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Recap
• Information Retrieval

– Weighting words with respect to global and local 
importance
– Represent both docs and queries as vectors

• Introduced NLP as a machine learning problem
• Casts the problem as annotation and feature 

engineering
– Annotation requires clear policy and guidelines
– Evaluation to assess performance and identify sources of 
error for improvement
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Day Outline
Day 1

AM
– Applications’

Input / Output
– Resources

PM
– Selected Toolkits
– Python Intro
– NLTK Hands-on

Day 2

AM
– Evaluation
– Annotation
– Information 

Retrieval
– ML Intro

PM
– Machine

Learning
– SVM Hands-on

>>Day 3

AM
– Sequence Labeling
– CRF++ Hands-on

PM
– Dimensionality 
Reduction 
– Trends & Issues
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Sequence Labeling Models
• HMM

–Generative model
–E.g. Ghahramani (1997), Manning and Schutze (1999)

• MEMM
–Conditional model
–E.g. Berger and Pietra (1996),  McCallum and Freitag (2000)

• CRFs
–Conditional model without label bias problem
–Linear-Chain CRFs

E.g. Lafferty and McCallum (2001), Wallach (2004)
–Non-Linear Chain CRFs

Modeling more complex interaction between labels: DCRFs, 2D-CRFs
E.g. Sutton and McCallum (2004), Zhu and Nie (2005)
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Labeling Sequence Data Problem
• X is a random variable over data sequences
• Y is a random variable over label sequences
• Yi is assumed to range over a finite label alphabet A
• The problem:

–Learn how to give labels from a closed set Y to a data sequence X

Thinking is beingX:
x1 x2 x3

noun verb noun

y1 y2 y3

Y:
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Generative Probabilistic Models
• Learning problem:

Choose Θ to maximize joint likelihood:

L(Θ)= Σ log pΘ (yi,xi)

• The goal: maximization of the joint likelihood of training 
examples
y = argmax p*(y|x) = argmax p*(y,x)/p(x)

• Needs to enumerate all possible observation sequences

Joint likelihood
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Markov Model
A Markov process or model assumes that we can 

predict the future based just on the present (or on a 
limited horizon into the past): 

Let {X1,…,XT} be a sequence of random variables 
taking values {1,…,N} then the Markov properties 
are: 

1. Limited Horizon: 
P(Xt+1|X1,…,Xt) = P(Xt+1|Xt) =

2. Time invariant (stationary):
= P(X2|X1)
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Describing a Markov Chain
Markov Chains can be 
described by the 
transition matrix A and 
the initial (start) 
probabilities Q:

Aij = P(Xt+1=j|Xt=i)

qi = P(X1=i)
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Learning Seminar, 2004

• Do not observe the sequence that the model passes 
through (X) but only some probabilistic function of it (Y). 
Thus, it is a Markov model with the addition of emission 
probabilities:

Hidden Markov Model

Hidden = Latent
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The Trellis
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• Likelihood/Evaluation: Given a series of observations y and a 
model λ = {A,B,q}, compute the likelihood p(y| λ)
>> Forward Algorithm

• Inference/Decoding: Given a series of observations y and a model 
λ = {A,B,q}, compute the most likely sequence of hidden states x
>> Viterbi Algorithm (like forward algorithm but just do max instead 

of sum)

• Learning: Given a series of observations, learn the best model λ
>> Forward-Backward Algorithm (Baum Welch)
(Iterative algorithm to re-estimate parameters, like EM)

The Three Problems in HMMs
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Likelihood in HMMs
• Given a model λ = {A,B,q}, we can compute the 

likelihood by

P(y) = p(y| λ) 
= Σ p(x)p(y|x) 
= q(x1) ΠA(xt+1|xt) ΠB(yt|xt)

• But … this computation complexity is O(NT), when |xi| = 
N impossible in practice
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Forward-Backward algorithm
• To compute likelihood: 

–Need to enumerate over all paths in the lattice (all 
possible instantiations of X1…XT). But … some starting 
subpath (blue) is common to many continuing paths 
(blue+red)

The idea: 
Use dynamic 
programming, calculate 
a path in terms of shorter 
sub-paths 



Min-Yen Kan, WING@NUS

14

Learning Seminar, 2004

• We build a matrix of the probability of being at time t at 
state i: αt(i) = P(xt=i, y1 y2 … yt). This is a function of the 
previous column (forward procedure): 

Forward-Backward algorithm (cont’d)
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Learning Seminar, 2004

We can similarly define a backwards procedure 
for filling the matrix βt(i) = P(yt+1…yT|xt=i)

Forward-Backward algorithm (cont’d)
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Combine both …
• Combine both processes to arrive at likelihood:

P(y,xt=i) = P(xt=i,y1y2…yt)* P(yt+1…yT|xt=i)
= αt(i) βt(i)

• And then we get:
P(y) = Σ P(y,xt=i) = Σ αt(i) βt(i)
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HMM Summary
• Advantages:

– Estimation very easy
– Closed form solution
– The parameters can be estimated with relatively high confidence
from small samples

• But:
– The model represents all possible (x,y) sequences and defines 
joint probability over all possible observation and label sequences 
– Need to enumerate all possible observation sequences
– Impossible to represent multiple interacting features
– Difficult to model long-range dependencies of the observations
– Very strict independence assumptions on the observations
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Discriminative Probabilistic Models

“Solve the problem you need to solve”: 
The traditional approach inappropriately uses a 
generative joint model in order to solve a conditional 
problem in which the observations are given. 
To classify we actually need p(y|x) – there’s no need to 
implicitly approximate p(x,y).

