Digital Libraries

Collaborative Filtering and Recommender Systems
Min-Yen KAN
In information seeking, we may seek others’ opinion:
- Recommender systems may use collaborative filtering algorithms to generate their recommendations

What is its relationship to IR and related fields?
Is it IR? Clustering?

- **Information Retrieval:**
 - Uses content of document

- **Recommendation Systems:**
 - Uses item’s metadata
 - Item – item recommendation
 - **Collaborative Filtering**
 - User – user recommendation
 1. Find similar users to current user,
 2. Then return their recommendations

Clustering can be used to find recommendations
Collaborative Filtering

- Effective when untainted data is available
- Typically have to deal with sparse data
 - Users will only vote over a subset of all items they’ve seen

Data:
- Explicit: recommendations, reviews, ratings
- Implicit: query, browser, past purchases, session logs

Approaches
- Model based – derive a user model and use for prediction
- Memory based – use entire database

Functions
- Predict – predict ranking for an item
- Recommend – produce *ordered* list of items of interest to the user.

Why are these two considered distinct?
Memory-based CF

- Assume active user \(a \) has ranked \(I \) items:

- Mean ranking given by:
 \[
 \bar{v}_i = \frac{1}{|I_i|} \sum_{j \in I_i} v_{i,j}
 \]

- Expected ranking of a new item given by:
 \[
 p_{a,j} = \bar{v}_a + \kappa \sum_{i=1}^{n} w(a, i)(v_{i,j} - \bar{v}_i)
 \]
Correlation

How do you find similar users?

- Check correlation between active user’s ratings and yours
- Use Pearson correlation:

\[
w(a, i) = \frac{\sum_j (v_{a,j} - \bar{v}_a)(v_{i,j} - \bar{v}_i)}{\sqrt{\sum_j (v_{a,j} - \bar{v}_a)^2} \sqrt{\sum_j (v_{i,j} - \bar{v}_i)^2}}
\]

- Generates a value between 1 and -1
- 1 (perfect agreement), 0 (random)

Similarity can also be done in terms of vector space. What are some ways of applying this method to this problem?
Two modifications

- Sparse data
 - Default Voting
 - Users would agree on some items that they didn’t get a chance to rank
 - Assume all unobserved items have neutral or negative ranking.
 - Or impute values based on available data
 - Smoothes correlation values in sparse data

- Balancing Votes:
 - Inverse User Frequency
 - Universally liked items not important to correlation
 - Weight \((j) = \ln(\# \text{ users}/\# \text{ users voting for item } j) \)
Model-based methods: NB Clustering

Assume all users belong to several different types $C = \{C_1, C_2, \ldots, C_n\}$

- Find the model (class) of active user
 - Eg. Horror movie lovers
 - This class is hidden

- Then apply model to predict vote

$$\Pr(C = c, v_1, \ldots, v_n) = \Pr(C = c) \prod_{i=1}^{n} \Pr(v_i | C = c)$$

Class probability

Probability of a vote on item i given class C
Scholarly Paper Recommendation

- Leverage the citation network
 - Usage data also possible

- Use context to combat sparse data
 (Sugiyama and Kan, 2010; 2011)
Using the Citation Network

- Use the body of the paper, certain sections (e.g., references) or windows around in-text citations (citations).

- With respect to particular authors as users, can also use their publications as a user model
 - Needs to be weighted appropriately
Detecting untainted data

- *Shill* = a decoy who acts enthusiastically in order to stimulate the participation of others

- Push: cause an item’s rating to rise
- Nuke: cause an item’s rating to fall
Properties of shilling

Given current user-user recommender systems:

- An item with more variable recommendations is easier to shill
- An item with less recommendations is easier to shill
- An item farther away from the mean value is easier to shill towards the same direction

How would you attack a recommender system?
Atacking a recommender system

- Introduce new users who rate target item with high/low value

How do you make this shill less noticeable?
Shilling, continued

- Recommendation is different from prediction
 - Recommendation produces ordered list, most people only look at first n items

- Obtain recommendation of new items before releasing item
 - Default Value
Digital Libraries

