
1

CS 6242 Digital Libraries

Fundamentals of Information
Retrieval

2

Search Midterm questions for Digital Libraries

Search Phua Chu Kang dates at Esplanade

What is information retrieval?

3

What is information retrieval?

  Part of the information seeking process
  Matches a query with most relevant

documents
  View a query as a mini-document

Corpus

Query Matching
Documents

Phua Chu Kang dates
at Esplanade IR!

4

Searching in books

  Table of Contents
  Index
  grep

  Procedure:
  Look up topic
  Find the page
  Skim page to find topic

…
Index, 11, 103-151, 443

 Audio, 476
 Comparison of methods 143-145
 Granularity, 105, 112
 N-gram, 170-172
 Of integer sequences, 11
 Of musical themes, 11
 Of this book, 103, 507ff
 Within inverted file entry, see skipping

Index compression, 114-129, 198-201, 235-237
 Batched, 125,128
 Bernoulli, 119-122, 128, 150, 247, 421
 Context-sensitive, 125-126
 Global, 115-121
 Hyperbolic model, 123-124, 150
 In MG, 421-423
 Interpolative coding, 126-128
 Local, 115, 121-122, 247
 Nonparameterized, 115-119
 Observed frequency, 121, 124-125, 128, 247
 Parameterized, 115

Performance of, 128-129. 421
Skewed Bernoulli, 122-123, 138, 150
Within-document frequencies, 198-201
Index Construction, 223-261 (see also inversion)

 bitmaps, 255-256
…

Partial index of Managing Gigabytes

5

Information retrieval

  Algorithm
  (Permute query to fit index)
  Search index
  Go to resource
  (Permute query to fit item)
  (Search for item)

6

What to index?

  Books indices have key words and
phrases

  Search engines index (all) words

Why the disparity?
What do people really search for?

 What is a word?

•  Maximal sequence of alphanumeric characters
•  Limited to at most 256 characters and at most
 4 numeric characters.

 - MG indexing system

7

Trading precision for size
Can save up to 32% without too much loss:

  Stemming

  Usually just word inflection
  Information → Inform = Informal, Informed

  Case folding
  N.B.: keep odd variants (e.g., NeXT, LaTeX)

  Stop words
  Don’t index common words, people won’t search on them

anyways

Pop Quiz: Which of these techniques are more effective?

8

Indexing output
  Output = Lw,DD,IW×D

  Inverted File (Index)
  Postings (e.g., wt →

(d1,fwt,d1), (d2,fwt,d), …,
(dn,fwt,dn)

  Variable length records

  Lexicon:
  String Wt
  Document frequency ft
  Address within inverted file

It
  Sorted, fixed length

records

× D1 D2 D3 D4 D5 D6 … Dm

W1 1 1
W2 2 1
W3 1
W4 1 1

W5 1 1
W6 1 1 1
…
Wn

To think about: What type of entries are missing
from the search engine index that are present in
the book index?

Wf
2
3
1
2
2
3

Lexicon
Inverted File
(Postings File)

9

Trading precision for size, redux
Pop Quiz: Which of these techniques are more effective?

Typical:

 Lexicon = 30 MB Inverted File: 400 MB

  Stemming
  Affects Lexicon

  Case folding
  Affects Lexicon

  Stop words
  Affects Inverted File - Big effect! – ~30% savings

 but will depend on threshold

- Small effect – ~1% savings

- Small effect – ~1% savings

10

Is fine-grained indexing worthwhile?

  Problem: still have to scan document to find the
term.

  Cons:
  Need access methods to take advantage
  Extra storage space overhead (variable sized)

  Alternative methods:
  Hierarchical encoding (doc #, para #, sent #, word

#) to shrink offset size
  Split long documents into n shorter ones.

