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Lecture 8:
Deep Learning Software
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Administrative

- Project proposals were due Tuesday
- We are assigning TAs to projects, stay tuned

- We are grading A1
- A2 is due Thursday 5/4

- Remember to stop your instances when not in use
- Only use GPU instances for the last notebook
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Regularization: Add noise, then 
marginalize out

3

Last time
Optimization: SGD+Momentum, 
Nesterov, RMSProp, Adam

Regularization: Dropout

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

Freeze these

Reinitialize 
this and train

Train

Test

Transfer 
Learning
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Today

- CPU vs GPU
- Deep Learning Frameworks

- Caffe / Caffe2
- Theano / TensorFlow
- Torch / PyTorch

4
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CPU vs GPU
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My computer

6
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Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

7

https://commons.wikimedia.org/wiki/File:Intel_Core_i7-2600_SR00B_(16339769307).jpg
https://creativecommons.org/licenses/by/2.0/deed.en
https://commons.wikimedia.org/wiki/File:Intel_Core_i7-2600_SR00B_(16339769307).jpg
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Spot the GPUs!
(graphics processing unit)

This image is in the public domain

8

https://commons.wikimedia.org/wiki/File:NVIDIA-GTX-1070-FoundersEdition-FL.jpg
https://commons.wikimedia.org/wiki/File:NVIDIA-GTX-1070-FoundersEdition-FL.jpg
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NVIDIA AMDvs

9
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NVIDIA AMDvs

10
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CPU vs GPU
# Cores Clock Speed Memory Price

CPU
(Intel Core 
i7-7700k)

4
(8 threads with 
hyperthreading
)

4.4 GHz Shared with system $339

CPU
(Intel Core 
i7-6950X)

10 
(20 threads 
with 
hyperthreading
)

3.5 GHz Shared with system $1723

GPU
(NVIDIA 
Titan Xp)

3840 1.6 GHz 12 GB GDDR5X $1200

GPU
(NVIDIA 
GTX 1070)

1920 1.68 GHz 8 GB GDDR5 $399

CPU: Fewer cores, 
but each core is 
much faster and 
much more 
capable; great at 
sequential tasks

GPU: More cores, 
but each core is 
much slower and 
“dumber”; great for 
parallel tasks

11
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Example: Matrix Multiplication

A x B
B x C

A x C

=

12
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Programming GPUs

● CUDA (NVIDIA only)
○ Write C-like code that runs directly on the GPU
○ Higher-level APIs: cuBLAS, cuFFT, cuDNN, etc

● OpenCL
○ Similar to CUDA, but runs on anything
○ Usually slower :(

● Udacity: Intro to Parallel Programming 
https://www.udacity.com/course/cs344
○ For deep learning just use existing libraries

13

https://www.udacity.com/course/cs344
https://www.udacity.com/course/cs344
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CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

(CPU performance not 
well-optimized, a little unfair)

66x 67x 71x 64x 76x
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CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

cuDNN much faster than 
“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x
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CPU / GPU Communication

Model 
is here

Data is here
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CPU / GPU Communication

Model 
is here

Data is here

If you aren’t careful, training can 
bottleneck on reading data and 
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads 

to prefetch data
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Deep Learning 
Frameworks
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Last year ...

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)
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This year ...

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

Paddle 
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, 
Hong Kong U, etc but main framework of 
choice at AWS

And others...
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Today

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

Mostly these

A bit about these

CNTK 
(Microsoft)

Paddle 
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, 
Hong Kong U, etc but main framework of 
choice at AWS

And others...
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Recall: Computational Graphs

x

W

hinge 
loss

R

+ L
s (scores)

*
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input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 

Recall: Computational Graphs
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Recall: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

https://twitter.com/karpathy/status/597631909930242048?lang=en
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The point of deep learning frameworks

(1) Easily build big computational graphs
(2) Easily compute gradients in computational graphs
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)

25
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

26
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

27
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

Problems: 
- Can’t run on GPU
- Have to compute 

our own gradients

28
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

TensorFlow

29
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Computational Graphs
x y z

*

a
+

b

Σ

c

TensorFlow

Create forward 
computational graph

30



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 201731

Computational Graphs
x y z

*

a
+

b

Σ

c

TensorFlow

Ask TensorFlow to 
compute gradients

31
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Computational Graphs
x y z

