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CS 6242 Digital Libraries 

Fundamentals of Information 
Retrieval 



2 

 
 

Search Midterm questions for Digital Libraries 

Search Phua Chu Kang dates at Esplanade 

What is information retrieval? 
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What is information retrieval? 

  Part of the information seeking process 
  Matches a query with most relevant 

documents 
  View a query as a mini-document 
 

Corpus 

Query Matching  
Documents 

Phua Chu Kang dates 
at Esplanade IR! 
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Searching in books 

  Table of Contents 
  Index 
  grep 

  Procedure: 
  Look up topic 
  Find the page 
  Skim page to find topic 

… 
Index, 11, 103-151, 443 

 Audio, 476 
 Comparison of methods 143-145 
 Granularity, 105, 112 
 N-gram, 170-172 
 Of integer sequences, 11 
 Of musical themes, 11 
 Of this book, 103, 507ff 
 Within inverted file entry, see skipping 

Index compression, 114-129, 198-201, 235-237 
 Batched, 125,128 
 Bernoulli, 119-122, 128, 150, 247, 421 
 Context-sensitive, 125-126 
 Global, 115-121 
 Hyperbolic model, 123-124, 150 
 In MG, 421-423 
 Interpolative coding, 126-128 
 Local, 115, 121-122, 247 
 Nonparameterized, 115-119 
 Observed frequency, 121, 124-125, 128, 247 
 Parameterized, 115 

Performance of, 128-129. 421 
Skewed Bernoulli, 122-123, 138, 150 
Within-document frequencies, 198-201 
Index Construction, 223-261 (see also inversion) 

 bitmaps, 255-256 
… 

Partial index of Managing Gigabytes 
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Information retrieval  

  Algorithm 
  (Permute query to fit index) 
  Search index 
  Go to resource 
  (Permute query to fit item) 
  (Search for item) 
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What to index? 

  Books indices have key words and 
phrases 

  Search engines index (all) words 

Why the disparity? 
What do people really search for? 

 What is a word? 
 
•  Maximal sequence of alphanumeric characters 
•  Limited to at most 256 characters and at most  
    4 numeric characters.    

    - MG indexing system 
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Trading precision for size 
Can save up to 32% without too much loss: 
 
  Stemming 

  Usually just word inflection 
  Information → Inform = Informal, Informed 

  Case folding 
  N.B.: keep odd variants (e.g., NeXT, LaTeX) 

  Stop words  
  Don’t index common words, people won’t search on them 

anyways 
 
Pop Quiz: Which of these techniques are more effective? 
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Indexing output 
  Output = Lw,DD,IW×D 

  Inverted File (Index) 
  Postings (e.g., wt → 

(d1,fwt,d1), (d2,fwt,d),  …, 
(dn,fwt,dn) 

  Variable length records 

  Lexicon: 
  String Wt 
  Document frequency ft 
  Address within inverted file 

It 
  Sorted, fixed length 

records 
  

×        D1 D2 D3 D4 D5 D6 … Dm 
 
W1           1        1       
W2       2            1 
W3        1        
W4                         1           1 

  
W5        1           1   
W6            1       1   1   
… 
Wn    
 
 
 
 
  

To think about: What type of entries are missing 
from the search engine index that are present in 
the book index?   

Wf 
2 
3 
1 
2 
2 
3 

Lexicon 
Inverted File 
(Postings File) 



9 

Trading precision for size, redux 
Pop Quiz: Which of these techniques are more effective? 
 
Typical:  

 Lexicon = 30 MB   Inverted File:  400 MB 
   

  Stemming  
  Affects Lexicon  

  Case folding 
  Affects Lexicon 

  Stop words  
  Affects Inverted File - Big effect! – ~30% savings 

 but will depend on threshold 

- Small effect – ~1% savings 

- Small effect – ~1% savings 
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Is fine-grained indexing worthwhile? 

  Problem: still have to scan document to find the 
term. 

  Cons: 
  Need access methods to take advantage 
  Extra storage space overhead (variable sized) 

  Alternative methods: 
  Hierarchical encoding (doc #, para #, sent #, word 

#) to shrink offset size 
  Split long documents into n shorter ones. 

