

Evaluation, Annotation and Information Retrieval

Kan Min-Yen Day 2 / Morning

Min-Yen Kan / WING @ NUS

NUS National University of Singapore

Review

- The central NLP issue = Ambiguity
- Natural language is not context free
- Heuristic methods for speed and where limited flexibility is needed
- Machine learning methods for robustness against noise

-Needing clean training data

Day Outline

Day 1

AM

- Applications' Input / Output
- Resources

PM

- Selected Toolkits
- Python Intro
- NLTK Hands-on

>> Day 2

AM

- Evaluation
- Annotation
- Information
 Retrieval
- ML Intro

PM

- Machine
 Learning
- SVM Hands-on

Day 3

AM

- Sequence Labeling
- CRF++ Hands-on

PM

- Dimensionality
 Reduction
- Clustering
- Trends & Issues

Day Outline

- Evaluation
- Annotation
- Information Retrieval
- NLP as Machine Learning: crash course on ML
- Rule-based vs. statistical NLP
- Statistical Modeling Paradigms
- Hands-on: Text Classification with SVMLight

Evaluation

Design models With ground truth Without ground truth?

Min-Yen Kan / WING @ NUS

Parallels in NLP application design

- Requirements
- Design and Architecture
- Development and Coding
- Quality, Assurance and Software Testing
- Implementation
- Maintenance and Support

- Obtain an annotated corpus
- Build a baseline model
- Repeat:
 - Analyze the most common errors
 - Find out what information could be helpful
 - Modify the model to exploit this information:

Use new features Change the model

Evaluation phenomenon

- **1. Cascading Errors**
 - Stringing together modules creates larger downstream errors
 - Most accuracy needed upstream, preprocessing tasks have large effect on output
 Don't neglect preprocessing, may change architecture

Don't neglect preprocessing, may change architecture downstream

- 2. A little (clean) data goes a long way
 - Corollary: More data has less of an effect
 - Must be from the same distribution / target domain
 - Assess performance trend over subsets of data

Improvement with respect to data size

Evaluation Types

Intrinsic

Assess directly on ground truth

Extrinsic

- Assess against other tasks
- Useful to determine suitability for application
- Subjectivity factors
- Examples:
 - change in revenue via marketing
 - summaries via question answering

Evaluation Contingency Table

	System says is relevant	System says is irrelevant
Document is actually	TP	FN
relevant	(True Positive)	(False Negative)
Document is actually	FP	TN
irrelevant	(False Positive)	(True Negative)

Evaluation Metrics

TP	 Precision = Positive Predictive Value "ratio of the number of relevant documents
TP+FP	retrieved over the total number of documents retrieved"
	– how much extra stuff did you get?
TP	 Recall = Sensitivity "ratio of relevant documents retrieved for a given
TP+FN	query over the number of relevant documents for that query in the database" – how much did you miss?
2PR	 F1 measure = harmonic mean of P and R — Question: Why harmonic average?
P + R	- Can use other coefficients instead of 1

One number to rule them all: MAP

• A "standard" measure: Mean Average Precision (MAP)

 Average of precision at all points where a new relevant document is found.

- Problem: favors systems with high recall

 On the web, a user is usually looking just at the first a few results in Web search.

Leads to precision at *k* documents, but it's kludgy: not sensitive to the ranking of every relevant document.

A second try: nDCG

- "Gain": Each rel doc gives some level of relevance to the user
 G' = <3,2,3,0,0,1>
- "Cumulative": overall utility of n docs = sum of gain of each rel doc.
 CG' = <3,5,8,8,8,9>
- "Discount" docs further down in list, as they are less likely to be used DCG' = <3, 3+2/log2, 3+2/log2+3/log3, ..., 3+2/log2+3/log3+1/log6>
- "Normalized" against ideal IR system rankings
 Ideal G' = <3,3,2,1,0,0>
 Ideal DCG' = <3, 3+3/log2, 3+3/log2+2/log3, 3+3/log2+2/log3+1/log4, ...>
 nDCG' = DCG' / Ideal DCG' = <1, ...>

Pro: works naturally from fractional relevance Con: have to set the discounting coefficients in NDCG (why log?)