*

a
+

b

Σ

c

TensorFlow

Tell 
TensorFlow 
to run on CPU

32
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Computational Graphs
x y z

*

a
+

b

Σ

c

TensorFlow

Tell 
TensorFlow 
to run on GPU

33
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Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch

34
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Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch

Define Variables to 
start building a 
computational graph

35
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Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch

Forward pass 
looks just like 
numpy

36
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Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch

Calling c.backward() 
computes all 
gradients

37
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Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch

Run on GPU by 
casting to .cuda()

38
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PyTorchTensorFlowNumpy

39
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TensorFlow
(more detail)

40
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TensorFlow: 
Neural Net

Running example: Train 
a two-layer ReLU 
network on random data 
with L2 loss

41
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TensorFlow: 
Neural Net

(Assume imports at the 
top of each snipppet)

42
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TensorFlow: 
Neural Net

43

First define 
computational graph

Then run the graph 
many times
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TensorFlow: 
Neural Net

Create placeholders for 
input x, weights w1 and 
w2, and targets y

44
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TensorFlow: 
Neural Net

Forward pass: compute 
prediction for y and loss 
(L2 distance between y 
and y_pred)

No computation 
happens here - just 
building the graph!

45
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TensorFlow: 
Neural Net

Tell TensorFlow to 
compute loss of gradient 
with respect to w1 and 
w2.

Again no computation 
here - just building the 
graph

46
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TensorFlow: 
Neural Net

Now done building our 
graph, so we enter a 
session so we can 
actually run the graph

47
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TensorFlow: 
Neural Net

Create numpy arrays 
that will fill in the 
placeholders above

48
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TensorFlow: 
Neural Net

Run the graph: feed in 
the numpy arrays for x, 
y, w1, and w2; get 
numpy arrays for loss, 
grad_w1, and grad_w2

49
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TensorFlow: 
Neural Net

Train the network: Run 
the graph over and over, 
use gradient to update 
weights

50
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TensorFlow: 
Neural Net

Train the network: Run 
the graph over and over, 
use gradient to update 
weights

Problem: copying 
weights between CPU / 
GPU each step

51
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TensorFlow: 
Neural Net

Change w1 and w2 from 
placeholder (fed on 
each call) to Variable 
(persists in the graph 
between calls)

52
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TensorFlow: 
Neural Net

Add assign operations 
to update w1 and w2 as 
part of the graph!

53
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TensorFlow: 
Neural Net

Run graph once to 
initialize w1 and w2

Run many times to train

54
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TensorFlow: 
Neural Net

Problem: loss not going 
down! Assign calls not 
actually being executed!

55
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TensorFlow: 
Neural Net

Add dummy graph node 
that depends on updates

Tell graph to compute 
dummy node

56
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TensorFlow: 
Optimizer

Can use an optimizer to 
compute gradients and 
update weights

Remember to execute the 
output of the optimizer!

57
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TensorFlow: 
Loss

Use predefined 
common lossees

58
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TensorFlow: 
Layers

Use Xavier 
initializer

tf.layers automatically 
sets up weight and 
(and bias) for us!

59
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Keras: High-Level 
Wrapper
Keras is a layer on top of 
TensorFlow, makes common 
things easy to do

(Also supports Theano 
backend)

60
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Keras: High-Level 
Wrapper

Define model object as 
a sequence of layers

61
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Keras: High-Level 
Wrapper

Define optimizer object

62
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Keras: High-Level 
Wrapper

Build the model, 
specify loss function

63
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Keras: High-Level 
Wrapper

Train the model 
with a single line!

64
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TensorFlow: Other High-Level 
Wrappers

Keras (https://keras.io/) 

TFLearn (http://tflearn.org/) 

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/) 

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers) 

TF-Slim (https://github.com/tensorflow/models/tree/master/inception/inception/slim)

tf.contrib.learn (https://www.tensorflow.org/get_started/tflearn) 

Pretty Tensor (https://github.com/google/prettytensor) 

65

https://keras.io/
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/
https://www.tensorflow.org/api_docs/python/tf/layers
https://github.com/tensorflow/models/tree/master/inception/inception/slim
https://www.tensorflow.org/get_started/tflearn
https://github.com/google/prettytensor
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TensorFlow: Other High-Level 
Wrappers

Keras (https://keras.io/) 

