsity of 32.2% across the entire network. This sparse model is re-trained on 50 epochs
of WSJ data. For the final dense training, the pruned weights are initialized to zero and trained again
on 50 epochs of WSJ training data. This step completes one iteration of DSD training. We use
Nesterov SGD to train the model, reduce the learning rate with each re-training, and keep all other
hyper parameters unchanged.

6

Baseline model: Andrej Karpathy, Neural Talk model zoo.

DSD on Caption Generation

Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017

http://cs.stanford.edu/people/karpathy/neuraltalk/


A Appendix: More Examples of DSD Training Improves the Captions
Generated by NeuralTalk (Images from Flickr-8K Test Set)

Baseline: a man in a red shirt and 
jeans is riding a bicycle down a street. 
Sparse: a man in a red shirt and a 
woman in a wheelchair. 
DSD: a man and a woman are riding on 
a street.

Baseline:  two girls in bathing suits are 
playing in the water. 
Sparse:  two children are playing in the 
sand. 
DSD: two children are playing in the 
sand.

Baseline:   a group of people are 
standing in front of a building. 
Sparse: a group of people are standing 
in front of a building. 
DSD: a group of people are walking in a 
park.

Baseline: a dog runs through the grass. 
Sparse: a dog runs through the grass. 
DSD: a white and brown dog is running 
through the grass.

Baseline:  a group of football players in 
red uniforms. 
Sparse:  a group of football players in a 
field. 
DSD: a group of football players in red 
and white uniforms.

Baseline:  a group of people sit on a 
bench in front of a building. 
Sparse: a group of people are 
standing in front of a building. 
DSD: a group of people are standing 
in a fountain.

Baseline: a man in a black jacket and a 
black jacket is smiling. 
Sparse: a man and a woman are standing 
in front of a mountain. 
DSD: a man in a black jacket is standing 
next to a man in a black shirt.

Baseline:a young girl in a red dress is 
holding a camera. 
Sparse: a little girl in a pink dress is 
standing in front of a tree. 
DSD: a little girl in a red dress is 
holding a red and white flowers.

Baseline:  a man in a red jacket is 
standing in front of a white building. 
Sparse:  a man in a black jacket is 
standing in front of a brick wall. 
DSD: a man in a black jacket is 
standing in front of a white building.

Baseline:  a man in a red shirt is 
standing on a rock. 
Sparse: a man in a red jacket is 
standing on a mountaintop. 
DSD: a man is standing on a rock 
overlooking the mountains.

Baseline:  a group of people are sitting in 
a subway station. 
Sparse: a man and a woman are sitting 
on a couch. 
DSD: a group of people are sitting at a 
table in a room.

Baseline: a soccer player in a red and 
white uniform is running on the field. 
Sparse: a soccer player in a red uniform 
is tackling another player in a white 
uniform. 
DSD: a soccer player in a red uniform 
kicks a soccer ball.

Baseline: a young girl in a swimming 
pool. 
Sparse:  a young boy in a swimming 
pool. 
DSD: a girl in a pink bathing suit 
jumps into a pool.

Baseline:  a soccer player in a red 
and white uniform is playing with a 
soccer ball. 
Sparse: two boys playing soccer. 
DSD: two boys playing soccer.

Baseline: a girl in a white dress is 
standing on a sidewalk. 
Sparse: a girl in a pink shirt is 
standing in front of a white building. 
DSD: a girl in a pink dress is walking 
on a sidewalk.

Baseline:  a boy is swimming in a pool. 
Sparse: a small black dog is jumping 
into a pool. 
DSD: a black and white dog is swimming 
in a pool.

A. Supplementary Material: More Examples of DSD Training Improves the Performance of 
NeuralTalk Auto-Caption System

�1
10

DSD on Caption Generation

Baseline model: Andrej Karpathy, Neural Talk model zoo.

http://cs.stanford.edu/people/karpathy/neuraltalk/
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CPUs for Training

2 

CPUs Are Targeting Deep Learning 

Image Source: Intel, Data Source: Next Platform 

Knights Mill: next gen Xeon Phi “optimized for deep learning”  

•  7 TFLOPS FP32 

•  16GB MCDRAM– 400 GB/s 

•  245W TDP 

•  29 GFLOPS/W (FP32) 

•  14nm process 

Intel Knights Landing (2016) 

Intel announced the addition of new vector instructions for deep learning 
(AVX512-4VNNIW and AVX512-4FMAPS), October 2016 

Slide Source: Sze et al Survey of DNN Hardware,  MICRO’16 Tutorial. 
Image Source: Intel, Data Source: Next Platform 



3 

GPUs Are Targeting Deep Learning 

•  10/20 TFLOPS FP32/FP16 

•  16GB HBM – 750 GB/s 

•  300W TDP 

•  67 GFLOPS/W (FP16) 

•  16nm process 

•  160GB/s NV Link  

Source: Nvidia 

Nvidia PASCAL GP100 (2016) 

