:- module(leq,[cycle/3, leq/2]).
:- use_module(library(chr)).
:- constraints leq/2.
reflexivity @ leq(X,X) <=> true.
antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.
idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).
cycle(X,Y,Z):-
leq(X,Y),
leq(Y,Z),
leq(Z,X).
|
:- module(dom,[dom/2]).
:- use_module(library(chr)).
:- constraints dom/2.
dom(X,[]) <=> fail.
dom(X,[Y]) <=> X = Y.
dom(X,L1), dom(X,L2) <=> intersection(L1,L2,L3), dom(X,L3).
intersection([],_,[]).
intersection([H|T],L2,[H|L3]) :-
member(H,L2), !,
intersection(T,L2,L3).
intersection([_|T],L2,L3) :-
intersection(T,L2,L3).
|