TFLearn (http://tflearn.org/) 

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/) 

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers) 

TF-Slim (https://github.com/tensorflow/models/tree/master/inception/inception/slim)

tf.contrib.learn (https://www.tensorflow.org/get_started/tflearn) 

Pretty Tensor (https://github.com/google/prettytensor) 

Ships with TensorFlow

66

https://keras.io/
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/
https://www.tensorflow.org/api_docs/python/tf/layers
https://github.com/tensorflow/models/tree/master/inception/inception/slim
https://www.tensorflow.org/get_started/tflearn
https://github.com/google/prettytensor
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TensorFlow: Other High-Level 
Wrappers

Keras (https://keras.io/) 

TFLearn (http://tflearn.org/) 

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/) 

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers) 

TF-Slim (https://github.com/tensorflow/models/tree/master/inception/inception/slim)

tf.contrib.learn (https://www.tensorflow.org/get_started/tflearn) 

Pretty Tensor (https://github.com/google/prettytensor) 

Ships with TensorFlow

From Google

67

https://keras.io/
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/
https://www.tensorflow.org/api_docs/python/tf/layers
https://github.com/tensorflow/models/tree/master/inception/inception/slim
https://www.tensorflow.org/get_started/tflearn
https://github.com/google/prettytensor
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TensorFlow: Other High-Level 
Wrappers

Keras (https://keras.io/) 

TFLearn (http://tflearn.org/) 

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/) 

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers) 

TF-Slim (https://github.com/tensorflow/models/tree/master/inception/inception/slim)

tf.contrib.learn (https://www.tensorflow.org/get_started/tflearn) 

Pretty Tensor (https://github.com/google/prettytensor) 

Sonnet (https://github.com/deepmind/sonnet) 

Ships with TensorFlow

From Google

From DeepMind

68

https://keras.io/
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/
https://www.tensorflow.org/api_docs/python/tf/layers
https://github.com/tensorflow/models/tree/master/inception/inception/slim
https://www.tensorflow.org/get_started/tflearn
https://github.com/google/prettytensor
https://github.com/deepmind/sonnet
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TensorFlow: Pretrained Models

TF-Slim: (https://github.com/tensorflow/models/tree/master/slim/nets)

Keras: (https://github.com/fchollet/deep-learning-models)   

69

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

Freeze these

Reinitialize 
this and train

Transfer  Learning

https://github.com/tensorflow/models/tree/master/slim/nets
https://github.com/fchollet/deep-learning-models
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TensorFlow: Tensorboard
Add logging to code to record loss, stats, etc
Run server and get pretty graphs!
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TensorFlow: Distributed Version

https://www.tensorflow.org/deploy/distributed 

Split one graph 
over multiple 
machines!

https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed
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Side Note: Theano
TensorFlow is similar in many 
ways to Theano (earlier 
framework from Montreal)
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Side Note: Theano
Define symbolic variables 
(similar to TensorFlow 
placeholder)
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Side Note: Theano

Forward pass: compute 
predictions and loss
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Side Note: Theano

Forward pass: compute 
predictions and loss
(no computation performed yet)
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Side Note: Theano

Ask Theano to compute 
gradients for us 
(no computation performed yet)
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Side Note: Theano

Compile a function that 
computes loss, scores, and 
gradients from data and weights
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Side Note: Theano

Run the function many 
times to train the network
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PyTorch
(Facebook)

79
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PyTorch: Three Levels of Abstraction

Tensor: Imperative ndarray, 
but runs on GPU
Variable: Node in a 
computational graph; stores 
data and gradient
Module: A neural network 
layer; may store state or 
learnable weights

80
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PyTorch: Three Levels of Abstraction

Tensor: Imperative ndarray, 
but runs on GPU
Variable: Node in a 
computational graph; stores 
data and gradient
Module: A neural network 
layer; may store state or 
learnable weights

Numpy array

Tensor, Variable, Placeholder

tf.layers, or TFSlim, or TFLearn, 
or Sonnet, or ….

TensorFlow equivalent

81
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PyTorch: Tensors
PyTorch Tensors are just like numpy 
arrays, but they can run on GPU.

No built-in notion of computational 
graph, or gradients, or deep learning.

