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Math Foundations
• Probability and Naïve Bayes
• Parameter Estimation
• Mixture Models and Expectation Maximization
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Bayesian Interpretation
• Belief Interpretation: 

–View the probability P(e) as a degree of belief in event e
“How likely is e true” – not “e is P(e)% true”

• Frequentist (Bayesian) Interpretation:
–View a probability as relative success over total trials

Either is fine; scale things to [0-1] range
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Conditional Probability
• P(e|D) conditions our belief in e based on observed 

data D
–Where D is known or perceived to be true
–Or where D updates our knowledge of the world over time
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Bayes Theorem
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(after seeing data)

Data Likelihood
(in world where e is true)
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Example
e = # of webpages in existence today is over 1010

D = # of webpages indexed by SE1

• P(e) = 
• P(D) = 
• P(e|D) = 
• P(D|e) = 
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New Data
• D2 = # of pages indexed by SE2.  Now what?

• Reuse Bayes Theorem!
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(after seeing data)
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Naïve Bayes
• Often we may have multiple pieces of evidence: D, D2 … Dn

• Often hard to calculate how one piece of data affects other pieces.
• Sometimes OK to ignore such correlations.  It’s naïve but we do it to 

simplify our calculation.

• This ignores the correlation between pieces of data.
• For example P(D,D2) is simplified to P(D)P(D2)
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Logarithms
• As most probabilities we deal with are very small 

(think why?), it’s often more convenient to deal with 
log probabilities (why again?)

• Ex:

)(log)(log)|(log)|(log DPePeDPDeP −+=
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The role of priors
• Often we want to estimate an event probability based 

on data: i.e., P(e|D)
• But when we don’t have much data the prior is quite 

helpful
• When we have a lot of data, the prior’s role 

diminishes
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• Many models have parameters θ to define them
–E.g., A normal (Gaussian) distribution is defined by 
parameters for its mean and std. dev.

• We usually try to estimate these from data
–So again we have a prior P(θ) and posterior P(θ |D)

• Goal: find best set of parameters θ that maximizes 
the posterior P(θ |D)

• Called maximum a posteriori (MAP)
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MAP and ML Estimation
Max P(θ|D) is equivalent to min – log P(θ|D) Why?
E(θ) = -logP(θ|D) = -log(D| θ)-logP(θ)+logP(D)

= -log(D| θ)-logP(θ)

If the prior is uniform, then it is also irrelevant to our 
minimization.
Reverts to maximum likelihood (ML) estimation

E(θ) = -logP(θ|D) = -log(D| θ)

Constant over 
maximization 

process, ignore
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Minimizing E(θ) 
The negative log-likelihood E(θ) usually needs to be iteratively estimated

–Exact calculation usually not possible
–Use gradient descent or Expectation Maximization to find optimum

Caveat: the surface to optimize should be smooth, without lots of local 
minima
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E(θ) can also be an error function

If we measure how good a model M(θ) fits the data by f(θ,D) >= 0
then we can also frame it as a likelihood.

Where Z is a normalization constant to make P(D|M(θ)) over all θ
integrate to 1.
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Ex 1: Coin Flipping
• Observation o={o1, o2,…, on}
• Maximum likelihood estimation

E.g.: o={h, h, h, t, h,h}
Pr(o|b) = b5(1-b)

*
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Ex 2: Unigram Language Model
• Observation: d={tf1, tf2,…, tfn}
• Unigram language model

θ={p(w1), p(w2),…, p(wn)}
• Maximum likelihood estimation

[ ]*

1

arg max Pr( | ) arg max ( )

( ) | |, [1, ]

i
n

tf
i

i

i i

d p w

p w t f d i n
θ θ

θ θ
∈Θ ∈Θ =

= =

→ = ∀ ∈

∏



Min-Yen Kan, WING@NUS

17

Sparse Data
• In both examples, ML estimation yield models that are 

counterintuitive
–You wouldn’t assume a coin is biased if you flipped it 6 times and 
got heads 5 times
–You wouldn’t assume a new web page wouldn’t contain words not 
seen on another page

