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Inference in PL and FOL

Chapters 7, 8 and 9
+ Prolog Redux

! Long lecture ahead
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Outline: PL Inference

Enumerative methods
Resolution in CNF

Sound and Complete

Forward and Backward Chaining using 
Modus Ponens in Horn Form

Sound and Complete
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Proof methods

Proof methods divide into (roughly) two kinds:
 

Application of inference rules 
 Legitimate (sound) generation of new sentences from old

Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search 

 algorithm
Typically require transformation of sentences into a normal form

 
Model checking

truth table enumeration (always exponential in n  )
improved backtracking, e.g., Davis-Putnam-Logemann-Loveland 

 (DPLL)
heuristic search in model space (sound but incomplete)

e.g., min-conflicts like hill-  climbing algorithms
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Efficient propositional inference

Two families of efficient algorithms for propositional 
 inference:

Complete backtracking search algorithms
DPLL algorithm (Davis, Putnam, Logemann  , Loveland)
Incomplete local search algorithms

WalkSAT  algorithm
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The DPLL algorithm
Determine if an input propositional logic sentence (in CNF) is satisfiable  .

 Improvements over truth table enumeration:
1. Early termination

A clause is true if any literal is true.
 A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses (A ∨ ¬B), (¬B ∨ ¬C), (C ∨ A), A and B are pure, C is 

impure. 
 Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause

 The only literal in a unit clause must be true.

Least constraining value

Most constrained value

What are correspondences between 
DPLL and in general CSPs?

What are correspondences between 
DPLL and in general CSPs?
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The DPLL algorithm
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The WalkSAT algorithm

 Incomplete, local search algorithm
Evaluation function: The min-conflict heuristic of minimizing 

 the number of unsatisfied clauses
 Balance between greediness and randomness
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The WalkSAT algorithm

Let’s ask ourselves: Why is it incomplete?Let’s ask ourselves: Why is it incomplete?
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Hard satisfiability problems

Consider random 3-  CNF sentences. e.g.,
(¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨ ¬B 
∨ E) ∧ (E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬  C)

m = number of clauses 
n  = number of symbols

Hard problems seem to cluster near m/n = 4.3 
 (critical point)
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Hard satisfiability problems



17 Mar 2005 CS 3243 - Logical Inference 11

Hard satisfiability problems

Median runtime for 100 satisfiable random 3-CNF 
sentences, n  = 50
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Proof methods

Proof methods divide into (roughly) two kinds:
 

Application of inference rules 
 Legitimate (sound) generation of new sentences from old

Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search 

 algorithm
Typically require transformation of sentences into a normal form

 
Model checking

truth table enumeration (always exponential in n  )
improved backtracking, e.g., Davis-Putnam-Logemann-Loveland 

 (DPLL)
heuristic search in model space (sound but incomplete)

e.g., min-conflicts like hill-  climbing algorithms
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Resolution
Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals
clauses

E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬  D)

Resolution  inference rule (for CNF):
li ∨… ∨ lk, m1 ∨ … ∨ mn 

li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn
 

where li and mj are complementary literals. 
E.g., P1,3 ∨ P2,2, ¬P2,2 

P1,3 

Resolution is sound and complete 
 for propositional logic
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Resolution example

KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1 

α = ¬P1,2 (negate the premise for proof by refutation) 

¬B1,1 ∨ P1,2 ∨ P2,1 ¬P1,2 ∨ B1,1 ¬P2,1 ∨ B1,1 ¬ B1,1 P1,2

P1,2 ∨ P2,1 ∨ ¬P1,2

¬B1,1 ∨ B1,1 ∨ P2,1

¬B1,1 ∨ P1,2 ∨ B1,1

¬P2,1 ∨ P1,2 ∨ P2,1

¬P2,1 ¬P1,2
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The power of false

Given: (P) ∧ (¬P)
Prove: Z

Can we prove ¬Z using the givens above?

¬ P Given
P Given
¬ Z Given
� Unsatisfiable
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Applying inference rules
KB:

B, A ∧ D ∧ C,
B ⇒ F

KB:
B, A ∧ D ∧ C,

B ⇒ F, A

KB:
B, A ∧ D ∧ C,

B ⇒ F, F

M.P.A.E.

Equivalent to a search 
problem

KB state = node
Inference rule 
application = edge
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Inference Do the operators make 
conclusions that aren’t 
always true?