Here we fit a two-layer net using 
PyTorch Tensors:

82
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PyTorch: Tensors
Create random tensors 
for data and weights

83
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PyTorch: Tensors

Forward pass: compute 
predictions and loss

84
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PyTorch: Tensors

Backward pass: 
manually compute 
gradients

85
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PyTorch: Tensors

Gradient descent 
step on weights

86
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PyTorch: Tensors

To run on GPU, just cast 
tensors to a cuda datatype!

87
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PyTorch: Autograd

A PyTorch Variable is a node in a 
computational graph

x.data is a Tensor

x.grad is a Variable of gradients 
(same shape as x.data)

x.grad.data is a Tensor of gradients

88
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PyTorch: Autograd

PyTorch Tensors and Variables 
have the same API!

Variables remember how they were 
created (for backprop)

89
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PyTorch: Autograd

We will not want gradients 
(of loss) with respect to data

Do want gradients with 
respect to weights 

90
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PyTorch: Autograd

Forward pass looks exactly 
the same as the Tensor 
version, but everything is a 
variable now

91
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PyTorch: Autograd

Compute gradient of loss 
with respect to w1 and w2
(zero out grads first)

92
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PyTorch: Autograd

Make gradient 
step on weights

93
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PyTorch: New Autograd Functions

Define your own autograd 
functions by writing forward 
and backward for Tensors

(similar to modular layers in A2)

94
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PyTorch: New Autograd Functions

Can use our new autograd 
function in the forward pass

95
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PyTorch: nn

Higher-level wrapper for 
working with neural nets

Similar to Keras and friends … 
but only one, and it’s good =)

96



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 201797

PyTorch: nn

Define our model as a 
sequence of layers

nn also defines common 
loss functions

97
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PyTorch: nn

Forward pass: feed data 
to model, and prediction 
to loss function

98
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PyTorch: nn

Backward pass: 
compute all gradients

99
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PyTorch: nn

Make gradient step on 
each model parameter

100
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PyTorch: optim

Use an optimizer for 
different update rules

101
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PyTorch: optim

Update all parameters 
after computing gradients

102
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PyTorch: nn
Define new Modules
A PyTorch Module is a neural net 
layer; it inputs and outputs Variables

Modules can contain weights (as 
Variables) or other Modules

You can define your own Modules 
using autograd!

103
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PyTorch: nn
Define new Modules

Define our whole model 
as a single Module

104
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PyTorch: nn
Define new Modules

Initializer sets up two 
children (Modules can 
contain modules)

105
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PyTorch: nn
Define new Modules

Define forward pass using 
child modules and 
autograd ops on Variables

No need to define 
backward - autograd will 
handle it

106
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PyTorch: nn
Define new Modules

Construct and train an 
instance of our model
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PyTorch: DataLoaders

A DataLoader wraps a 
Dataset and provides 
minibatching, shuffling, 
multithreading, for you

When you need to load 
custom data, just write 
your own Dataset class

108
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PyTorch: DataLoaders

Iterate over loader to form 
minibatches

Loader gives Tensors so you 
need to wrap in Variables

109
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PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision 
https://github.com/pytorch/vision 

110

https://github.com/pytorch/vision
https://github.com/pytorch/vision
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PyTorch: Visdom

This image is licensed under CC-BY 4.0; no changes were made to the image

Somewhat similar to 
TensorBoard: add logging 
to your code, then 
visualized in a browser

Can’t visualize 
computational graph 
structure (yet?)

https://github.com/facebookresearch/visdom 

https://github.com/facebookresearch/visdom
https://creativecommons.org/licenses/by/4.0/
https://github.com/facebookresearch/visdom
https://github.com/facebookresearch/visdom
https://github.com/facebookresearch/visdom
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Aside: Torch
Direct ancestor of PyTorch 
(they share a lot of C backend)

Written in Lua, not Python

PyTorch has 3 levels of 
abstraction: Tensor, Variable, and 
Module

Torch only has 2: Tensor, Module

More details: Check 2016 slides



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 27, 2017113

Aside: Torch
Build a model as a 
sequence of layers, 
and a loss function
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Aside: Torch

Define a callback 
that inputs weights, 
produces loss and 
gradient on weights
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Aside: Torch

Forward: compute 
scores and loss
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Aside: Torch

Backward: compute 
gradient

(no autograd, need 
to pass grad_scores 
around)
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Aside: Torch