Computational Literary Analysis
Min-Yen KAN
The Federalist Papers

- A series of 85 papers written by Jay, Hamilton and Madison

- Intended to help persuade voters to ratify the US constitution

- Most of the papers have attribution but the authorship of 12 papers are disputed
 - Either Hamilton or Madison

- Want to determine who wrote these papers
 - Also known as textual forensics
Wordprint and Stylistics

- Claim: Authors leave a unique *wordprint* in the documents which they author

- Claim: Authors also exhibit certain *stylistic patterns* in their publications
Feature Selection

- Content-specific features (Foster 90)
 - key words, special characters

- Style markers
 - Word- or character-based features (Yule 38)
 - length of words, vocabulary richness
 - Synonym pairs (but very few)
 - Function words (Mosteller & Wallace 64)

- Structural features
 - Email: Title or signature, paragraph separators (de Vel et al. 01)
 - Can generalize to HTML tags
 - To think about: artifact of authoring software?
Bayes Theorem on function words

- M & W examined the frequency of 100 function words
- Smoothed these frequencies using negative binomial (not Poisson) distribution

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Hamilton</th>
<th>Madison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.607</td>
<td>.368</td>
</tr>
<tr>
<td>1</td>
<td>.303</td>
<td>.368</td>
</tr>
<tr>
<td>2</td>
<td>.0758</td>
<td>.184</td>
</tr>
</tbody>
</table>

- Used Bayes’ theorem and linear regression to find weights to fit for observed data

- Sample words:
 as do has is no or than this
 at down have it not our that to
 be even her its now shall the up
“Give anonymous offenders enough verbal rope and column inches, and they will hang themselves for you, every time” – Donald Foster in *Author Unknown*

- *A Funeral Elegy*: Foster attributed this poem to W.S.
 - Initially rejected, but identified his anonymous reviewer
 - But about a decade late (2002), he was “proven” wrong

- Forster also attributed *Primary Colors* to Newsweek columnist Joe Klein

- Analyzes text mainly by hand
Foster’s features

- Very large feature space, look for distinguishing features:
 - Topic words
 - Punctuation
 - Misused common words
 - Irregular spelling and grammar

- Some specific features (most compound):
 - Adverbs ending with “-y”: talky
 - Parenthetical connectives: …, then, …
 - Nouns ending with “mode”, “style”: crisis mode, outdoor-stadium style
Typology of English texts

- Biber (89) typed different genres of texts
- Five dimensions ...
 1. Involved vs. informational production
 2. Narrative?
 3. Explicit vs. situation-dependent
 4. Persuasive?
 5. Abstract?
- ... targeting these genres
 1. Intimate, interpersonal interactions
 2. Face-to-face conversations
 3. Scientific exposition
 4. Imaginative narrative
 5. General narrative exposition
Features used (e.g., Dimension 1)

- Biber also gives a feature inventory for each dimension

<table>
<thead>
<tr>
<th>Feature</th>
<th>35</th>
<th>30</th>
<th>25</th>
<th>20</th>
<th>15</th>
<th>10</th>
<th>5</th>
<th>0</th>
<th>-5</th>
<th>-10</th>
<th>-15</th>
<th>-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face to face conversations</td>
<td></td>
</tr>
<tr>
<td>Personal Letters</td>
<td></td>
</tr>
<tr>
<td>Interviews</td>
<td></td>
</tr>
<tr>
<td>Prepared speeches</td>
<td></td>
</tr>
<tr>
<td>General fiction</td>
<td></td>
</tr>
<tr>
<td>Editorials</td>
<td></td>
</tr>
<tr>
<td>Academic prose; Press reportage</td>
<td></td>
</tr>
<tr>
<td>Official Documents</td>
<td></td>
</tr>
</tbody>
</table>

- THAT deletion
- Contractions
- BE as main verb
- WH questions
- 1st person pronouns
- 2nd person pronouns
- General hedges
- Nouns
- Word Length
- Prepositions
- Type/Token Ratio
Discriminant analysis for text genres

- Karlgren and Cutting (94)
 - Same text genre categories as Biber
 - Simple count and average metrics
 - Discriminant analysis (in SPSS)
 - 64% precision over four categories