GPUs for Training

Slide Source: Sze et al Survey of DNN Hardware,  MICRO’16 Tutorial. 
Data Source: NVIDIA



GPUs for Training

Nvidia Volta GV100 (2017)

• 15 FP32 TFLOPS
• 120 Tensor TFLOPS
• 16GB HBM2 @ 900GB/s
• 300W TDP
• 12nm process
• 21B Transistors
• die size: 815 mm2
• 300GB/s NVLink

Data Source: NVIDIA



What’s new in Volta: Tensor Core

8  

TENSOR CORE 4X4X4 MATRIX-MULTIPLY ACC 

a new instruction that performs 4x4x4 FMA mixed-precision operations per clock  
12X increase in throughput for the Volta V100 compared to the Pascal P100

https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/



https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

Tesla V100 Tensor Cores and CUDA 9 deliver up to 9x higher performance for GEMM operations.

Pascal v.s. Volta



Pascal v.s. Volta

https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

Left: Tesla V100 trains the ResNet-50 deep neural network 2.4x faster than Tesla P100.  
Right: Given a target latency per image of 7ms, Tesla V100 is able to perform inference using the 
ResNet-50 deep neural network 3.7x faster than Tesla P100.



The GV100 SM is partitioned 
into four processing blocks, 
each with:

• 8 FP64 Cores
• 16 FP32 Cores
• 16 INT32 Cores
• two of the new mixed-precision 

Tensor Cores for deep learning
• a new L0 instruction cache
• one warp scheduler
• one dispatch unit
• a 64 KB Register File.

https://devblogs.nvidia.com/parallelforall/
cuda-9-features-revealed/



Tesla Product Tesla K40 Tesla M40 Tesla P100 Tesla V100

GPU GK110 (Kepler) GM200 (Maxwell) GP100 (Pascal) GV100 (Volta)

GPU Boost Clock 810/875 MHz 1114 MHz 1480 MHz 1455 MHz

Peak FP32 TFLOP/s* 5.04 6.8 10.6 15

Peak Tensor Core 
TFLOP/s*

- - - 120

Memory Interface 384-bit GDDR5 384-bit GDDR5 4096-bit HBM2 4096-bit HBM2

Memory Size Up to 12 GB Up to 24 GB 16 GB 16 GB

TDP 235 Watts 250 Watts 300 Watts 300 Watts

Transistors 7.1 billion 8 billion 15.3 billion 21.1 billion

GPU Die Size 551 mm² 601 mm² 610 mm² 815 mm²

Manufacturing 
Process

28 nm 28 nm 16 nm FinFET+ 12 nm FFN

https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/



GPU / TPU

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/



Google Cloud TPU

149

5/22/17, 8)20 PMBuild and train machine learning models on our new Google Cloud TPUs

Page 5 of 11https://blog.google/topics/google-cloud/google-cloud-offer-tpus-machine-learning/

Our new Cloud TPU delivers up to 180 teraEops to train and run machine learning
models.

Each of these new TPU devices delivers up to 180 teraflops of

floating-point performance. As powerful as these TPUs are on

their own, though, we designed them to work even better together.

Each TPU includes a custom high-speed network that allows us to

build machine learning supercomputers we call “TPU pods.” A TPU

pod contains 64 second-generation TPUs and provides up to 11.5

petaflops to accelerate the training of a single large machine

learning model. That’s a lot of computation!

Using these TPU pods, we've already seen dramatic

improvements in training times. One of our new large-scale

translation models used to take a full day to train on 32 of the best

commercially-available GPUs—now it trains to the same accuracy

Cloud TPU delivers up to 180 teraflops to train and run machine learning models. 

source: Google Blog
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in an afternoon using just one eighth of a TPU pod.

A “TPU pod” built with 64 second-generation TPUs delivers up to 11.5 petaEops of
machine learning acceleration.

Introducing Cloud TPUs

We’re bringing our new TPUs to  as 

, where you can connect them to virtual machines of all

shapes and sizes and mix and match them with other types of

hardware, including Skylake CPUs and NVIDIA GPUs. You can

program these TPUs with , the most popular open-

source machine learning framework on GitHub, and we’re

introducing high-level APIs, which will make it easier to train

machine learning models on CPUs, GPUs or Cloud TPUs with only

minimal code changes.

Google Compute Engine Cloud

TPUs

TensorFlow

With Cloud TPUs, you have the opportunity to integrate state-of-

Google Cloud TPU

A “TPU pod” built with 64 second-generation TPUs delivers up to 11.5 
petaflops of machine learning acceleration. 
“One of our new large-scale translation models used to take a full day to train 
on 32 of the best commercially-available GPUs—now it trains to the same 
accuracy in an afternoon using just one eighth of a TPU pod.”— Google Blog
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Sundar Pichai, Google IO, 2016

Outlook: the Focus for Computation
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