| Logical Agents

Chapter 7 (continued)

25 February 2004 CS 3243 - Logical Agents (part 2)

B Outline: Inference

Resolution in CNF
Sound and Complete

Forward and Backward Chaining using
Modus Ponens in Horn Form

Sound and Complete

25 February 2004 CS 3243 - Logical Agents (part 2)

‘ Proof methods

= Proof methods divide into (roughly) two kinds:

= Application of inference rules
= Legitimate (sound) generation of new sentences from old

= Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search
algorithm

= Typically require transformation of sentences into a normal form

25 February 2004 CS 3243 - Logical Agents (part 2)

1 Inference by enumeration

= Depth-first enumeration of all models is sound and complete

function T'T-ENTAILS?(KB, a) returns true or false

symbols + a list of the proposition symbols in KB and «
return TT-CHECK-ALL(K B, o, symbols, [|)

function TT-CHECK-ALL(KB, a, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(a, model)
else return true
else do
P + F1RST(symbols); rest + REST(symbols)
return T'T-CHECK-ALL(KB, a, rest, EXTEND(P, true, model) and
TT-CHECK-ALL(KB, a, rest, EXTEND(P, false, model)

= For nsymbols, time complexity is O(2"), space complexity is O(n)

25 February 2004 CS 3243 - Logical Agents (part 2)

q Wumpus world sentences

I

Let P;; be true if there is a pit in [i, j].

Let B; ; be true if there is a breeze in [i, j].
—P; 4

IB],]_
BZ,l

"Pits cause breezes in adjacent squares”

B1,1 = (P1,2 4 P2,1)
B2,1 < (P1,1 4 P2,2 4 P3,1)

25 February 2004 CS 3243 - Logical Agents (part 2)

1 Truth tables for inference

Byy | Byy | Py | Poo | Poy | Pos | Ps; | KB (03]
false| false ||false | false | false | false | false | false | true
false false | true | false | true
false Talse | false | Jalse | true
false false | true | true | true
false true | false | true | true
false true | true | ftrue | true
I falsell false | false | false | true

true || true|| true | true | true | true | true || false || false |

Ry=-P,; a, =P, ,?
R,=-B,,
R;=B,,

25 February 2004 CS 3243 - Logical Agents (part 2)

‘ Proof methods

= Proof methods divide into (roughly) two kinds:

= Model checking
= truth table enumeration (always exponential in 1)

= improved backtracking, e.g., Davis-Putnam-Logemann-Loveland
(DPLL)

= heuristic search in model space (sound but incomplete)
e.g., min-conflicts like hill-climbing algorithms

25 February 2004 CS 3243 - Logical Agents (part 2)

q Reasoning Patterns in Prop Logic

Given(s) Rules that allow us to
Conclusion introduce new propositions
while preserving truth
values: logically equivalent

A B, A
:>B : Two Examples:
Modus Ponens
BAA
:\ And Elimination

25 February 2004 CS 3243 - Logical Agents (part 2) 8

q Logical equivalence

Two sentences are logically equivalent iff true in same
models: a=Biffafpand BFa

(N B) = (BN a) commutativity of A
(aV @) = (BVa) commutativity of V
(e AB)A7y) = (N (B A7y)) associativity of A
(avB)Vy) = (aV(BVry)) associativity of
—(—a) = a double-negation elimination
(@ = B) = (-8 = —a) contraposition
(¢ =) = (-~ V) implication elimination
(@ & B) = ((a = B)AN(B = «)) biconditional elimination
(A f) = (maV —~fF) de Morgan
—(aV @) = (—raA—fF) de Morgan
(@A (BVY) = ((anp)V (aAy)) distributivity of A over V
(aV(BAY) = ((aVB)A(aVy)) distributivity of V over A

25 February 2004 CS 3243 - Logical Agents (part 2)

q Resolution

Resolution inference rule (for CNF):
Ev.. vk, my VvV o.. VM,

[e VEgV iV VRV My VL m g Vg Ve Vo

where /and m are complementary literals.
E.g., P3Vv Py, P,
P1,3

25 February 2004 CS 3243 - Logical Agents (part 2)

10

q Resolution example

|
KB — (Bl,l S (Pl,ZV PZ,I)) A\ Bl,l

a= (negate the premise for proof by refutation)

—|P1,2

_|Bl,1 \Y P1,2 vV Bl,l

P1,2 vV P2,1 \Y4 —|P1,2

—'B1,1 Vv B1,1 Vv P2,1 —Pa1vPiaVv Py

25 February 2004 CS 3243 - Logical Agents (part 2)

q The power of false

|
Given: (P) A (—P)

Prove: Z
— P Given
P Given
—Z Given
] Unsatisfiable

Can we prove —Z using the givens above?