Image  (D1, 2), (D4, 1) 
Implicit  (D2, 1), (D3, 1) … 
Index  (D5, 3), (D2, 1) … 
Inverse  (D2, 2) 
Internet  (D1, 2), (D3, 2) … 

Image  (D1, 2; 10, 205), (D4, 1, 3993) 
Implicit  (D2, 1; 242), (D3, 1; 233) … 
Index  (D5, 3; 20, 42, 3920), (D2, 1  … 
Inverse  (D2, 2; 599, 847) 
Internet  (D1, 2; 12, 43), (D3, 2; 302, … 
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Inverted file compression 

  Clue: Encode gap length instead of offset 
  Use small number of bits to encode  more common gap lengths  

  (e.g., Huffman encoding) 

  Better: Use a distribution of expected gap length (e.g., Bernoulli 
process)  
  If p = prob that any word x appears in doc y, then 
  Then pgap size z = (1-p)z p .  This constructs a geometric distribution. 

  Works for intra and inter-document index compression 
  Why does it hold for documents as well as words? 

Bridegroom 

Twelfth 

Jezebel 

Occurrences in the Bible 
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Building the index – Memory based 
inversion 

  Takes lots of main memory, ugh! 
  Can we reduce the memory requirement? 

Initialize empty dictionary S 
// Phase I – collection of term appearances in memory 
For each document Dd in collection, 1 ≤ d ≤ N  

 Read Dd, parsing it into index terms 
 For each index term t in Dd 
  Calculate fd,t 
  Search in S for t, if not present, insert it 
  Append node (d,fd,t) to list for term t 

 
// Phase II – dump inverted file 
For each term 1 ≤ t ≤ n 

 Start a new inverted file entry 
  Append each appropriate (d,fd,t) in list to entry 
 Append to inverted file 
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Sort-based inversion 

  Idea: try to make random access of disk 
(memory) sequential 

 
// Phase I – collection of term appearances on disk 
For each document Dd in collection, 1 ≤ d ≤ N  

 Read Dd, parsing it into index terms 
 For each index term t in Dd 

  Calculate fd,t 

  Dump to file a tuple (t,d,fd,t) 
  

// Phase II – sort tuples 
Sort all the tuples (t,d,f) using External Mergesort  
 
// Phase III – write output file 
Read the tuples in sorted order and create inverted file 
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Sort based inversion: example 

<a,1,2> 
<b,1,2> 
<c,1,1> 
<a,2,2> 
<d,2,1> 
<b,2,1> 
<b,3,1> 
<d,3,1> 
 

<a,1,1> 
<a,2,2> 
<b,1,2> 
<c,1,1> 
<b,2,1> 
<b,3,1> 
<d,2,1> 
<d,3,1> 

<a,1,1> 
<a,2,2> 
<b,1,2> 
<b,2,1> 
<b,3,1> 
<c,1,1> 
<d,2,1> 
<d,3,1> 

Initial dump  
from corpus 

Sorted Runs Merged Runs 
(fully sorted) 

•  What’s the performance of this algorithm? 
•  Saves memory but very disk intensive! 
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Using a first pass for the lexicon 

 Gets us fd,t and N 
 Savings: For any t, we know fd,t, 

so can use an array vs. LL 
(shrinks record by 40%!) 

a  2 
b  3 
c  1 
d  2  

Lexicon 

Inverted File 
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Lexicon-based inversion 

  Partition inversion as |I|/|M| = k smaller 
problems 
  build 1/k of inverted index on each pass  
  (e.g., a-b, b-c, …, y-z) 
  Tuned to fit amount of main memory in machine 
  Just remember boundary words  

  Can pair with disk strategy 
  Create k temporary files and write tuples (t,d,fd,t) 

for each partition on first pass 
  Each second pass builds index from temporary file 
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Inversion – Summary of Techniques 

  How do these techniques stack up? 
  Assume a 5 GB corpus and 40 MB main 

memory machine 
 
Technique         Memory  Disk  Time 

     (MB)  (GB)  (Hours) 
*Linked lists (memory)  4000  0  6 
Linked lists (disk)   30  4  1100 
Sort-based    40  8  20 
Lexicon-based   40  0  79 
Lexicon w/ disk   40  4  12 

Source – Managing Gigabytes 
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Query Matching 

  Now that we have an index, how do 
we answer queries? 
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Query Matching 

Assuming a simple word matching engine: 
 
For each query term t 

 Stem t 
 Search lexicon 
 Record ft and its inverted entry address, It 

Select a query term t 
Set list of candidates, C = It 
For each remaining term t 

 Read its It 
 For each d in C, if d not in It set C = C – {d} 

 

  X and Y and Z – high precision 
  X or Y or Z – high recall 
  Which algorithm is the above? 
 