Generative Discriminative
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Discriminative / Conditional Models
• Conditional probability P(label seq y | observed seq x) 

rather than joint probability P(y, x)
– Specify the probability of possible label sequences given 
an observation sequence

• Allow arbitrary, non-independent features on the 
observation sequence X

• The probability of a transition between labels may 
depend on past and future observations
– Relax strong independence assumptions in HMM
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a.k.a. Conditional Markov Models CMMs

• Models probability of a state given
an observation and just the 
previous state
– Conditional probs are represented 
as exponential models based on 
arbitrary observation features

• Given training set X with label 
sequence Y:
– Train a model θ that maximizes
P(Y|X, θ)
– For a new data sequence x, predict 
label y that maximizes P(y|x, θ) Per state normalization: all prob

mass that arrives is distributed 
among its successor states

Maximum Entropy Markov Models (MEMMs)
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The Label Bias Problem
• In MaxEnt’s formulation, the prob mass that arrives at the state must be 

distributed among the possible successor states

• If one of transitions leaving state 0 occurs more frequently in training, its 
transition prob is greater, irrespective of the observation sequence

– Especially in cases where there are few outgoing transitions (as in states 1, 2, 4 
and 5).

• In the example, say that ‘rib’ is slightly more common that ‘rob’ in the training 
data.  Then in the test data, if ‘rob’ occurs it will be classified as ‘rib’ as the 
the transition to 1 is more likely than to 4; the observation of the ‘o’ is 
effectively ignored as that it is only observed later at state 1. 
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Conditional Random Fields (CRFs)
• CRFs have all the advantages of MEMMs without 

label bias problem
–MEMM uses per-state exponential model for the 
conditional probabilities of next states given the current state
–CRF has a single exponential model for the joint 
probability of the entire sequence of labels given the 
observation sequence
– This difference means that some transitions have more 
influence than others depending on the corresponding 
observations in our previous example

• Undirected acyclic graph
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Random Fields – Undirected Graphical Models
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Conditional Random Field: Definition
• X – random variable over data sequences
• Y – random variable over label sequences
• Yi is assumed to range over a finite label alphabet A

• Discriminative approach: 
– We construct a conditional model p(y|x) and do not 
explicitly model marginal p(x)
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CRF Distribution Function
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Where :

V = Set of random variables (observed and hidden)
fk and gk = features
gk = State feature
fk = Edge feature

are parameters to be estimated
y|e = Set of components of y defined by edge e
y|v = Set of components of y defined by vertex v
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• We will handle the case when G is a simple chain: G 
= (V = {1,…,m}, E={ (I,i+1) })

Learning Seminar, 2004

HMM (Generative) MEMM (Discriminative) CRF

CRF on the linear chain graph
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CRF – the Learning Problem
• Assumption: the features fk and gk are given and 

fixed.
– For example, a boolean feature gk is TRUE if the word Xi is 
upper case and the label Yi is a “noun”.

• The learning problem
– We need to determine the parameters Θ = (λ1, λ2, . . . ; 
µ1, µ2, . . .) from training data D = {(x(i), y(i))} with empirical 
distribution p~(x, y).
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Parameter Estimation for CRFs
• The parameter vector Θ that maximizes the log-

likelihood is found using a iterative scaling 
algorithm.

• We define standard 
HMM-like forward and 
backward vectors α and β, 
which allow polynomial time
calculations.

• However as the normalization is conditioned over 
the entire CRF (not over single vertices), it is 
expensive to compute → slow training time
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Learning Seminar, 2004

• Part-of-speech (POS) tagging experiments
Experiment Validation of the models
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Summary
• HMM:

– Basic sequence labeling framework where labels are considered 
hidden and generate the observed words, and are just dependent 
on the previous state (Markovian assumption)
– Fast algorithms for three classic problems

• CRF:
– Discriminatively trained models P(y|x) as compared to modeling 
joint P(x,y) probability
– Allows combination of arbitrary and overlapping observation 
features from both the past and future
– main current limitation is the slow convergence of the training
algorithm relative to MEMMs or HMMs, for which training is 
efficient. 



Hands on with CRF++

Reference string labeling over the Cora 
dataset
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Cora Dataset CRF++
• 200 reference strings taken 

from articles in Computer 
Science

• Labeled with fields in XML 
style

Isaac G. Councill, C. Lee 
Giles, Min-Yen Kan. (2008)
ParsCit: An open-source CRF 
reference string parsing 
package. To appear in the 
proceedings of the Language 
Resources and Evaluation 
Conference (LREC 08),
Marrakesh, Morrocco, May.

• Implementation of CRFs in 
C++ 

• Built with multithreading
• Generates individual binary 

feature functions from feature 
templates (each which 
describe a class of features)

• Uses conlleval.pl script to 
assess performance
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Six Steps
1. Convert data to CRF++ format
2. Create basic data and template file
3. Create basic word features
4. Integrate lexicon features
5. Error analysis – Inspect results more closely
6. Create punctuation, numeric features
7. Create global features