What constitutes good clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
 - -the intra-class (that is, intra-cluster) similarity is high
 - -the inter-class similarity is low
 - -The measured quality of a clustering depends on both the document representation and the similarity measure used

Cluster Quality Evaluation

• Simple measure: <u>purity</u>, the ratio between the dominant class in the cluster π_i and the size of cluster ω_i

Purity
$$(\omega_i) = \frac{1}{n_i} \max_{j \in C} (n_{ij}) \quad j \in C$$

 Others are entropy of classes in clusters (or mutual information between classes and clusters)

Segmentation

G: Xxx xxx xxx xxx xxx, President Bush yyy yyy S1: Xxx xxx xxx xxx xxx, President Bush yyy yyy S2: Xxx xxx xxx xxx xxx, President Bush yyy yyy

S1 and S2 equally bad by exact P/R calculations But surely S2 better than S1 (not off by so much)

P_k and WindowDiff (and other metrics) account for this

• WindowDiff implemented in NLTK

N-gram metrics: BLEU, ROUGE

- For machine translation (BLEU), summarization (ROUGE)
- Against a reference translation
- Metrics count the number of overlapping units

ROUGE-N: N-gram co-occurrence statistics is a recall oriented metric G- police killed the gunman S1- p<u>olice</u> kill <u>the gunman</u> S2- t<u>he gunman</u> kill <u>police</u>

S1 equivalent to S2

ROUGE-L: Based on longest common subsequence

G - police killed the gunman
S2- <u>police</u> kill <u>the gunman</u>
S3- <u>the gunman</u> kill police

S1 better than S2

Evaluation without ground truth

Possible?

- Not really, not able to judge:
 - Level of performance or worse
 - How to improve
- In practice, can't afford much annotation effort
- Alternatives?

Analysis: Macro vs. Micro

Macro: Summative

- First stage of analysis
- Assess over all data
- Impressionistic
- Useful for presenting %ages
- Useful in identifying areas for microanalysis using contingency table
- NOT useful in improving data

Micro: Formative

- Look at specific examples

 Sample accordingly
 (randomize)
- Categorize errors J&M pp 313
 - Hard work to come up with error categories (*cf* annotation)
 - Upstream errors?
- Fix
 - Create within model
 - Pre or post-process

Ideas from (machine) learning

Bootstrapping

 Label a little, assume most confident automatically classified data is correct, retrain

Co-training

- Train two different models (with different features)
- Have them learn from each other

Active Learning

 Take least confident auto classified data and manually annotate it

Improving NLP applications' accuracy

- Obtain an <1: annotated corpus>
- Build a baseline model
- Repeat:
 - Analyze the most common errors
 - Find out what information could be helpful
 - Modify the model to exploit this information:

Use <2: new features> Change the <3: model>

- Increase the data
 - Size of examples covered
 - Cleanliness of annotation
 - Representiveness
- Features

- Microanalysis
- Decision Tree / Regression
- Code new features using SWOT
- Model – Try a different model

Annotation

9 guidelines to follow Annotation Toolkits

Min-Yen Kan / WING @ NUS

Annotation Guidelines

1. State policy

- In addition to a technical one (e.g., DTD)
- lumping vs. splitting
- Use of kitchen sink ("other") category
- Be clear about what the data is / will be used for

2. State guidelines clearly

- Embedded or standoff annotation?
- What are elements? What are attributes?
 e.g., POS tags versus chunking
- Ensure coding dimensions
- Crossing constraints? Discontinuous elements?
- Aids training new personnel later

Annotation Guidelines

- 3. Define terminology in a glossary
 - Then use it consistently
- 4. Show difficult and confusable examples with crossreferences
 - Example: Penn Discourse Treebank Guidelines
- 5. Use an odd number of subjects
- 6. Strive for consistency
 - Better to have fewer annotators work more

Annotation Guidelines

- 7. Assign same number of subjects to each data point for validation
 - Once it's clear that agreement level on par, create separate data segment for annotation per subject
- 8. Randomized but stable order for annotation
- 9. Be prepared for annotators to fail
 - Annotators do drop out; will have to train new ones
 - Keep records of who annotated what

Computing Agreement

- Several methods
 - Kendall's Tau
 - Pearson Correlation

Analyze your confusion matrix

- Helps you to correct and strengthen your guidelines

Annotation Formats

- SGML
- XML
- TEI and TEI-lite
- JSON / YAML
- Domain specific markup

Annotation Toolkits

http://www.ldc.upenn.edu/annotation/ http://www.exmaralda.org/annotation

- Alembic (MITRE)
- ACE Annotation toolkit (LDC)
 - Relation Tagging / IE
- Atlas TI
 - Commercial (\$\$) toolkit used to annotate multimedia

Information Retrieval

Search Engines Word Weighting Documents and queries as vectors

Min-Yen Kan / WING @ NUS

NUS National University of Singapore

The anatomy of a search engine

Min-Yen Kan / National University of Singapore

Doc Representation

Query and documents seen as a <u>bag of words</u> Matching is done by comparing these BoWs

How do we get to a BoW given a text? Let's look at unstructured text first:

 Tokenization - not all languages have spaces to delimit

- what about phrases like GermanNounCompounds

 HTML structure can help to recover latent semi structure but is not guaranteed to be well formed

Doc Representation

• Stemming - recover stem for agglutinative languages

For English: Porter and Lovins stemmer: uses 5 iterations to strip suffixes. Does not necessarily result in a word
What's a "stem" in CJK?