25 February 2004 CS 3243 - Logical Agents (part 2)

‘ Applying inference rules

Equivalent to a search
problem

= KB state = node

= Inference rule
application = edge

25 February 2004 CS 3243 - Logical Agents (part 2) 13

‘ Inference

Define: KB | a = seftence a can be derived from KB by
procedure /

= Soundness: /is sound if whenever KB } q, it is also true
that KBE a

= Completeness: /is complete if whenever KBE q, it is also
true that KB | a

25 February 2004 CS 3243 - Logical Agents (part 2) 14

‘ Completeness

Completeness: /is
complete if whenever
KBE q, it is also true
that KB | a

= An incomplete
inference algorithm
cannot reach all
possible conclusions Original

- Equivalent to KB
completeness in search
(chapter 3)

25 February 2004 CS 3243 - Logical Agents (part 2) 15

Resoluti

on

Resolution is sound and complete

for propositional logic

25 February 2004

CS 3243 - Logical Agents (part 2)

16

q Resolution

|
Soundness of resolution inference rule:

(v o VL VE NV VL)L
=iy = (Mg Voo VoV Mg Ve Vomy)
—(bV o VE{NVE 4V oV L) (M V.V My V Myy Veer V)

where £ and m are complementary literals.

What if £ and —m are false?
What if £ and —m; are true?

25 February 2004 CS 3243 - Logical Agents (part 2) 17

q Completeness of Resolution

That is, that resolution can decide the truth value
of S

S = set of clauses

RC(S) = Resolution closure of S = Set of all clauses
that can be derived from S by the resolution
inference rule.

RC(S) has finite cardinality (finite number of
symbols P,, P,, ... P,), thus resolution refutation
must terminate.

25 February 2004 CS 3243 - Logical Agents (part 2) 18

q Completeness of Resolution (cont)

Ground resolution theorem = if S unsatisfiable,
RC(S) contains empty clause.

Prove by proving contrapositive:

i.e., if RC(S) doesn’t contain empty clause, S is
satisfiable

Do this by constructing a model:

For each P,, if there is a clause in RC(S) containing —P; and all
other literals in the clause are false, assign P, = false

Otherwise P, = true
This assignment of P;is a model for S.

25 February 2004 CS 3243 - Logical Agents (part 2) 19

q Forward and backward chaining

Horn Form (restricted)
KB = conjunction of Horn clauses
Horn clause =
proposition symbol; or
(conjunction of symbols) = symbol
Eg., CA(B=A)A(CAD=B)
Modus Ponens (for Horn Form): complete for Horn KBs
dy, ... ,Q,, QG A...An0, =B

b

Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in linear time

25 February 2004 CS 3243 - Logical Agents (part 2) 20

1 Forward chaining example

25 February 2004 CS 3243 - Logical Agents (part 2)

21

q Forward chaining example
I

25 February 2004 CS 3243 - Logical Agents (part 2)

22

1 Forward chaining example

25 February 2004 CS 3243 - Logical Agents (part 2)

23

q Proof of completeness

I
FC derives every atomic sentence that is entailed
by KB (only for clauses in Horn form)

FC reaches a fixed point (the deductive closure)
where no new atomic sentences are derived

Consider the final state as a model m, assigning
true/false to symbols

Every clause in the original KBis true in m
an ...n a_b

Hence mis a model of KB
If /(B|= g, gis true in every model of KB, including m

25 February 2004 CS 3243 - Logical Agents (part 2) 24

1 Backward chaining example

25 February 2004 CS 3243 - Logical Agents (part 2)

25

1 Backward chaining example

25 February 2004 CS 3243 - Logical Agents (part 2)

26

1 Backward chaining example

25 February 2004 CS 3243 - Logical Agents (part 2)

27

‘ Proof methods

= Proof methods divide into (roughly) two kinds:

= Application of inference rules
= Legitimate (sound) generation of new sentences from old

= Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search
algorithm

= Typically require transformation of sentences into a normal form

25 February 2004 CS 3243 - Logical Agents (part 2) 28

q Efficient propositional inference

Two families of efficient algorithms for propositional
inference:

Complete backtracking search algorithms
DPLL algorithm (Davis, Putham, Logemann, Loveland)

Incomplete local search algorithms
Wal kSAT algorithm

25 February 2004 CS 3243 - Logical Agents (part 2)

29

1 The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:

1. Early termination
A clause is true if any literal is true.
A sentence is false if any clause is false.

>, Pure symbol heuristic

Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses (A v —B), (=B v =C), (Cv A), Aand B are pure, Cis
impure.

Make a pure symbol literal true. Least constraining value

;. Unit clause heuristic
Unit clause: only one literal in the clause Most constrained value
The only literal in a unit clause must be true.