Image (D1, 2), (D4, 1)
Implicit (D2, 1), (D3, 1) …
Index (D5, 3), (D2, 1) …
Inverse (D2, 2)
Internet (D1, 2), (D3, 2) …

Image (D1, 2; 10, 205), (D4, 1, 3993)
Implicit (D2, 1; 242), (D3, 1; 233) …
Index (D5, 3; 20, 42, 3920), (D2, 1 …
Inverse (D2, 2; 599, 847)
Internet (D1, 2; 12, 43), (D3, 2; 302, …

11

Inverted file compression

  Clue: Encode gap length instead of offset
  Use small number of bits to encode more common gap lengths

  (e.g., Huffman encoding)

  Better: Use a distribution of expected gap length (e.g., Bernoulli
process)
  If p = prob that any word x appears in doc y, then
  Then pgap size z = (1-p)z p . This constructs a geometric distribution.

  Works for intra and inter-document index compression
  Why does it hold for documents as well as words?

Bridegroom

Twelfth

Jezebel

Occurrences in the Bible

12

Building the index – Memory based
inversion

  Takes lots of main memory, ugh!
  Can we reduce the memory requirement?

Initialize empty dictionary S
// Phase I – collection of term appearances in memory
For each document Dd in collection, 1 ≤ d ≤ N

 Read Dd, parsing it into index terms
 For each index term t in Dd
 Calculate fd,t
 Search in S for t, if not present, insert it
 Append node (d,fd,t) to list for term t

// Phase II – dump inverted file
For each term 1 ≤ t ≤ n

 Start a new inverted file entry
 Append each appropriate (d,fd,t) in list to entry
 Append to inverted file

13

Sort-based inversion

  Idea: try to make random access of disk
(memory) sequential

// Phase I – collection of term appearances on disk
For each document Dd in collection, 1 ≤ d ≤ N

 Read Dd, parsing it into index terms
 For each index term t in Dd

 Calculate fd,t

 Dump to file a tuple (t,d,fd,t)

// Phase II – sort tuples
Sort all the tuples (t,d,f) using External Mergesort

// Phase III – write output file
Read the tuples in sorted order and create inverted file

14

Sort based inversion: example

<a,1,2>
<b,1,2>
<c,1,1>
<a,2,2>
<d,2,1>
<b,2,1>
<b,3,1>
<d,3,1>

<a,1,1>
<a,2,2>
<b,1,2>
<c,1,1>
<b,2,1>
<b,3,1>
<d,2,1>
<d,3,1>

<a,1,1>
<a,2,2>
<b,1,2>
<b,2,1>
<b,3,1>
<c,1,1>
<d,2,1>
<d,3,1>

Initial dump
from corpus

Sorted Runs Merged Runs
(fully sorted)

•  What’s the performance of this algorithm?
•  Saves memory but very disk intensive!

15

Using a first pass for the lexicon

 Gets us fd,t and N
 Savings: For any t, we know fd,t,

so can use an array vs. LL
(shrinks record by 40%!)

a 2
b 3
c 1
d 2

Lexicon

Inverted File

16

Lexicon-based inversion

  Partition inversion as |I|/|M| = k smaller
problems
  build 1/k of inverted index on each pass
  (e.g., a-b, b-c, …, y-z)
  Tuned to fit amount of main memory in machine
  Just remember boundary words

  Can pair with disk strategy
  Create k temporary files and write tuples (t,d,fd,t)

for each partition on first pass
  Each second pass builds index from temporary file

17

Inversion – Summary of Techniques

  How do these techniques stack up?
  Assume a 5 GB corpus and 40 MB main

memory machine

Technique Memory Disk Time

 (MB) (GB) (Hours)
*Linked lists (memory) 4000 0 6
Linked lists (disk) 30 4 1100
Sort-based 40 8 20
Lexicon-based 40 0 79
Lexicon w/ disk 40 4 12

Source – Managing Gigabytes

18

Query Matching

  Now that we have an index, how do
we answer queries?

19

Query Matching

Assuming a simple word matching engine:

For each query term t

 Stem t
 Search lexicon
 Record ft and its inverted entry address, It

Select a query term t
Set list of candidates, C = It
For each remaining term t

 Read its It
 For each d in C, if d not in It set C = C – {d}

  X and Y and Z – high precision
  X or Y or Z – high recall
  Which algorithm is the above?