• That is, you have a prior belief in (unseen) events 
–Adding a prior models this (MAP vs. ML)
–This is why we said earlier that priors help when the amount of 
data is small
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Mixture Modeling
• A formalism for modeling a probability density function as a sum of 

parameterized functions 

• Observed population data is complicated – not well fit by a canonical 
parametric distribution

• Assume: ‘Hidden’ subpopulation data is simple – well fit by a 
canonical parametric distribution

• Hope: 1 hidden subpopulation <-> 1 simple parametric distribution
• Key questions:

– How many hidden subpopulations are responsible for generating the 
data?
–Which subpopulation did each data point come from?

1D MIXTURE MODEL PLOT HERE
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Mixture Models
• Building a complex model out of simpler ones
• Simplest: build a linear combination of K models:

where

• Like before we want to find a set of parameters that 
maximizes the data (log) likelihood
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• The problem is that the function we want to maximize is 
difficult to handle (because of the log of the sum):

• We know neither the assignments or parameters!
• It would be a lot easier if we knew either one.

–If we knew the assignments, we can compute the parameters 
(mean, variance) for the set of data for each component
–If we knew the parameters, we could assign points to each 
component (at least probabilistically)

Maximizing MM Likelihood
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Expectation Maximization
• E step: compute expected values of λ (that 

component l created Di), pretending current 
parameters are right
–Calculate a “soft” assignment: assign posterior probabilities 
to data points for each component 

• M step: maximize the expectation computed in E-
step
–Calculate new θs based on λ

• Starts with some initial guess of θ



Min-Yen Kan, WING@NUS

22

Expectation Maximization (EM)

• E step: find which component l generated the data Di
–Calculate a “soft” assignment: assign posterior probability 
P(D|θ)

• M step: maximize the expectation computed in E-
step
–Calculate new θ based on 

• Starts with some initial guess of θ.
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EM (2)
• An algorithm where we alternate between estimating 

two unknowns
–Assume one is correct to estimate the other, vv.

• A simple version of this is the K-means algorithm for 
clustering, which we’ll return to later in the course.



Machine Learners and Text Classification

Nearest Neighbors
Regression

Neural Networks
Naïve Bayes

Decision Trees
Support Vector Machines 

Maximum Entropy
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Nearest Neighbor
• A type of instance based learning – no model
• Remembers all of the past instances
• Uses the nearest old data point as answer

• Above, a problem with |x| = 2 and f(x) = {+,-}

• Generalize to kNN, that is, take the average class of the closest k neighbors.
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Remarks on kNN
• Inductive bias 

–Similar classification of nearby instances…
• Curse of dimensionality 

–Similarity metric mislead by irrelevant attributes 
–Solutions: 

Weight each attribute differently: 
Use cross-validation to automatically choose weights 

Stretch each axis by a variable value. 
• Efficient memory indexing is necessary

–Databases: kd-tree 
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Perceptrons – A basis for regression and neural 
networks

(Rosenblatt, 1962)
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What a Perceptron Does 
• Regression: y=wx+w0

• Classification: y=1(wx+w0>0)
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Multi-class classification
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Learning weights
• Iterative learning is applied in such algorithms

1. Set weights uniformly or randomly
2. Calculate errors

– Either on full batch of training data on on single instances
3. Update weights to minimize errors and repeat

• Many names for different ways of doing this:
– Gradient descent (delta rule, LMS)
– Backpropagation (for networks)

( )
( ) InpututActualOutpputDesiredOutctorLearningFa Update ⋅−⋅=

−=Δ t
j

t
i

t
i

t
ij xyrw η



Min-Yen Kan, WING@NUS

31

Remarks on Regression/ANN
• Perceptron units can be layered together to form networks

• Pros (Networks):
–Robust to noise
–Good for high dimensional data

• Pros (Regression):
–Can predict continuous values

• Cons:
–Network versions of this can be very slow to train
–People generally can’t interpret the resulting model
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Naïve Bayes
Create a model from the training data:
NaïveBayesLearn(examples)