25 February 2004 CS 3243 - Logical Agents (part 2) 30

The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses +— the set of clauses in the CNF representation of s
symbols + a list of the proposition symbols in s
return DPLL(clauses, symbols, ||)

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value < FIND-PURE-SYMBOL(symbols, clauses, model)

25 February 2004 CS 3243 - Logical Agents (part 2)

31

q The WalkSAT algorithm

I
Incomplete, local search algorithm

Evaluation function: The min-conflict heuristic of minimizing
the number of unsatisfied clauses

Balance between greediness and randomness

25 February 2004 CS 3243 - Logical Agents (part 2) 32

The WalkSAT algorithm

function WALKSAT(clauses, p, maz-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move
maz-flips, number of flips allowed before giving up

model + a random assignment of true/ false to the symbols in clauses

if model satisfies clauses then return model
clause +— a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol
from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

25 February 2004 CS 3243 - Logical Agents (part 2)

33

q Hard satisfiability problems
|
Consider random 3-CNF sentences. e.qg.,

(Dv-BvCOABv-Av-LCA(-Cv —B
vE)A(Ev-DvB)A(BvEV--C)

/m = number of clauses
n = number of symbols

Hard problems seem to cluster near m/n = 4.3
(critical point)

25 February 2004 CS 3243 - Logical Agents (part 2) 34

q Hard satisfiability problems

1 B ! | | ill | 1 1 _|

0.8 E| -

s 06} i -
: x

2 04| \]
& i

0.2 &5. -

0 F \I\]

0 | 2 3 4) 6 7 a
Clause/symbol ratio m/n
25 February 2004 CS 3243 - Logical Agents (part 2) 35

q Hard satisfiability problems

Runtime

Median runtime for 100 satisfiable random 3-CNF

2000

1800 |
1600
1400
1200 |
1000
800
600 -
4m-
200

0

| 1 1
DFLL + ﬁ
WalkSAT X IT
ke
\
IR
| \
|I+l !
|
|
I|
| %
|I x X
[Rl
| "?;:@M .
e s el
0 | 2 3 4 5 6

Clause/symbol ratio m/n

sentences, n = 50

25 February 2004

CS 3243 - Logical Agents (part 2)

36

q Inference-based agents in the wumpus world

I
A wumpus-world agent using propositional logic:

=P 4

—Wi

Bx,y <~ (Px,y+1 Vv I:)x,y-l Vv I:)x+1,y Vv I:)x-l,y)
Sx,y ~ (Wx,y+1 Vv Wx,y—1 Vv Wx+1,y Vv Wx-l,y)
W1,1 Vv W1,2 Vo V W4,4

—|W1,1 Vv —|W1,2

=Wy v =W, 5

= 64 distinct proposition symbols, 155 sentences

25 February 2004 CS 3243 - Logical Agents (part 2)

37

function PL-WuMPUS-AGENT(percept) returns an action
inputs: percept, a list, [stench,breeze, glitter]
static: KB, initially containing the “physics” of the wumpus world
z, y, orientation, the agent's position (init. [1,1]) and orient. (init. right)
visited, an array indicating which squares have been visited, initially false
action, the agent's most recent action, initially null
plan, an action sequence, initially empty

update z,y, orientation, visited based on action

if stench then TELL(KB, S;,) else TELL(KB, ~ S;,)

if breeze then TELL(KB, B, ;) else TELL(KB, ~ B,)

if glitter then action + grab

else if plan is nonempty then action < Pop(plan)

else if for some fringe square [i,j], ASK(KB, (= Pij A — Wi;)) is true or

for some fringe square [i,j], ASK(KB, (P;; v W;;)) is false then do

plan «+ A*-GRAPH-SEARCH(ROUTE-PB([z,y], orientation, [1,j], visited))
action + PoP(plan)

else action + a randomly chosen move

return action

25 February 2004 CS 3243 - Logical Agents (part 2)

38

q Expressiveness limitation of propositional logic

We didn't keep track of location and time in the KB. To do
this we need more variables:
L, ; to show that agent in L, ;. Does this work?

KB contains "physics" sentences for every single square

For every time £and every location [x,)],

Ly, A FacingRightt A Forward® = L },, ,

Rapid proliferation of clauses

25 February 2004 CS 3243 - Logical Agents (part 2)

39

Summary

Logical agents apply inference to a knowledge base to derive new
information and make decisions
Basic concepts of logic:
syntax: formal structure of sentences
semantics: truth of sentences wrt models
entailment: necessary truth of one sentence given another
inference: deriving sentences from other sentences
soundness: derivations produce only entailed sentences
completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated
information, reason by cases, etc.

Resolution is complete for propositional logic

Forward, backward chaining are linear-time, complete for Horn
clauses

Propositional logic lacks expressive power

25 February 2004 CS 3243 - Logical Agents (part 2)

40