- Case Folding combine the same word in different cases: next NEXT Next NeXT
- Stop Words remove frequent words that are not used in queries.

Which of 2 of these three attack the same problem? What is this problem?

Term Specific Weighting

Xxxxxxxxx IBM xxxxxxx xxxxxx xxxxxx xxxxxxx IBM xxxxxx xxxxxxx xxxxxx Apple. Xxxxxxx xxxxxx xxxxxxx IBM xxxxxxx. Xxxxxxx xxxx xxx xxxx Compaq. Xxxxxxx xxxx IBM.

- We call this Term Frequency although this is really just a count
- Forms of *TF*_{ij}=

N_{ij} 1+ln(N_{ij}) N_{ij}/max(N_i)

Document Specific Weighting

- Which of these tells you more about a doc?
 - -10 occurrences of hernia?
 - -10 occurrences of the?
- Would like to attenuate the weight of a common term –But what is "common"?

• Suggest looking at collection frequency (cf)

-The total number of occurrences of the term in the entire collection of documents

Document frequency

- But document frequency (*df*) may be better:
- *df* = number of docs in the corpus containing the term

Word	cf	df
ferrari	10422	17
insurance	10440	3997

- Document/collection frequency weighting is only possible in known (static) collection.
- So how do we make use of df?

This is tf.idf

• tf.idf measure combines:

- -term frequency (tf)
 - or wf, some measure of term density in a doc
- -inverse document frequency (idf)
 - measure of informativeness of a term: its rarity across the whole corpus

could just be raw count of number of documents the term occurs in $(idf_i = 1/df_i)$

but by far the most commonly used version is:

$$idf_i = \log\left(\frac{n}{df_i}\right)$$

• Justified as optimal weight w.r.t relative entropy

Documents as vectors

• Each doc *j* can now be viewed as a vector of *tf x idf* values, one component for each term

• So we have a vector space

- terms are axes
- docs live in this space
- even with stemming, may have 20,000+ dimensions

Why turn docs into vectors?

- First application: Query-by-example —Given a doc *d*, find others "like" it.
- Now that *d* is a vector, find vectors (docs) "near" it.

Postulate: Documents that are "close together" in the vector space talk about the same things.

Desiderata for proximity

- If d_1 is near d_2 , then d_2 is near d_1 .
- If d_1 near d_2 , and d_2 near d_3 , then d_1 is not far from d_3 .
- No doc is closer to *d* than *d* itself.

NUS National University of Singapore

First cut

- Idea: Distance between d₁ and d₂ is the length of the vector |d₁ d₂|.
 –Euclidean distance
- Why is this not a great idea?
- We still haven't dealt with the issue of length normalization

-Short documents would be more similar to each other by virtue of length, not topic

• However, we can implicitly normalize by looking at angles instead

Cosine similarity

- Distance between vectors d₁ and d₂ captured by the cosine of the angle x between them.
- Note this is *similarity*, not distance

No triangle inequality for similarity.

 t_2

Cosine similarity

A vector can be *normalized* (given a length of 1) by dividing each of its components by its length – here we use the L_2 norm

$$\left\|\mathbf{x}\right\|_2 = \sqrt{\sum_i x_i^2}$$

This maps vectors onto the unit sphere: Then, $\sqrt{-\pi}$

$$\left|\vec{d}_{j}\right| = \sqrt{\sum_{i=1}^{n} w_{i,j}} = 1$$

Longer documents don't get more weight

Cosine similarity

$$sim(d_{j}, d_{k}) = \frac{\vec{d}_{j} \cdot \vec{d}_{k}}{\left|\vec{d}_{j}\right| \left|\vec{d}_{k}\right|} = \frac{\sum_{i=1}^{n} w_{i,j} w_{i,k}}{\sqrt{\sum_{i=1}^{n} w_{i,j}^{2}} \sqrt{\sum_{i=1}^{n} w_{i,k}^{2}}}$$

- Cosine of angle between two vectors
- The denominator involves the lengths of the vectors.