Define: KB ├i α = sentence α can be derived from KB by 
procedure i 
Soundness: i is sound if whenever KB ├i α, it is also true 
that KB╞ α

Completeness: i is complete if whenever KB╞ α, it is also 
true that KB ├i  α 
Preview: we will define a logic (first-order logic) which is 
expressive enough to say almost anything of interest, and 
for which there exists a sound and complete inference 

 procedure.
That is, the procedure will answer any question whose 
answer follows from what is known by the KB  .• Is a set of inference operators complete

and sound?
• Is a set of inference operators complete
and sound?
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Completeness

All possible clauses entailed by 
the KB 

Clauses inferable 
from KB using IF

Original
KB

Completeness: i is 
complete if whenever 
KB╞ α, it is also true 
that KB ├i  α 

An incomplete 
inference algorithm 
cannot reach all 
possible conclusions

Equivalent to 
completeness in search 
(chapter 3) 
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Resolution

Conjunctive Normal Form (CNF)
conjunction of disjunctions of literals

clauses
E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬  D)

 Resolution inference rule (for CNF):
li ∨… ∨ lk, m1 ∨ … ∨ mn 

li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn
 

where li and mj are complementary literals. 
E.g., P1,3 ∨ P2,2, ¬P2,2 

P1,3 

Resolution is sound and complete
 for propositional logic
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Resolution

Soundness of resolution inference rule: 

¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ li
¬mj ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn)

¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn)

where li and mj are complementary literals.

What if li and ¬mj are false?
What if li and ¬mj are true?

Same truth valueSame truth value
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Completeness of Resolution

That is, that resolution can decide the truth value 
of S

S = set of clauses
RC(S) = Resolution closure of S = Set of all 
clauses that can be derived from S by the 
resolution inference rule.
RC(S) has finite cardinality (finite number of 
symbols P1, P2, … Pk), thus resolution refutation 
must terminate.
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Completeness of Resolution (cont)

Ground resolution theorem = if S unsatisfiable, 
RC(S) contains empty clause.
Prove by proving contrapositive: 

i.e., if RC(S) doesn’t contain empty clause, S is 
satisfiable
Do this by constructing a model:

For each Pi, if there is a clause in RC(S) containing ¬Pi and all 
other literals in the clause are false, assign Pi = false
Otherwise Pi = true

This assignment of Pi is a model for S.
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Other Reasoning Patterns

• Resolution works by refutation
• What about proving propositions directly?

Given(s)
Conclusion

A ⇒ B, A
B

B ∧ A
A

Rules that allow us to 
introduce new propositions 
while preserving truth 
values: logically equivalent

Two Examples:
Modus Ponens

And Elimination
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Forward and backward chaining

Horn Form (restricted)
KB = conjunction of Horn clauses 

Horn clause = 
proposition symbol;  or
(conjunction of symbols) ⇒ symbol

E.g., C ∧ (B ⇒ A) ∧ (C ∧ D ⇒  B)
Modus Ponens (for Horn Form): complete for Horn KBs 

α1, … ,αn, α1 ∧ … ∧ αn ⇒ β 
β

Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in linear  time
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Forward chaining

Idea: fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found
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Forward chaining algorithm

Forward chaining is sound and complete for Horn 
 KB
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Forward chaining example
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Forward chaining example



17 Mar 2005 CS 3243 - Logical Inference 29

Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Proof of completeness

FC derives every atomic sentence that is entailed 
by KB (only for clauses in Horn form)

1. FC reaches a fixed point (the deductive closure)
 where no new atomic sentences are derived

2. Consider the final state as a model m, assigning 
 true/false to symbols

3. Every clause in the original KB is true in m 
a1 ∧ … ∧ ak ⇒ b 

4. Hence m is a model of KB 
5. If KB╞ q, q is true in every model of KB, including m 
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Inference in first-order logic

Chapter 9
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Outline

Reducing first-order inference to 
propositional inference
Unification
Generalized Modus Ponens
Forward chaining
Backward chaining
Resolution
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Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by 
 it:

∀v α

Subst({v/g}, α) 
for any variable v and ground term g 

E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x   ) yields:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))
.
.
.
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Existential instantiation (EI)

For any sentence α, variable v, and constant 
symbol k that does not appear elsewhere in the 

 knowledge base:
∃v α

Subst({v/k}, α  )

E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John  )

provided C1 is a new constant symbol, called a 
Skolem constant 
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Reduction to propositional inference
 Suppose the KB contains just the following:

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard,John) 

Instantiating the universal sentence in all possible ways, we have:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John  )

The new KB is propositionalized  : proposition symbols are
 

King(John), Greedy(John), Evil(John), King(Richard  ), etc.
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Reduction contd.

Every FOL KB can be propositionalized so as to 
 preserve entailment

(A ground sentence is entailed by new KB iff entailed by 
 original KB)

Idea: propositionalize KB and query, apply resolution, 
 return result

Problem: with function symbols, there are infinitely many 
ground terms,

e.g., Father(Father(Father(John  )))



17 Mar 2005 CS 3243 - Logical Inference 45

Reduction con’td.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it 
is entailed by a finite subset of the propositionalized  KB

Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth-n terms
see if α  is entailed by this KB

Problem: works if α is entailed, loops if α  is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is 
semi-decidable (algorithms exist that say yes to every entailed 
sentence, but no algorithm exists that also says no to every non-

 entailed sentence.)
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Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.