Conjunctive (AND) 
processing 
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Boolean Model 

  Query processing strategy: 
  Join less frequent terms first 
  Even in ORs, as merging takes longer than 

lookup 
 

  Problems with Boolean model: 
  Retrieves too many or too few documents 
  Longer documents are tend to match more 

often because they have a larger vocabulary 
  Need ranked retrieval to help out 
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Deciding ranking 

  Boolean assigns same importance to all 
terms in a query 

 
Phua Chu Kang dates at Esplanade 

  “Esplanade” has same weight as “date” 

  One way: 
  Assign weights to the words, make more 

important words worth more 
  Process results in q and d vectors: (word, 

weight), (word, weight) … (word, weight) 

Search 
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Term Frequency 

)(max ,

,

idi

td

f
f

 Xxxxxxxxxxxxxx Mee Swa xxxxxxxxxxx 
xxxxxxxx xxxxxxxxxxx Prata xxxxxxx 
xxxxxxxxxx xxxxxxxx Chili Crab.  
Xxxxxxxxxx xxxxxxxxxx Chili Crab 
xxxxxxxx.  Xxxxxxxxxx xxxxxxxx Laksa.  
Xxxxxxxxx xxxxxxx Chili Crab. 

 
(Relative) term frequency can indicate 

importance.   
  Rd,f = fd,t 
  Rd,t = 1 + ln fd,t 
  Rd,t = (K + (1-K)           ) )(max ,

,

idi

td

f
f
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Inverse Document Frequency 

 Consider a future device for individual use, which 
is a sort of mechanized private file and library. It 
needs a name, and, to coin one at random, 
"memex" will do.  
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Inverse Document Frequency 

 Consider a future device for individual use, 
which is a sort of mechanized private file and 
library. It needs a name, and, to coin one at 
random, "memex" will do.  

 
  Words with higher ft are less discriminative.   
  Use inverse to measure importance:  

  wt = 1/ft 
  wt = ln (1+ N/ft)  this one is most common 
  wt = ln (1 + fm/ft), where fm is the max observed 

frequency 

 
 

Question: What’s the ln () here for? 
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This is TF*IDF 

  Many variants, but all capture: 
  Term frequency:  

Rd,t as being monotonically increasing 

  Inverse Document Frequency: 
Wt as being monotonically decreasing 

  Standard formulation is: 
wd,t    = rd,t    × wt  

  = (1+ ln(fd,t))  × ln (1 + N/ft) 

  Problem:  
  rd,t grows as document grows, need to normalize; 

otherwise biased towards long documents 
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Calculating Similarity 

  Euclidean Distance - bad 
  M(Q,Dd) = sqrt (Σ |wq,t – wd,t|2) 

  Dissimilarity Measure; use reciprocal 
  Has problem with long documents, 

why? 

  Actually don’t care about vector 
length, just their direction 
  Want to measure difference in direction 
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Cosine Similarity 

  If X and Y are two n-dimensional vectors: 
X · Y = |X| |Y| cos θ 
cos θ = X · Y / |X| |Y| 
 
= 1 when identical 
= 0 when orthogonal 

θ 

Cos (Q,Dd) = Q · Dd / |Q| |Dd| 
   = (1/WqWd) Σ wq,t · wd,t 
   = (1/Wd) Σ wq,t · wd,t 

 

q 
d 
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  To get the ranked list, we use doc. accumulators: 
  
For each query term t, in order of increasing ft, 

 Read its inverted file entry It 

 Update acc. for each doc in It: Ad+= ln (1 + fd,t) ×wt 

For each Ad in A 
 Ad /= Wd // that’s basically cos θ, don’t use wq 

Report top r of A 
 

Calculating the ranked list 

)1ln()ln1(1
,∑

∩∈

+•+
dDQt t

td
qd f

Nf
WW
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Accumulator Storage 

  Holding all possible accumulators is 
expensive 
  Could need one for each document if query is 

broad 

  In practice, use fixed |A| wrt main 
memory.  What to do when all used? 
  Quit: use ranks as they are 
  Continue processing on |A| documents to get 

accurate ranks (preferred) 
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Selecting r entries from accumulators 

  Want to return documents with 
largest cos values. 

  How? Use a min-heap 
Load r A values into the heap H 
Process remaining A-r values 

 If Ad > min{H} then 
  Delete min{H}, add Ad, and sift 

// H now contains the top r exact cosine values 
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To think about 
  How do you deal with a dynamic collection? 
  How do you support phrasal searching? 
  What about wildcard searching? 

  What types of wildcard searching are common? 