Pass callback to 
optimizer over and over
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Torch vs PyTorch

Torch
(-) Lua
(-) No autograd
(+) More stable
(+) Lots of existing code
(0) Fast

PyTorch
(+) Python
(+) Autograd
(-) Newer, still changing
(-) Less existing code
(0) Fast 
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Torch vs PyTorch

Torch
(-) Lua
(-) No autograd
(+) More stable
(+) Lots of existing code
(0) Fast

PyTorch
(+) Python
(+) Autograd
(-) Newer, still changing
(-) Less existing code
(0) Fast 

Conclusion: Probably use PyTorch for new projects
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Static vs Dynamic Graphs
TensorFlow: Build graph once, then 
run many times (static)

PyTorch: Each forward pass defines 
a new graph (dynamic)

Build 
graph

Run each 
iteration

New graph each iteration

120
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Static vs Dynamic: Optimization
With static graphs, 
framework can 
optimize the 
graph for you 
before it runs!

Conv
ReLU
Conv
ReLU
Conv
ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with 
fused operations

Conv+ReLU
Conv+ReLU
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Static vs Dynamic: Serialization

Once graph is built, can 
serialize it and run it 
without the code that 
built the graph!

Graph building and execution 
are intertwined, so always 
need to keep code around

Static Dynamic
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Static vs Dynamic: Conditional

y = 
w1 * x   if z > 0
w2 * x   otherwise 

123
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Static vs Dynamic: Conditional

y = 
w1 * x   if z > 0
w2 * x   otherwise 

PyTorch: Normal Python

124
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Static vs Dynamic: Conditional

y = 
w1 * x   if z > 0
w2 * x   otherwise 

PyTorch: Normal Python

TensorFlow: Special TF 
control flow operator!

125
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Static vs Dynamic: Loops

yt  = (yt-1+ xt) * w
y0

x1 x2 x3

+ * + * +

w

*

126
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Static vs Dynamic: Loops

yt  = (yt-1+ xt) * w
y0

x1 x2 x3

+ * + * +

w

*
PyTorch: Normal Python

127
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Static vs Dynamic: Loops

yt  = (yt-1+ xt) * w

PyTorch: Normal Python

TensorFlow: Special TF control flow

128
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Dynamic Graphs in TensorFlow

Looks et al, “Deep Learning with Dynamic Computation Graphs”, ICLR 2017
https://github.com/tensorflow/fold

TensorFlow Fold make dynamic 
graphs easier in TensorFlow 
through dynamic batching

https://github.com/tensorflow/fold
https://github.com/tensorflow/fold
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Dynamic Graph Applications

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 

- Recurrent networks
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Dynamic Graph Applications

- Recurrent networks
- Recursive networks

The cat ate a big rat
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Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks

What color 
is the cat?

find[cat]

query[color]

white

This image is in the public domain
Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016

https://commons.wikimedia.org/wiki/File:JH_Dolph_Persian_cat_and_2_dogs.jpg
https://commons.wikimedia.org/wiki/File:JH_Dolph_Persian_cat_and_2_dogs.jpg
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Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks

Are there 
more cats 
than dogs? find[cat]

count

no

find[dog]

count

compare

This image is in the public domain
Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016

https://commons.wikimedia.org/wiki/File:JH_Dolph_Persian_cat_and_2_dogs.jpg
https://commons.wikimedia.org/wiki/File:JH_Dolph_Persian_cat_and_2_dogs.jpg
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Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks
- (Your creative idea here)
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Caffe
(UC Berkeley)

135
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● Core written in C++
● Has Python and MATLAB bindings
● Good for training or finetuning 

feedforward classification models
● Often no need to write code!
● Not used as much in research anymore, 

still popular for deploying models

Caffe Overview

136
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No need to write code!
1. Convert data (run a script)
2. Define net (edit prototxt)
3. Define solver (edit prototxt)
4. Train (with pretrained weights) (run a script)

Caffe: Training / Finetuning
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Caffe step 1: Convert Data

● DataLayer reading from LMDB is the easiest
● Create LMDB using convert_imageset
● Need text file where each line is

○ “[path/to/image.jpeg] [label]”
● Create HDF5 file yourself using h5py

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/tools/convert_imageset.cpp
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Caffe step 1: Convert Data

● ImageDataLayer: Read from image files
● WindowDataLayer: For detection
● HDF5Layer: Read from HDF5 file
● From memory, using Python interface
● All of these are harder to use (except Python)
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Caffe step 2: Define Network (prototxt)
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Caffe step 2: Define Network (prototxt)

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt 

● .prototxt can get ugly for 
big models

● ResNet-152 prototxt is 
6775 lines long!