  E.g., from:
∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
∀y Greedy(y)
Brother(Richard,John  )

it seems obvious that Evil(John), but propositionalization produces 
lots of facts such as Greedy(Richard  ) that are irrelevant

With p k-ary predicates and n constants, there are p·nk

 instantiations.
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Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y) 

θ = {x/John,y/John  } works

Unify(α,β) = θ if αθ = βθ  
p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) Knows(x,OJ)  {fail}

Standardizing apart eliminates overlap of variables, e.g., 
Knows(z17  ,OJ)
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Unification

To unify Knows(John,x) and Knows(y,z)  ,
θ = {y/John, x/z } or θ  = {y/John, x/John, z/John}

The first unifier is more general than the 
 second.

There is a single most general unifier (MGU) 
 that is unique up to renaming of variables.

MGU = { y/John, x/z  }
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The unification algorithm
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The unification algorithm
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Generalized Modus Ponens (GMP)

p1', p2', … , pn', ( p1 ∧ p2 ∧ … ∧ pn ⇒q)
qθ

p1' is King(John)  p1 is King(x) 
p2' is Greedy(y)  p2 is Greedy(x) 
θ is {x/John,y/John} q is Evil(x) 
q θ is Evil(John  )

GMP used with KB of definite clauses (exactly one positive literal)

 All variables assumed universally quantified

where pi'θ = pi θ for all i 
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Soundness of GMP

 Need to show that 
p1', …, pn', (p1 ∧ … ∧ pn ⇒ q) ╞ qθ 

provided that pi'θ = piθ for all I

Lemma: For any sentence p, we have p ╞ pθ  by UI

1. (p1 ∧ … ∧ pn ⇒ q) ╞ (p1 ∧ … ∧ pn ⇒ q)θ = (p1θ ∧ … ∧ pnθ⇒ qθ  )
2. p1', …, pn' ╞ p1' ∧ … ∧ pn' ╞ p1'θ ∧ … ∧ pn'θ
3. From 1 and 2, qθ follows by ordinary Modus Ponens 
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Example knowledge base

The law says that it is a crime for an American to sell 
weapons to hostile nations.  The country Nono, an 
enemy of America, has some missiles, and all of its 
missiles were sold to it by Colonel West, who is 

 American.

 Prove that Col. West is a criminal
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Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:
American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x  ):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

 Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American … 
American(West)

The country Nono, an enemy of America … 
Enemy(Nono,America) 
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Forward chaining algorithm
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Forward chaining proof
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Forward chaining proof
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Forward chaining proof
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Properties of forward chaining

Sound and complete for first-  order definite clauses

Datalog = first-order definite clauses + no functions
FC terminates for Datalog  in finite number of iterations

May not terminate in general if α  is not entailed

This is unavoidable: entailment with definite clauses is 
semidecidable 
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Efficiency of forward chaining

Incremental forward chaining: no need to match a rule on 
iteration k if a premise wasn't added on iteration k-1
⇒ match each rule whose premise contains a newly added positive 

 literal

Matching itself can be expensive:
Database indexing  allows O(1) retrieval of known facts

e.g., query Missile(x) retrieves Missile(M1) 

Forward chaining is widely used in deductive databases
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Backward chaining algorithm

SUBST(COMPOSE(θ1, θ2), p) = SUBST(θ2, 
SUBST(θ1  , p))
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Prolog Inference

Q: which model do you think  
Prolog uses for inference?
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Properties of backward chaining

Depth-first recursive proof search: space is 
linear w.r.t. size of proof

 Incomplete due to infinite loops
⇒ fix by checking current goal against every goal on 

stack

Inefficient due to repeated subgoals (both 
success and failure)
⇒ fix using caching of previous results (extra space)
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Prolog Execution

Prolog needs to choose which goal to pursue first, 
although logically it doesn’t matter.  Why?  

Treats goals in order, leftmost first.

A :- B,C,D.
B :- E,F.
-? A.

B is tried first, then C, then D.
E and F are pushed onto the stack, before C and D.  

Why?

3 goals in 
this clause
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Prolog Execution

Prolog also needs to choose which clause to 
pursue first.

Treats clauses in order, top-most first.
G.
A :- B,C,D.
B :- E,F.
B :- G.

To satisfy goal B, prolog tries E,F before G.  

4 clauses in 
example
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Procedural Prolog Programming

Order of Prolog clauses and goals crucial, 
can affect running times immensely

Order of goals tell which get executed first
Order of clauses tell which control branches are 
tried first.
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A Singaporean example

likes(hari,X) :- makan(X), consumes(hari,X).
likes(min,X) :- likes(hari,X).
makan(meeSiam).
makan(rojak).
minum(rootBeerFloat).
consumes(hari,meeSiam).

likes(hari,X1)

likes(min,X)

makan(X2), consumes(hari,X2)

consumes(hari,rojak).consumes(hari,meeSiam).

X = X1

X1 = X2

X2 = meeSiam X2 = rojak

Fail
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Summary

Whew! That was a loooooooong lecture.  What did we learn?

Enumeration: DPLL rules are similar to CSP heuristics.
Resolution is proof by refutation, used in PL.
Other forms of reasoning: Modus Ponens which requires 
Horn form.
FOL uses unification to find solutions, requires Skolem
constants and functions.
Forward (undirected) and Backward (directed) chaining 
patterns to apply an inference mechanism.
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