For each target value vj
P’(vj) ← estimate P(vj)
For each attribute value ai of each attribute a

P’(ai|vj) ← estimate P(ai|vj)

Predict:
ClassfyingNewInstance(x)

vnb= argmax P’(vj) Π P’(ai|vj)
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Remarks on Naïve Bayes
• Very fast to learn and apply

–Decomposes model to 
a prior distribution of the classes, and 
posterior distributions of features given a class

–A good baseline algorithm to test with

• Has problems with correlated features
–Assumes independence between features 

Each feature’s probability is simply multiplied through
–In practice, this doesn’t seem to be too much of a problem
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Decision Trees
• Divide and conquer strategy
• Sequentially choose a dimension of x to split on that 

makes the subproblems as easy as possible
• “easy” = information gain
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Remarks on Decision Trees
• Normal training speed; fast testing

–Complexity proportional to |x| and # of instances
–Need to compute best feature after every new rule
–But just need to apply tree rules in testing

• Pros
–Easy to analyze: people easily understand hypotheses, easier for post-
analysis

• Cons:
–Can overfit data easily
–Large inductive bias: considers only on feature at a time
–Most methods adopt a version of pruning to give some assurance of the 
generalizability of its rule
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A complex topic, let’s just go over the very basic

• Basic SVMs use a line (hyperplane) to separate the classes
–Draws a line to maximize the margin between the classes
–Only care about data instances (support vectors) near the boundary; 
other instances are not used

• Left is linearly separable with one line 
but the right is not

Support Vector Machines

x
+ ++–– – + +– –

x

Support vectors
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Solution: Map the data into a higher dimensional space
–This is called the kernel trick
–This guarantees that it will be separable, allowing non linear 
classification
–Relies on k(x,y), a kernel function that takes two points in the 
original input space and calculates their distance

• The same data set is now separable

Support Vector Machines

+ +– –+ +

– –

x x

x2
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Remarks on SVMs
• A learner that seems to have good performance for many different

scenarios

• Sensitive to choice of kernel function
–That is, how to calculate how close two data points are
–Variety of kernel functions to try
–Sequence data and tree data structures can be compared using different 
kernels

• Running time depends heavily on kernel function
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The Maximum Entropy Principle
A type of constraint satisfaction: find a model that fits all of the training 

data
• Use an exponential model

• Given some set of constraints which must hold, what is the best 
model among those available?
–Answer: the one with maximum entropy 
–Meaning that it doesn’t assume more than what is necessary

• Why? ...philosophical answer:
–Occam’s razor, don’t pretend you know something you don’t
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Example
• Throwing the “unknown” die

–do not know anything − we should assume a fair die
(uniform distribution ~ max. entropy distribution)

• Throwing unfair die
–we know: p(4) = 0.4, p(6) = 0.2, nothing else
–best distribution? 
–do not assume anything

about the rest: 1 2 3 4 5 6
0.1 0.1 0.1 0.4 0.1 0.2
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Remarks: Max Ent
• Similar in spirit to SVM’s max margins

–Make hypothesis as general as possible

• Features
–Are usually binary valued
–Used a lot in sequence labeling tasks
–Often encode previous decisions in sequence learning

E.g., last word was labeled as an adjective

• Is the basis for a number of more complex sequence labeling models 
(more on this later)
–Max. Entropy Markov Models (MEMM) 
–Conditional Random Fields (CRF)
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Recap on Text Classification
• Use a machine learning technique to assign a 

document d to a category c

Some characteristics:
–|D| >> |C|, where there are numerous examples for each C
–Represent each d as a set of features f1…fn, typically each 
w in vocabulary is a feature, weighted by tf.idf
–Results in thousands of features
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Curse of Dimensionality
Two problems:

–Some learning methods don’t work well with thousands of 
features.  
–Many datasets don’t have enough examples to generate 
sufficient statistics for features