● Not “compositional”; can’t 
easily define a residual 
block and reuse

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt
https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt
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Caffe step 3: Define Solver (prototxt)

● Write a prototxt file defining a 
SolverParameter

● If finetuning, copy existing 
solver.prototxt file
○ Change net to be your net
○ Change snapshot_prefix 

to your output
○ Reduce base learning rate 

(divide by 100)
○ Maybe change max_iter 

and snapshot

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto#L92
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto#L92
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Caffe step 4: Train!

./build/tools/caffe train \
  -gpu 0 \
  -model path/to/trainval.prototxt \
  -solver path/to/solver.prototxt \
  -weights path/to/pretrained_weights.caffemodel

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp 

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp
https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp
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Caffe step 4: Train!

./build/tools/caffe train \
  -gpu 0 \
  -model path/to/trainval.prototxt \
  -solver path/to/solver.prototxt \
  -weights path/to/pretrained_weights.caffemodel

   -gpu -1 for CPU-only
   -gpu all for multi-gpu

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp 

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp
https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp
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Caffe Model Zoo

AlexNet, VGG, 
GoogLeNet, ResNet, 
plus others

https://github.com/BVLC/caffe/wiki/Model-Zoo 

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
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Caffe Python Interface

Not much documentation… 
Read the code! Two most important files:
● caffe/python/caffe/_caffe.cpp:

○ Exports Blob, Layer, Net, and Solver classes
● caffe/python/caffe/pycaffe.py

○ Adds extra methods to Net class

https://github.com/BVLC/caffe/blob/master/python/caffe/_caffe.cpp
https://github.com/BVLC/caffe/blob/master/python/caffe/_caffe.cpp
https://github.com/BVLC/caffe/blob/master/python/caffe/pycaffe.py
https://github.com/BVLC/caffe/blob/master/python/caffe/pycaffe.py
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Caffe Python Interface

Good for:
● Interfacing with numpy
● Extract features: Run net forward
● Compute gradients: Run net backward (DeepDream, etc)
● Define layers in Python with numpy (CPU only)
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● (+) Good for feedforward networks
● (+) Good for finetuning existing networks
● (+) Train models without writing any code!
● (+) Python interface is pretty useful!
● (+) Can deploy without Python
● (-) Need to write C++ / CUDA for new GPU layers
● (-) Not good for recurrent networks
● (-) Cumbersome for big networks (GoogLeNet, ResNet)

Caffe Pros / Cons
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Caffe2
(Facebook)

149
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Caffe2 Overview

● Very new - released a week ago =)
● Static graphs, somewhat similar to TensorFlow
● Core written in C++
● Nice Python interface
● Can train model in Python, then serialize and deploy 

without Python
● Works on iOS / Android, etc
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Google:
TensorFlow

Facebook:
PyTorch +Caffe2

“One framework 
to rule them all” Research Production
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My Advice:
TensorFlow is a safe bet for most projects. Not perfect but has 
huge community, wide usage. Maybe pair with high-level wrapper 
(Keras, Sonnet, etc)
I think PyTorch is best for research. However still new, there can be 
rough patches.
Use TensorFlow for one graph over many machines
Consider Caffe, Caffe2, or TensorFlow for production deployment
Consider TensorFlow or Caffe2 for mobile
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Next Time: 
CNN Architecture Case Studies
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Caffe step 2: Define Network (prototxt)
Layers and Blobs 
often have same 
name!
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Caffe step 2: Define Network (prototxt)
Layers and Blobs 
often have same 
name!

Learning rates 
(weight + bias)

Regularization 
(weight + bias)
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Caffe step 2: Define Network (prototxt)
Layers and Blobs 
often have same 
name!

Learning rates 
(weight + bias)

Regularization 
(weight + bias)

Number of
output classes
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Caffe step 2: Define Network (prototxt)
Layers and Blobs 
often have same 
name!

Learning rates 
(weight + bias)

Regularization 
(weight + bias)

Number of
output classes

Set these to 0 to 
freeze a layer