Normalized vectors

• For normalized vectors, the cosine is simply the dot product:

$$\cos(\vec{d}_j, \vec{d}_k) = \vec{d}_j \cdot \vec{d}_k$$

Example

 Docs: Austen's Sense and Sensibility, Pride and Prejudice; Bronte's Wuthering Heights. tf weights

	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
	SaS	PaP	wн
affection	0.996	0.993	0.847
jealous	0.087	0.120	0.466
gossip	0.017	0.000	0.254

- $\cos(SAS, PAP) = .996 \times .993 + .087 \times .120 + .017 \times 0.0 = 0.999$
- cos(SAS, WH) = .996 x .847 + .087 x .466 + .017 x .254 = 0.889

Cosine similarity exercise

- Exercise: Rank the following by decreasing cosine similarity. Assume tf.idf weighting:
 - -Two docs that have only frequent words (the, a, an, of) in common.
 - -Two docs that have no words in common.
 - -Two docs that have many rare words in common *(wingspan, tailfin).*

Phrase queries

- Running multiple queries
 - Backoff to n-1 gram in case of too few results
 "A B C"
 "A B", "B C"
 A, B, C

• Proximity as window *w* between term occurrences

Prefer the window to be smaller

Relevance Feedback

- Main Idea:
 - Modify existing query based on relevance judgements
 Extract terms from relevant documents and add them to the query and/or re-weight the terms already in the query
 - Two main approaches:
 Automatic (pseudo-relevance feedback)
 Users select relevant documents
 - Users/system select terms from an automaticallygenerated list

Relevance Feedback

- Usually do both:
 - Expand query with new terms
 - Re-weight terms in query

• There are many variations

- Usually positive weights for terms from relevant docs
- Sometimes negative weights for terms from non-relevant docs
- Select terms sometimes by requiring them to match query in addition to document

Rocchio Method

$$Q_1 = Q_0 + \beta \sum_{i=1}^{n_1} \frac{R_i}{n_1} - \gamma \sum_{i=1}^{n_2} \frac{S_i}{n_2}$$

where

 Q_0 = the vector for the initial query

 R_i = the vector for the relevant document *i*

 S_i = the vector for the non-relevant document *i*

 n_1 = the number of relevant documents chosen

 n_2 = the number of non - relevant documents chosen

 β and γ tune the importance of relevant and nonrelevant terms

(in some studies best to set β to 0.75 and γ to 0.25)

Rocchio/Vector Illustration

Concepts from Machine Learning

Min-Yen Kan / WING @ NUS

Inductive learning

Simplest form: learn a function from examples

- f is the target function
- An example is a pair (x, f(x))
- Problem: find a hypothesis h such that h ≈ f given a training set of examples
- Many learners do this by constructing a generalized representation of the training set called a model

Inductive learning method

- Construct/adjust *h* to agree with *f* on training set
- (*h* is consistent if it agrees with *f* on all examples)
- E.g., curve fitting:

Inductive learning method

- Construct/adjust *h* to agree with *f* on training set
- (*h* is consistent if it agrees with *f* on all examples)
- E.g., curve fitting:

Inductive learning method

• What's to stop us from predicting this?

• Ockham's razor: prefer the simplest hypothesis consistent with data

Turn your task into a learning problem

Many tasks can be transformed into a learning problem

- Transform the data into features
- Represent the outcomes as a classification task

Overview of learning

- Learners deal with multiple pieces of evidence
 - -x can be a vector of values instead of a single value
 - -These vectors can be very large
 - -Length of the vector = dimensionality

Learners deal with numeric data

- -Textual data has to be transformed into numeric features
- -Each text token can be reflected as a separate vector

Learners deal with a fixed set of classes

-(e.g., f(x) = {finance, politics, sports}

-But some do this by decomposing multiple classes into n way binary problems, not always optimal

Procedure

Annotation (tedious part)

Determine data set and classification
 Label the data with the correct classifications
 This can sometimes be done semi-automatically

Coding (thinking part)

-Code features related to the classification-Choose an appropriate learning algorithm

Test time

- -Split datasets into training and testing portions
- -Determine training and testing error
- -Analyze errors

Training and testing sets

- Where does the test set come from?
 - 1. Collect a large set of examples
 - 2. Divide into **training** and **testing data**
 - 3. Train on training data, assess on testing
 - 4. Repeat 1-3 for different splits of the set.

The above is called **cross-validation**.

• Must be from the same distribution!!

"Learning ... enable[s] the system to do the task or tasks drawn from the same population" – Herb Simon

- To think about: Why?
- Related area: domain adaptation

Overfitting

- Better training performance = test performance?
- Nope. Why?
 - 1. Hypothesis too specific
 - 2. Models noise
- Pruning
 - Keep complexity of hypothesis low
 - Stop splitting when:
 IC below a threshold
 Too few data points in node

Summary

• Evaluation

- Subjectivity and ambiguity problems in evaluation
- Transfer evaluation into an objective measure
 Measure whether objective metric improvement correlates with subjective improvement

Annotation

- Largely XML-centric
- Follow best practices to get the most bang for the bank

Information Retrieval

- Weighting words to take local, global importance into account
- Define docs and queries as vectors to compute similarity
- Much more here: weighting using hyperlinks

• Machine Learning

- Learning a function on inputs to outputs
- Prefer the simplest consistent hypothesis