Some count features
- Adverb
- Character
- Long word (> 6 chars)
- Preposition
- 2nd person pronoun
- “Therefore”
- 1st person pronoun
- “Me”
- “I”
- Sentence

Other features
- Words per sentence
- Characters per word
- Characters per sentence
- Type / Token Ratio
Conclusions

- Marked vocabulary or syntax of limited use as it doesn’t occur often
- Top n words thrown through PCA provides a reasonable baseline for state-of-the-art
Copy detection

Prevention –
stop or disable copying process

Detection –
decide if one source is the same as another
Copy / duplicate detection

- Compute signature for documents
 - Register signature of authority doc
 - Check a query doc against existing signature

Variations:
- Length: document / sentence* / window
- Signature: checksum / keywords / phrases
Granularity

- Large chunks
 - Lower probability of match, higher threshold

- Small chunks
 - Smaller number of unique chunks
 - Lower search complexity
Subset problem

- If a document consists of just a subset of another document, standard VS model may show low similarity
 - Example: Cosine \((D_1, D_2) = 0.61\)
 - \(D_1: \langle A, B, C \rangle\),
 - \(D_2: \langle A, B, C, D, E, F, G, H \rangle\)

- Shivakumar and Garcia-Molina (95): use only close words in VSM
 - **Close** = comparable frequency, defined by a tunable \(\varepsilon\) distance.
R-measure

- Normalized sum of lengths of all suffixes of the text repeated in other documents

\[R^2(T \mid T_1, \ldots T_m) = \frac{2}{l(l + 1)} \sum_{i=1}^{l} Q(T[i..l] \mid T_1, \ldots T_m), \]

where \(Q(S \mid T_1 \ldots T_n) = \) length of longest prefix of \(S \) repeated in any one document

- Computed easily using suffix array data structure
- More effective than simple longest common substring
R-measure example

\[T = \text{cat_sat_on} \]
\[T_1 = \text{the_cat_on_a_mat} \]
\[T_2 = \text{the_cat_sat} \]

\[
R^2(T|T_1, T_2) = \frac{2}{l(l + 1)} \sum_{i=1}^{l} Q(T[i..l] | T_1, \ldots T_m),
\]

\[
\frac{2}{10 \times (10 + 1)} \cdot ((7+6+5+4+3) + (5+4+3+2+1))
\]

\[
\text{cat_sat} \\
\text{at_sat} \\
\text{t_sat} \\
\text{_sat} \\
\text{sat}
\]

\[
\text{at_on} \\
\text{t_on} \\
\text{_on} \\
\text{on} \\
\text{n}
\]
Computer program plagiarism

- Use stylistic rules to compile fingerprint:
 - Commenting
 - Variable names
 - Formatting
 - Style (e.g., K&R)

- Use this along with program structure
 - Edit distance
 - To think about: What about hypertext structure?

```c
/***********************************
* This function concatenates the first and
* second string into the third string.
 ***********************************/
void strcat(char *string1, char *string2, char *string3)
{
    char *ptr1, *ptr2;
    ptr2 = string3;
    /*
     * Copy first string
     */
    for(ptr1=string1; *ptr1; ptr1++) {
        *(ptr2++) = *ptr1;
    }
    /*
     * concatenate s2 to s1 into s3.
     * Enough memory for s3 must already be
     * allocated. No checks !!!!!!!
     */
    msc(s1, s2, s3)
        char *s1, *s2, *s3;
    {
        while (*s1)
            *s3++ = *s1++;
        while (*s2)
            *s3++ = *s2++;
    }
```
Conclusion

- Find attributes that are stable between (low variance) texts for a collection, but differ across different collections

- Difficult to scale up to many authors and many sources
 - Most work only does pairwise comparison
 - Clustering may help as a first pass for plagiarism detection
To think about…

- The Mosteller-Wallace method examines function words while Foster’s method uses key words. What are the advantages and disadvantages of these two different methods?

- What are the implications of an application that would emulate the wordprint of another author?

- What are some of the potential effects of being able to undo anonymity?

- Self-plagiarism is common in the scientific community. Should we condone this practice?