Solution?  
• Use dimensionality reduction
• Use feature selection 
• Use appropriate weighting scheme

When the statistics can sub for the 
distribution in inference decisions
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Classification Method
• Choice of methods (Global vs. local classifier)

–Global: one multi-class classifier 
–Local: Many binary classifiers, making Y/N decisions

Classifier 1 ClassifierClassifier 2

One Global Classifier
Output: 1 of N categories

AI OS Media

Local
Classifier

Global
Classifier
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Feature Selection
• Selecting / eliminating features based on criteria on a feature’s 

(term’s) distribution (or weight)
• Decision of local vs. global features

–Global: one set of features for one or more classifiers
–Local: each classifier uses own (local) features

AI
Machine

Reasoning

Multimedia
Video

Speech

Operating 
Embedded
Software

AI, Operating, Multimedia

AI OS Media
Local 

Dictionary

Global
Dictionary

Choice of features and feature selection method have largest 
influence on categorization performance.
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IR and TC
To think about … carefully

• IR favors rare features
–Retains all non-trivial terms
–Use IDF to select rare features

• TC needs common features in each category
–DF is more important than IDF

What are the differing characteristics of these two 
problems?
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Feature Selection Methods
• DF: Document Frequency
• IG: Information Gain
• MI: Mutual Information
• CHI: Χ2 statistic

DBCi=0
(Non-relevant)

CACi=1
(Relevant)

Tk=0
(Absent)

Tk=1
(Occurs)

Term/Class Contingency Table
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Selection Methods, 1
• DF: throw away all 

terms that occur in 
less than n documents
–Equate noise with rare 
terms
–But IR assumes such 
rare terms can indicate 
content, so we typically 
don’t set this too 
aggressively

• IG: measure number of bits of 
information that can be used for 
category prediction
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Weighting of features
• Feature weighting plays a role in certain types of 

classifiers: SVM, kNN.  
–What about NB?

• Support Vector Machines shown to be competitive in 
accuracy in classification
–Shown to be attributable more to text representation than 
kernel function (Leopold 02)
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Sensitive to
Classification

Weighting schemes
• TF
• Log TF
• ITF

• IDF
• TF.IDF
• Log TF.IDF

• TF.CHI
• TF.RF

DBCi=0

CACi=1

Tk=0Tk=1

RF = 
log (2+a/c) 

IDF =
N/(a+c)

CHI =
N(ab-bc)2

(a+c)(a+b)(b+d)(c+d)
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Relevant Frequency
• First three = idf1

last three = idf2

• RF = ratio of a
to c as important,
while taking into 
account relative rarity 
of term

To think about: how is this different from CHI? From IG? From 
MI?



Hands on with SVMlight

Text classification over 
Reuters-21578
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SVMlight

• SVM package from Joachims (Cornell)
• Many competing packages (some embedded as 

libraries within frameworks)

• Deals with sparse vector format

• Data is just a set of instances:
class_label (feature_index:feature_value)+ # comment
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Seven Steps
• Reuse NLTK from Day 1
1. Inspect Reuters corpus from within NLTK
2. Build vocabulary list
3. Create initial vectors

1. Use TF as weight
2. Set up simple training and testing splits
3. Run SVMlight

4. Create normalized, stemmed vectors
5. Use IDF or TF.IDF for vector weighting
6. Use bigram features
7. Build n classifiers for each category
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Summary
• Many machine learners to pick from
• Difficulty comes in picking useful features to provide 

to the classifier
• Weighting word features has significant impact on 

performance
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Looking Ahead
Day 1

AM
– Applications’

Input / Output
– Resources

PM
– Selected Toolkits
– Python Intro
– NLTK Hands-on

Day 2

AM
– Evaluation
– Annotation
– Information 

Retrieval
– ML Intro

PM
– Machine

Learning
– SVM Hands-on

>>Day 3

AM
– Sequence Labeling
– CRF++ Hands-on

PM
– Dimensionality 
Reduction 
– Clustering
– Trends & Issues