Conjunctive (AND)
processing

20

Boolean Model

  Query processing strategy:
  Join less frequent terms first
  Even in ORs, as merging takes longer than

lookup

  Problems with Boolean model:
  Retrieves too many or too few documents
  Longer documents are tend to match more

often because they have a larger vocabulary
  Need ranked retrieval to help out

21

Deciding ranking

  Boolean assigns same importance to all
terms in a query

Phua Chu Kang dates at Esplanade

  “Esplanade” has same weight as “date”

  One way:
  Assign weights to the words, make more

important words worth more
  Process results in q and d vectors: (word,

weight), (word, weight) … (word, weight)

Search

22

Term Frequency

)(max ,

,

idi

td

f
f

 Xxxxxxxxxxxxxx Mee Swa xxxxxxxxxxx
xxxxxxxx xxxxxxxxxxx Prata xxxxxxx
xxxxxxxxxx xxxxxxxx Chili Crab.
Xxxxxxxxxx xxxxxxxxxx Chili Crab
xxxxxxxx. Xxxxxxxxxx xxxxxxxx Laksa.
Xxxxxxxxx xxxxxxx Chili Crab.

(Relative) term frequency can indicate

importance.
  Rd,f = fd,t
  Rd,t = 1 + ln fd,t
  Rd,t = (K + (1-K)))(max ,

,

idi

td

f
f

23

Inverse Document Frequency

 Consider a future device for individual use, which
is a sort of mechanized private file and library. It
needs a name, and, to coin one at random,
"memex" will do.

24

Inverse Document Frequency

 Consider a future device for individual use,
which is a sort of mechanized private file and
library. It needs a name, and, to coin one at
random, "memex" will do.

  Words with higher ft are less discriminative.
  Use inverse to measure importance:

  wt = 1/ft
  wt = ln (1+ N/ft)  this one is most common
  wt = ln (1 + fm/ft), where fm is the max observed

frequency

Question: What’s the ln () here for?

25

This is TF*IDF

  Many variants, but all capture:
  Term frequency:

Rd,t as being monotonically increasing

  Inverse Document Frequency:
Wt as being monotonically decreasing

  Standard formulation is:
wd,t = rd,t × wt

 = (1+ ln(fd,t)) × ln (1 + N/ft)

  Problem:
  rd,t grows as document grows, need to normalize;

otherwise biased towards long documents

26

Calculating Similarity

  Euclidean Distance - bad
  M(Q,Dd) = sqrt (Σ |wq,t – wd,t|2)

  Dissimilarity Measure; use reciprocal
  Has problem with long documents,

why?

  Actually don’t care about vector
length, just their direction
  Want to measure difference in direction

27

Cosine Similarity

  If X and Y are two n-dimensional vectors:
X · Y = |X| |Y| cos θ
cos θ = X · Y / |X| |Y|

= 1 when identical
= 0 when orthogonal

θ

Cos (Q,Dd) = Q · Dd / |Q| |Dd|
 = (1/WqWd) Σ wq,t · wd,t
 = (1/Wd) Σ wq,t · wd,t

q
d

28

  To get the ranked list, we use doc. accumulators:

For each query term t, in order of increasing ft,

 Read its inverted file entry It

 Update acc. for each doc in It: Ad+= ln (1 + fd,t) ×wt

For each Ad in A
 Ad /= Wd // that’s basically cos θ, don’t use wq

Report top r of A

Calculating the ranked list

)1ln()ln1(1
,∑

∩∈

+•+
dDQt t

td
qd f

Nf
WW

29

Accumulator Storage

  Holding all possible accumulators is
expensive
  Could need one for each document if query is

broad

  In practice, use fixed |A| wrt main
memory. What to do when all used?
  Quit: use ranks as they are
  Continue processing on |A| documents to get

accurate ranks (preferred)

30

Selecting r entries from accumulators

  Want to return documents with
largest cos values.

  How? Use a min-heap
Load r A values into the heap H
Process remaining A-r values

 If Ad > min{H} then
 Delete min{H}, add Ad, and sift

// H now contains the top r exact cosine values

31

To think about
  How do you deal with a dynamic collection?
  How do you support phrasal searching?
  What about wildcard searching?

  What types of wildcard searching are common?

